Revision: April 18, E Main Suite D Pullman, WA (509) Voice and Fax

Size: px
Start display at page:

Download "Revision: April 18, E Main Suite D Pullman, WA (509) Voice and Fax"

Transcription

1 Lab 9: Steady-state sinusoidal response and phasors Revision: April 18, E Main Suite D Pullman, WA (509) Voie and Fax Overview In this lab assignment, we will be onerned with the steady-state response of eletrial iruits to sinusoidal inputs. Figure 1(a) shows a blok-diagram representation of the system. The input is a osine funtion with amplitude A and phase angle. The output is a osine funtion with amplitude B and phase angle. Both the input and output waveforms have radian frequeny (reall that an important property of linear systems is that the steady-state response of a linear system to a sinusoidal input is a sinusoid with the same frequeny as the input sinusoid). The analysis of the iruit of Figure 1(a) an be simplified by representing the sinusoidal signals as phasors. The phasors provide the amplitude and phase information of the sinusoidal input and output signals. The input-output relationship governing the iruit then redues to a relationship between the output and input signal amplitudes and the output and input signal phases. The iruit an thus be represented in phasor form as an amplitude gain between the output and input signals and a phase differene between the output and input signals, as shown in Figure 1(b). Input u(t)=aos(t+) Ciruit Output y(t)=bos(t+) (a) Physial iruit Input U=AÐ B Ð ) A Output Y=BÐ (b) Phasor representation of iruit input-output relationship. Figure 1. Steady-state sinusoidal iruit analysis In this lab assignment, we will measure the gain and phase responses of several eletrial iruits and ompare these measurements with expetations based on analysis. Before beginning this lab, you should be able to: After ompleting this lab, you should be able to: Represent sinusoidal signals in phasor form (EA-???) Represent eletrial iruit steady-state sinusoidal responses in phasor form (EA-???) Measure phasor form of iruit steady-state sinusoidal response Measure input impedane of eletrial iruit Do: XXX-YYY page 1 of 9

2 This lab exerise requires: Digilent Analog Parts Kit Digilent EE board Symbol Key: Demonstrate iruit operation to teahing assistant; teahing assistant should initial lab notebook and grade sheet, indiating that iruit operation is aeptable. Analysis; inlude priniple results of analysis in laboratory report. Numerial simulation (using PSPICE or MATLAB as indiated); inlude results of MATLAB numerial analysis and/or simulation in laboratory report. Reord data in your lab notebook. I. Passive RL Ciruit General Disussion: Consider the RL iruit shown in Figure 2 below. The input to the iruit is an applied voltage and we hoose the urrent supplied by the soure to be the system output. The differential equation relating the applied voltage v (t) to the input urrent i (t) an be obtained by applying KVL around the single loop: v di ( t ) ( t ) Ri ( t ) L (1) dt If we assume that the input voltage and urrent are omplex exponentials of the form: v i ( t ) ( t ) j( t ) Ve (2) j( t ) Ie (3) We an write the iruit s input-output relation as a ratio between the urrent and the voltage: I V Ie Ve j j 1 R jl (4) Where I and V are phasors representing the magnitude and phase of the input urrent and input voltage to the iruit, respetively. This input-output relation an be written in terms of an amplitude gain and a phase shift: page 2 of 9

3 I 1 1 V R jl R L (5) 1 L tan R (6) i (t) + v (t) - + v R (t) - R L + v L (t) - Pre-lab: Figure 2. RL iruit. (a) Starting with equations (1), (2), and (3), show that the amplitude gain and phase differene between the input voltage and the input urrent are as shown in equations (5) and (6). R (b) The utoff frequeny for the iruit of Figure 2 is given to be (more on this topi in later L modules). Determine the gain as defined by equation (5) of the RL iruit for frequenies 0,, and. From equation (6), determine the phase ( ) of the RL iruit for frequenies 0,, and. (Note: your answers will, in general, be funtions of R and L.) What is the relationship between the DC gain and the gain at the utoff frequeny? () Determine the gain and phase relationships between the indutor voltage v L (t) and the indutor urrent i (t). What is the voltage-to-urrent gain of the indutor at low and high frequenies? What is the phase differene between indutor voltage and urrent at low and high frequenies? (d) We saw previously that an indutor s steady-state response to a onstant input is like a short iruit and that indutor urrents annot hange instantaneously. Do these indutor harateristis agree with your indutor gain and phase harateristis at low and high frequenies as determined in part (b) of the pre-lab? (e) Interpret your low and high frequeny gain results in part (a) of the pre-lab in terms of an indutor s steady-state response to a onstant input and an indutor s response to an instantaneous voltage hange. (e.g. replae the indutor with either an open iruit or a short iruit as appropriate for the frequeny of interest.) page 3 of 9

4 Lab Proedures: Overview: In this portion of the lab assignment, we will measure v (t), i (t), and v L (t). We will use these measurement to estimate the gain and phase differene between v (t) and i (t) and the gain and phase differene between v L (t) and i (t). These results will be ompared with our expetations based on the pre-lab analyses. We do not have the ability to diretly measure a time-varying urrent, so we will infer i (t) by measuring v (t) - v L (t) and determining i (t) by: i v ( t ) vl( t ) ( t ) (7) R All signals we will be dealing with are sinusoidal. Appendix A of this lab assignment provides tips relative to gain and phase measurement of sinusoidal signals. (a) Construt the iruit of Figure 2 with L = 1mH and R = 47 (b) Use your funtion generator to apply a sinusoidal input at v (t). Use your osillosope to display both v (t) and v L (t). Use the osillosope s math operation to display the differene between the input and indutor voltages, v (t) - v L (t). In your lab notebook, reord the amplitude of v (t), v L (t), and v (t) - v L (t). Also reord the time delay between v (t) and v L (t) and the time delay between v (t) and v (t) - v L (t). Perform this proess for the following frequenies: (low frequeny input) (high frequeny input) (orner frequeny input) Demonstrate operation of your iruit to the Teahing Assistant. Have the TA initial the appropriate page(s) of your lab notebook and the lab heklist. () Use equation (7) and your measurements from part (b) above to alulate, for eah of the frequenies listed in part (b), the amplitude of i (t), the time differene between i (t) and v (t), the time differene between i (t) and v L (t). (d) Calulate the measured gains and phase differenes between i (t) and v (t) and i (t) and v L (t) for the three frequenies listed in part (b) above. Compare your measured results with your expetations from the pre-lab. Comment on your results. page 4 of 9

5 II. Passive RC Ciruit General Disussion: In this part of the lab assignment, we will determine the input impedane of the passive RC iruit shown in Figure 3. The input impedane of a iruit is defined as the ratio of input voltage to input urrent. Thus, for the iruit of Figure 3, the input impedane is represented in phasor form as: V Z (8) I where V is the phasor representation of the iruit input voltage and I is the phasor representation of the input urrent to the iruit. The utoff frequeny for the iruit of Figure 3 is: 1 (9) RC i (t) R + v (t) - C Figure 3. Passive RC iruit. Pre-lab: (a) Determine an expression for the input impedane of the iruit of Figure 3 in terms of R, C, and. (b) If R = 100 and C = 1F, determine the utoff frequeny for the iruit. Also determine the input impedane for frequenies of: (low frequeny input) (high frequeny input) (orner frequeny input) () Chek your low and high frequeny results in part (b) relative to your expetations based on the apaitor s low and high frequeny behavior. page 5 of 9

6 Lab Proedures: Construt the iruit of Figure 3, using R = 100 and C = 1F. Measure the input impedane (magnitude and phase) of the iruit for the frequenies: Compare your measured results with your expetations based on the analysis you did in the pre-lab. Demonstrate operation of your iruit to the Teahing Assistant. Have the TA initial the appropriate page(s) of your lab notebook and the lab heklist. Hint: The proess to perform the above lab proedures is omparable to the proess performed in Part I of this lab assignment. Be sure to reord all neessary data and any alulations you perform to obtain your results in your lab notebook. page 6 of 9

7 Appendix A Measuring Gain and Phase: The gain of a system at a partiular frequeny is the ratio of the magnitude of the output voltage to the magnitude of the input voltage at that frequeny, so that: Gain = V V out in where Vout and Vin the figure below. an be measured from the sinusoidal input and output voltages as shown in Input voltage, V in Voltage V in Output voltage, V out Time V out The phase of a system at a partiular frequeny is a measure of the time shift between the output and input voltage at that frequeny, so that: Phase = T T 360 where T and T an be measured from the sinusoidal input and output voltages as shown in the figure below. page 7 of 9

8 Input voltage, V in Voltage T Output voltage, V out Time T page 8 of 9

9 Lab 9 Report Cheklist: On a title page, please inlude the following items: (5 pts) Name, title of lab, date, and lab partners(s). Brief introdution (ouple of sentenes) desribing the overall purpose of the lab. I. Passive RL Ciruit (50 pts total) 1. Gain ( I ) and phase ( Ð I ÐV ) for RL iruit at low, high, and orner frequenies. V Relationship between DC and utoff frequeny gains. (7 pts) 2. Indutor voltage-to-urrent gain and phase relationships. Indutor gain and phase relations at low and high frequenies. (8 pts) 3. Indutor physial behavior at low and high frequenies vs. expression obtained in (2) above. (2 pts) 4. RL iruit physial behavior at low and high frequenies vs. expression obtained in (1) above. (3 pts) 5. Table providing amplitudes of v (t), v L (t), and v (t) - v L (t) and time delays between v (t) and v L (t) and between v (t) - v L (t) at the three frequenies of interest. (7 pts) 6. Measured gains and phase differenes between i (t) and v (t) and i (t) and v L (t) for the three frequenies of interest. (8 pts) 7. DEMO: Have a teahing assistant initial this sheet, indiating that they have observed your system s operation (15 pts) II. Passive RC Ciruit (45 pts) 1. General expression for nput impedane (gain, phase) (7 pts) 2. Input impedane for speified R and C, at three frequenies of interest (8 pts) 3. Chek of input impedane at low, high frequenies relative to expeted apaitor behavior (5 pts) 4. Measured input impedane at three frequenies of interest. (Table inluding measured data, alulated gains and phases) (15 pts) 5. DEMO: Have a teahing assistant initial this sheet, indiating that they have observed your iruit s operation. (10 pts total) page 9 of 9

TRANSISTORS: DYNAMIC CIRCUITS. Introduction

TRANSISTORS: DYNAMIC CIRCUITS. Introduction TRANSISTORS: DYNAMIC CIRCUITS Introdution The point of biasing a iruit orretly is that the iruit operate in a desirable fashion on signals that enter the iruit. These signals are perturbations about the

More information

Version of 7. , using 30 points from 5 rad/s to 5 krad/s. Paste your plot below. Remember to label your plot.

Version of 7. , using 30 points from 5 rad/s to 5 krad/s. Paste your plot below. Remember to label your plot. Version 1.2 1 of 7 Your Name Passive and Ative Filters Date ompleted PELAB MATLAB = 1000 s + 1000, using 30 points from 5 rad/s to 5 krad/s. Paste your plot below. emember to label your plot. 1. reate

More information

Notes on Experiment #11. You should be able to finish this experiment very quickly.

Notes on Experiment #11. You should be able to finish this experiment very quickly. Notes on Experiment #11 You should be able to finish this experiment very quikly. This week we will do experiment 11 almost A I. Your data will be the graphial images on the display of the sope. o, BRING

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects Real Analog - Circuits 1 Chapter 11: Lab Projects 11.2.1: Signals with Multiple Frequency Components Overview: In this lab project, we will calculate the magnitude response of an electrical circuit and

More information

Revision: April 18, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: April 18, E Main Suite D Pullman, WA (509) Voice and Fax Revision: April 18, 2010 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview In this lab assignment, we will use KVL and KCL to analyze some simple circuits. The circuits will be

More information

Average Current Mode Interleaved PFC Control

Average Current Mode Interleaved PFC Control Freesale Semiondutor, n. oument Number: AN557 Appliation Note ev. 0, 0/06 Average Current Mode nterleaved PFC Control heory of operation and the Control oops design By: Petr Frgal. ntrodution Power Fator

More information

EKT358 Communication Systems

EKT358 Communication Systems EKT358 Communiation Systems Chapter 2 Amplitude Modulation Topis Covered in Chapter 2 2-1: AM Conepts 2-2: Modulation Index and Perentage of Modulation 2-3: Sidebands and the Frequeny Domain 2-4: Single-Sideband

More information

Application of TEM horn antenna in radiating NEMP simulator

Application of TEM horn antenna in radiating NEMP simulator Journal of Physis: Conferene Series Appliation of TEM horn antenna in radiating NEMP simulator To ite this artile: Yun Wang et al 013 J. Phys.: Conf. Ser. 418 010 View the artile online for updates and

More information

Real Analog - Circuits 1 Chapter 1: Lab Projects

Real Analog - Circuits 1 Chapter 1: Lab Projects 1.4.4: Temperature Measurement System Real Analog - Circuits 1 Chapter 1: Lab Projects Overview: This lab assignment also includes our first design-related task: we will design a circuit whose output voltage

More information

Capacitor Voltage Control in a Cascaded Multilevel Inverter as a Static Var Generator

Capacitor Voltage Control in a Cascaded Multilevel Inverter as a Static Var Generator Capaitor Voltage Control in a Casaded Multilevel Inverter as a Stati Var Generator M. Li,J.N.Chiasson,L.M.Tolbert The University of Tennessee, ECE Department, Knoxville, USA Abstrat The widespread use

More information

and division (stretch).

and division (stretch). Filterg AC signals Topi areas Eletrial and eletroni engeerg: AC Theory. Resistane, reatane and impedane. Potential divider an AC iruit. Low pass and high pass filters. Mathematis: etor addition. Trigonometry.

More information

Revision: August 8, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 8, E Main Suite D Pullman, WA (509) Voice and Fax Lab 0: Signal Conditioning evision: August 8, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 oice and Fax Overview When making timevarying measurements, the sensor being used often has lower than

More information

Analysis and Design of an UWB Band pass Filter with Improved Upper Stop band Performances

Analysis and Design of an UWB Band pass Filter with Improved Upper Stop band Performances Analysis and Design of an UWB Band pass Filter with Improved Upper Stop band Performanes Nadia Benabdallah, 1 Nasreddine Benahmed, 2 Fethi Tari Bendimerad 3 1 Department of Physis, Preparatory Shool of

More information

DSP First Lab 05: FM Synthesis for Musical Instruments - Bells and Clarinets

DSP First Lab 05: FM Synthesis for Musical Instruments - Bells and Clarinets DSP First Lab 05: FM Synthesis for Musial Instruments - Bells and Clarinets Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up setions of this lab assignment and go over all exerises

More information

ANALOG COMMUNICATION (8)

ANALOG COMMUNICATION (8) /5/3 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING ANALOG COMMUNICATION (8) Fall 3 Original slides by Yrd. Doç. Dr. Burak Kellei Modified by Yrd. Doç. Dr. Didem Kivan Tureli OUTLINE Random Variables

More information

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax Revision: Jan 29, 2011 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The purpose of this lab assignment is to provide users with an introduction to some of the equipment which

More information

Real Analog Chapter 3: Nodal & Mesh Analysis. 3 Introduction and Chapter Objectives. 3.1 Introduction and Terminology

Real Analog Chapter 3: Nodal & Mesh Analysis. 3 Introduction and Chapter Objectives. 3.1 Introduction and Terminology Real Analog Chapter 3: Nodal & Mesh Analysis 1300 Henley Court Pullman, WA 99163 509.334.6306 www.store.digilent.com 3 Introduction and Chapter Objectives In Chapters 1 & 2, we introduced several tools

More information

Portable Marx Generator for Microplasma Applications

Portable Marx Generator for Microplasma Applications J. Plasma Fusion Res. SERIES, Vol. 8 (2009) Portable Marx Generator for Miroplasma Appliations T. UENO*, T. SAKUGAWA**, M. AKIYAMA**, T. NAMIHIRA**, S. KATSUKI** and H. AKIYAMA** *Department of Eletrial

More information

EE 464 Band-Pass Sampling Example Fall 2018

EE 464 Band-Pass Sampling Example Fall 2018 EE 464 Band-Pass Sampling Example Fall 2018 Summary This example demonstrates the use of band-pass sampling. First, a band-pass signal is onstruted as a osine modulated speeh signal. This is a double sideband

More information

Effect of orientation and size of silicon single crystal to Electro-Ultrasonic Spectroscopy

Effect of orientation and size of silicon single crystal to Electro-Ultrasonic Spectroscopy Effet of orientation and size of silion single rystal to Eletro-Ultrasoni Spetrosopy Mingu KANG 1, Byeong-Eog JUN 1, Young H. KIM 1 1 Korea Siene Aademy of KAIST, Korea Phone: +8 51 606 19, Fax: +8 51

More information

A compact dual-band bandpass filter using triple-mode stub-loaded resonators and outer-folding open-loop resonators

A compact dual-band bandpass filter using triple-mode stub-loaded resonators and outer-folding open-loop resonators Indian Journal of Engineering & Materials Sienes Vol. 24, February 2017, pp. 13-17 A ompat dual-band bandpass filter using triple-mode stub-loaded resonators and outer-folding open-loop resonators Ming-Qing

More information

EE140 Introduction to Communication Systems Lecture 7

EE140 Introduction to Communication Systems Lecture 7 3/4/08 EE40 Introdution to Communiation Systems Leture 7 Instrutor: Prof. Xiliang Luo ShanghaiTeh University, Spring 08 Arhiteture of a (Digital) Communiation System Transmitter Soure A/D onverter Soure

More information

CHAPTER 3 BER EVALUATION OF IEEE COMPLIANT WSN

CHAPTER 3 BER EVALUATION OF IEEE COMPLIANT WSN CHAPTER 3 EVALUATIO OF IEEE 8.5.4 COMPLIAT WS 3. OVERVIEW Appliations of Wireless Sensor etworks (WSs) require long system lifetime, and effiient energy usage ([75], [76], [7]). Moreover, appliations an

More information

10. Introduction and Chapter Objectives

10. Introduction and Chapter Objectives Real Analog - Circuits Chapter 0: Steady-state Sinusoidal Analysis 0. Introduction and Chapter Objectives We will now study dynamic systems which are subjected to sinusoidal forcing functions. Previously,

More information

Real Analog Chapter 2: Circuit Reduction. 2 Introduction and Chapter Objectives. After Completing this Chapter, You Should be Able to:

Real Analog Chapter 2: Circuit Reduction. 2 Introduction and Chapter Objectives. After Completing this Chapter, You Should be Able to: 1300 Henley Court Pullman, WA 99163 509.334.6306 www.store. digilent.com 2 Introduction and Chapter Objectives In Chapter 1, we presented Kirchhoff's laws (which govern the interaction between circuit

More information

Fatih University Electrical and Electronics Engineering Department EEE Communications I EXPERIMENT 5 FM MODULATORS

Fatih University Electrical and Electronics Engineering Department EEE Communications I EXPERIMENT 5 FM MODULATORS Fatih University Eletrial and Eletronis Engineering epartent EEE 36 - Couniations I EXPERIMENT 5 FM MOULATORS 5. OBJECTIVES. Studying the operation and harateristis of a varator diode.. Understanding the

More information

UNIT -4 (Guided waves between Parallel planes)

UNIT -4 (Guided waves between Parallel planes) SRI VENKATESWARA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Date : 09.09.014 PART-A QUESTIONS AND ANSWERS Subjet : Transmission lines & Wave Guides Sub Code : EC305

More information

Revision: April 18, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: April 18, E Main Suite D Pullman, WA (509) Voice and Fax Lab 1: Resistors and Ohm s Law Revision: April 18, 2010 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview In this lab, we will experimentally explore the characteristics of resistors.

More information

Notes on Dielectric Characterization in Waveguide

Notes on Dielectric Characterization in Waveguide Notes on Dieletri Charaterization in Waveguide R.Nesti, V. Natale IRA-INAF Aretri Astrophysial Observatory 1. Theory Let's suppose we have to haraterize the eletromagneti properties of a dieletri material,

More information

Figure 4.11: Double conversion FM receiver

Figure 4.11: Double conversion FM receiver 74 4.8 FM Reeivers FM reeivers, like their AM ounterparts, are superheterodyne reeivers. Figure 4.11 shows a simplified blok diagram for a double onversion superheterodyne FM reeiver Figure 4.11: Double

More information

Real Analog - Circuits 1 Chapter 1: Lab Projects

Real Analog - Circuits 1 Chapter 1: Lab Projects Real Analog - Circuits 1 Chapter 1: Lab Projects 1.2.2: Dependent Sources and MOSFETs Overview: In this lab assignment, a qualitative discussion of dependent sources is presented in the context of MOSFETs

More information

Helicon Resonator based Strong Magnetic Field Sensor

Helicon Resonator based Strong Magnetic Field Sensor 1.48/v148-11-9- MEASUREMENT SCIENCE REVIEW, Volume 11, No., 11 Helion Resonator based Strong Magneti Field Sensor. aurinavičius Department of Eletrial Engineering Vilnius Gediminas Tehnial University,

More information

Fatih University Electrical and Electronics Engineering Department EEE Communications I EXPERIMENT 4 AM DEMODULATORS

Fatih University Electrical and Electronics Engineering Department EEE Communications I EXPERIMENT 4 AM DEMODULATORS Fatih University Eletrial and Eletronis Engineering Departent EEE 316 - Couniations I EXPERIMENT 4 AM DEMODULATORS 4.1 OBJECTIVES 1. Understanding the priniple of aplitude odulation and deodulation.. Ipleenting

More information

TELE3013 Mid-session QUIZ 1

TELE3013 Mid-session QUIZ 1 TELE3013 Mid-session QUIZ 1 Week 7 10 th April, 2006 Name: Student No: Instrutions to Candidates (1) Time allowed: 90 minutes or so (2) Answer all questions. Total Marks = 90. (3) Marks are as indiated.

More information

Revision: April 16, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: April 16, E Main Suite D Pullman, WA (509) Voice and Fax Revision: April 6, 200 25 E Main Suite D Pullman, WA 9963 (509) 334 6306 Voice and Fax Overview In mesh analysis, we will define a set of mesh currents and use Ohm s law to write Kirchoff s voltage law

More information

A High Frequency Battery Model for Current Ripple Analysis

A High Frequency Battery Model for Current Ripple Analysis A High Frequeny Battery Model for Current Ripple Analysis Jin Wang* Ke Zou Departent of Eletrial and Coputer Engineering The Ohio State University Colubus, OH, USA *Wang@ee.osu.edu Chinghi Chen* Lihua

More information

Calculating the input-output dynamic characteristics. Analyzing dynamic systems and designing controllers.

Calculating the input-output dynamic characteristics. Analyzing dynamic systems and designing controllers. CHAPTER : REVIEW OF FREQUENCY DOMAIN ANALYSIS The long-term response of a proess is nown as the frequeny response whih is obtained from the response of a omplex-domain transfer funtion. The frequeny response

More information

The Design and Analysis of Non-Uniform Down-Sized Differential Distributed Amplifiers

The Design and Analysis of Non-Uniform Down-Sized Differential Distributed Amplifiers The Desin and Analysis of Non-Uniform Down-Sized Differential Distributed Amplifiers Ahmad Yazdi and ayam Heydari Department of EECS University of California, Irvine Irvine, CA 9697-65 Abstrat In this

More information

Design Modification of Rogowski Coil for Current Measurement in Low Frequency

Design Modification of Rogowski Coil for Current Measurement in Low Frequency Design Modifiation of Rogowski Coil for Current Measurement in Low Frequeny M. Rezaee* and H. Heydari* Abstrat: The priniple objet of this paper is to offer a modified design of Rogowski oil based on its

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntehOpen, the world s leading publisher of Open Aess boos Built by sientists, for sientists 3,5 8,.7 M Open aess boos available International authors and editors Downloads Our authors are among

More information

Date: August 23,999 Dist'n: T1E1.4

Date: August 23,999 Dist'n: T1E1.4 08/0/99 1 T1E1.4/99-49 Projet: T1E1.4: VDSL Title: Filtering elements to meet requirements on power spetral density (99-49) Contat: G. Cherubini, E. Eleftheriou, S. Oeler, IBM Zurih Researh Lab. Saeumerstr.

More information

DESIGN AND PERFORMANCE ANALYSIS OF BAND PASS IIR FILTER FOR SONAR APPLICATION

DESIGN AND PERFORMANCE ANALYSIS OF BAND PASS IIR FILTER FOR SONAR APPLICATION International Journal of Emerging Tehnologies and Engineering (IJETE) ISSN: 238 8 ICRTIET-21 Conferene Proeeding, 3 th -31 st August 21 11 DESIGN AND PERFORMANCE ANALYSIS OF BAND PASS IIR FILTER FOR SONAR

More information

Simple AC Circuits. Introduction

Simple AC Circuits. Introduction Simple AC Circuits Introduction Each problem in this problem set involves the steady state response of a linear, time-invariant circuit to a single sinusoidal input. Such a response is known to be sinusoidal

More information

MICROWAVES Introduction to Laboratory Classes

MICROWAVES Introduction to Laboratory Classes MEEC, 1 st semester 2011/2012 DEEC MICROWAVES Introdution to Laboratory Classes Custódio Peixeiro Laboratory Classes 4 Sessions T1 Contat with a mirowave benh T2 Mathing on an impedane load T4 Measurement

More information

Calculation of the maximum power density (averaged over 4 khz) of an angle modulated carrier

Calculation of the maximum power density (averaged over 4 khz) of an angle modulated carrier Re. ITU-R SF.675-3 1 RECOMMENDATION ITU-R SF.675-3 * CALCULATION OF THE MAXIMUM POWER DENSITY (AVERAGED OVER 4 khz) OF AN ANGLE-MODULATED CARRIER Re. ITU-R SF.675-3 (199-1992-1993-1994) The ITU Radioommuniation

More information

ECEN Network Analysis Section 3. Laboratory Manual

ECEN Network Analysis Section 3. Laboratory Manual ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

Photovoltaic Based Dynamic Voltage Restorer with Outage Handling Capability Using PI Controller

Photovoltaic Based Dynamic Voltage Restorer with Outage Handling Capability Using PI Controller Available online at www.sienediret.om Energy Proedia 12 (2011) 560 569 ICSGCE 2011: 27 30 September 2011, Chengdu, China Photovoltai Based Dynami Voltage Restorer with Outage Handling Capability Using

More information

Metrol. Meas. Syst., Vol. XVIII (2011), No. 2, pp METROLOGY AND MEASUREMENT SYSTEMS. Index , ISSN

Metrol. Meas. Syst., Vol. XVIII (2011), No. 2, pp METROLOGY AND MEASUREMENT SYSTEMS. Index , ISSN METROLOGY AND MEASUREMENT SYSTEMS Index 330930, ISSN 0860-8229 www.metrology.pg.gda.pl DAC TESTING USING MODULATED SIGNALS Pavel Fexa, Josef Vedral, Jakub Svatoš CTU Prague, Faulty of Eletrial Engineering

More information

+,*+)5(48(1&</803('3$5$0(7(502'(/)25$&02725:,1',1*6

+,*+)5(48(1&</803('3$5$0(7(502'(/)25$&02725:,1',1*6 ,*)(48(&/83('3$$(7('(/)$&7:,',*6 G. Grandi *, D. Casadei *, A. Massarini ** * Dept. of Eletrial Engineering, viale Risorgimento, 436, Bologna - Italy ** Dept. of Engineering Sienes, via Campi, 3/B, 4,

More information

Homework: Please number questions as numbered on assignment, and turn in solution pages in order.

Homework: Please number questions as numbered on assignment, and turn in solution pages in order. ECE 5325/6325: Wireless Communiation Systems Leture Notes, Spring 2010 Leture 6 Today: (1) Refletion (2) Two-ray model (3) Cellular Large Sale Path Loss Models Reading for today s leture: 4.5, 4.6, 4.10.

More information

Overview and Comparison of Grid Harmonics and Conducted EMI Standards for LV Converters Connected to the MV Distribution System

Overview and Comparison of Grid Harmonics and Conducted EMI Standards for LV Converters Connected to the MV Distribution System 2012 Mesago PCIM GmbH Proeedings of the first Power Eletronis South Ameria 2012 Conferene and Exhibition (PCIM 2012), South Ameria, Saõ Paulo, Brazil, September 11-13, 2012 Overview and Comparison of Grid

More information

PANIMALAR ENGINEERING COLLEGE

PANIMALAR ENGINEERING COLLEGE PANIMALAR ENGINEERING COLLEGE (A CHRISTIAN MINORITY INSTITUTION) JAISAKTHI EDUCATIONAL TRUST ACCREDITED BY NATIONAL BOARD OF ACCREDITATION (NBA) BANGALORE TRUNK ROAD, VARADHARAJAPURAM, NASARATHPET, POONAMALLEE,

More information

LECTURE 6 ASSOCIATED OUTPUT AND INPUT FILTER AC WAVEFORMS CAUSED BY SWITCHING

LECTURE 6 ASSOCIATED OUTPUT AND INPUT FILTER AC WAVEFORMS CAUSED BY SWITCHING 1 LETURE 6 ASSOIATED OUTPUT AND INPUT FILTER A WAVEFORMS AUSED BY SWITHING I. SELETING INDUTOR AND APAITOR VALUES TO MEET RIPPLE SPEIFIATIONS FOR A GIVEN DUTY YLE - L(D) & (D) L a. L(D) FOR SPEIFIED i

More information

Investigate index notation and represent whole numbers as products of powers of prime numbers (ACMNA149) a) 36 b) 100 c) 196 d) 441

Investigate index notation and represent whole numbers as products of powers of prime numbers (ACMNA149) a) 36 b) 100 c) 196 d) 441 Teaher Notes 7 8 9 10 11 12 Aim TI-Nspire CAS Investigation Student 120min The number 12 has six fators: 1, 2, 3, 4, 6 and 12. The number 36 has more fators. Whih number would have the greatest number

More information

Revision: June 10, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: June 10, E Main Suite D Pullman, WA (509) Voice and Fax Lab 6: Control System Revision: June 10, 2010 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview In feedback control, the variable being controlled is measured by a sensor; this

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects .3.4: Signal Conditioning Audio Application eal Analog Circuits Chapter : Lab Projects Overview: When making timevarying measurements, the sensor being used often has at least a few undesirable characteristics.

More information

Objectives. Presentation Outline. Digital Modulation Lecture 04

Objectives. Presentation Outline. Digital Modulation Lecture 04 Digital Modulation Leture 04 Filters Digital Modulation Tehniques Rihard Harris Objetives To be able to disuss the purpose of filtering and determine the properties of well known filters. You will be able

More information

EE (082) Chapter IV: Angle Modulation Lecture 21 Dr. Wajih Abu-Al-Saud

EE (082) Chapter IV: Angle Modulation Lecture 21 Dr. Wajih Abu-Al-Saud EE 70- (08) Chapter IV: Angle Modulation Leture Dr. Wajih Abu-Al-Saud Effet of Non Linearity on AM and FM signals Sometimes, the modulated signal after transmission gets distorted due to non linearities

More information

Real Analog - Circuits 1 Chapter 1: Lab Projects

Real Analog - Circuits 1 Chapter 1: Lab Projects Real Analog Circuits 1 Chapter 1: Lab Projects 1.4.1: DusktoDawn Light Overview: In this lab, we will create our first circuit which appears to do something which is readily perceivable without instrumentation.

More information

Digitally Demodulating Binary Phase Shift Keyed Data Signals

Digitally Demodulating Binary Phase Shift Keyed Data Signals Digitally Demodulating Binary Phase Shift Keyed Signals Cornelis J. Kikkert, Craig Blakburn Eletrial and Computer Engineering James Cook University Townsville, Qld, Australia, 4811. E-mail: Keith.Kikkert@ju.edu.au,

More information

Voltage Sag Classification with Consideration of Phase Shift

Voltage Sag Classification with Consideration of Phase Shift First IEEE International Conferene on Energy Internet Voltage Sag Classifiation with Consideration of Phase Shift Pengfei Wei, onghai Xu State Key Laoratory of Alternate Eletrial Power System with Renewale

More information

Module 5 Carrier Modulation. Version 2 ECE IIT, Kharagpur

Module 5 Carrier Modulation. Version 2 ECE IIT, Kharagpur Module 5 Carrier Modulation Version ECE II, Kharagpur Lesson 5 Quaternary Phase Shift Keying (QPSK) Modulation Version ECE II, Kharagpur After reading this lesson, you will learn about Quaternary Phase

More information

REET Energy Conversion. 1 Electric Power System. Electric Power Systems

REET Energy Conversion. 1 Electric Power System. Electric Power Systems REET 2020 Energy Conversion 1 Eletri Power System Eletri Power Systems An Eletri Power System is a omplex network of eletrial omponents used to reliably generate, transmit and distribute eletri energy

More information

BPSK so that we have a discrete set of RF signals. t)cos(

BPSK so that we have a discrete set of RF signals. t)cos( BPSK. BPSK Introdution Reall that the most general modulation has the form s( t) a( t)os[ t ( t)]. We remared earlier that phase modulation was not an effetive way to implement analog ommuniation, one

More information

Electronics and Instrumentation ENGR-4300 Spring 2004 Section Experiment 5 Introduction to AC Steady State

Electronics and Instrumentation ENGR-4300 Spring 2004 Section Experiment 5 Introduction to AC Steady State Experiment 5 Introduction to C Steady State Purpose: This experiment addresses combinations of resistors, capacitors and inductors driven by sinusoidal voltage sources. In addition to the usual simulation

More information

Introduction to Analog And Digital Communications

Introduction to Analog And Digital Communications Introdution to Analog And Digital Communiations Seond Edition Simon Haykin, Mihael Moher Chapter 9 Noise in Analog Communiations 9.1 Noise in Communiation Systems 9. Signal-to-Noise Ratios 9.3 Band-Pass

More information

Chapter 3 Amplitude Modulation. Wireless Information Transmission System Lab. Institute of Communications Engineering National Sun Yat-sen University

Chapter 3 Amplitude Modulation. Wireless Information Transmission System Lab. Institute of Communications Engineering National Sun Yat-sen University Chapter 3 Amplitude Modulation Wireless Information Transmission System Lab. Institute of Communiations Engineering National Sun Yat-sen University Outline 3.1 Introdution 3.2 Amplitude Modulation 3.3

More information

MULTI-FREQUENCY EDDY CURRENT TESTING OF FERROMAGNETIC WELDS

MULTI-FREQUENCY EDDY CURRENT TESTING OF FERROMAGNETIC WELDS U-FQUCY DDY CU SG OF FOGC WDS ODUCO C. W. Gilstad,. F. Dersh and. Deale David aylor esearh Center etals and Welding Division nnapolis D, 2142-567 Single frequeny phase analysis eddy urrent tehniques have

More information

STEP RESPONSE OF 1 ST AND 2 ND ORDER CIRCUITS

STEP RESPONSE OF 1 ST AND 2 ND ORDER CIRCUITS STEP RESPONSE OF 1 ST AND 2 ND ORDER CIRCUITS YOUR NAME GTA S SIGNATURE LAB MEETING TIME Objectives: To observe responses of first and second order circuits - RC, RL and RLC circuits, source-free or with

More information

Considering Capacitive Component in the Current of the CSCT Compensator

Considering Capacitive Component in the Current of the CSCT Compensator Proeedings of the World Congress on Engineering and Computer Siene 8 WCECS 8, Otober - 4, 8, San Franiso, SA Considering Capaitive Component in the Current of the CSCT Compensator Mohammad Tavakoli Bina,

More information

Finite-States Model Predictive Control with Increased Prediction Horizon for a 7-Level Cascade H-Bridge Multilevel STATCOM

Finite-States Model Predictive Control with Increased Prediction Horizon for a 7-Level Cascade H-Bridge Multilevel STATCOM Proeedings of The 2th World Multi-Conferene on Systemis, Cybernetis and Informatis (WMSCI 216) Finite-States Model Preditive Control with Inreased Predition Horizon for a 7-Level Casade H-Bridge Multilevel

More information

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

More information

Texas Instruments Analog Design Contest

Texas Instruments Analog Design Contest Texas Instruments Analog Design Contest Oregon State University Group 23 DL Paul Filithkin, Kevin Kemper, Mohsen Nasroullahi 1. Written desription of the projet Imagine a situation where a roboti limb

More information

Lecture Week 7. Quiz 4 - KCL/KVL Capacitors RC Circuits and Phasor Analysis RC filters Workshop

Lecture Week 7. Quiz 4 - KCL/KVL Capacitors RC Circuits and Phasor Analysis RC filters Workshop Lecture Week 7 Quiz 4 - KCL/KVL Capacitors RC Circuits and Phasor Analysis RC filters Workshop Quiz 5 KCL/KVL Please clear desks and turn off phones and put them in back packs You need a pencil, straight

More information

Position Independent Stereo Sound Reproduction

Position Independent Stereo Sound Reproduction Nat.Lab. Tehnial Note 2000/002 Date of issue: 06/2000 Position Independent Stereo Sound Reprodution Part I: State-of-the-art on PI-stereo Josep A. Ródenas and Ronald M. Aarts Company Restrited Koninklijke

More information

Enhancing System-Wide Power Integrity in 3D ICs with Power Gating

Enhancing System-Wide Power Integrity in 3D ICs with Power Gating Enhaning System-Wide Power Integrity in 3D ICs with Power Gating Hailang Wang and Emre Salman Department of Eletrial and Computer Engineering, Stony Brook University, Stony Brook, NY 794 USA E-mail: {hailang.wang,

More information

Count-loss mechanism of self-quenching streamer (SQS) tubes

Count-loss mechanism of self-quenching streamer (SQS) tubes Nulear Instruments and Methods in Physis Researh A 342 (1994) 538-543 North-Holland NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Setion A Count-loss mehanism of self-quenhing streamer (SQS) tubes

More information

In the system, however, after the 350 ~s risetime of the pulse to ~10 MA, either cables or cable adaptors experience failures at approximately 10C kv.

In the system, however, after the 350 ~s risetime of the pulse to ~10 MA, either cables or cable adaptors experience failures at approximately 10C kv. PERFORMANCE OF THE LAGUNA PULSED POWER SYSTEM* J. H. Goforth, R. S. Caird, C. M. Fowler, A. E. Greene, H. W. Kruse, I. R. Lindemuth, H. Oona, and R. E. Reinovsky Los Alamos National Laboratory Los Alamos,

More information

A Novel Small-Signal Knowledge-Based Neural Network Modeling Approach for Packaged Transistors

A Novel Small-Signal Knowledge-Based Neural Network Modeling Approach for Packaged Transistors SR Journal o Eletrial and Eletronis Engineering (SR-JEEE) e-ssn: 78-676,p-SSN: -, Volume, ssue 5 Ver. (Sep. t. 8), PP 4-45 www.iosrjournals.org A Novel Small-Signal Knowledge-Based Neural Network Modeling

More information

Voltage collapse in low-power low-input voltage converters - A critical comparison

Voltage collapse in low-power low-input voltage converters - A critical comparison Proeedgs of the 6th WSEAS/IASME Int. Conf. on Eletri Power Systems, High oltages, Eletri Mahes, Tenerife, Spa, Deember 6-8, 006 334 oltage ollapse low-power low-put voltage onverters - A ritial omparison

More information

Characterization of the dielectric properties of various fiberglass/epoxy composite layups

Characterization of the dielectric properties of various fiberglass/epoxy composite layups Charaterization of the dieletri properties of various fiberglass/epoxy omposite layups Marotte, Laurissa (University of Kansas); Arnold, Emily Center for Remote Sensing of Ie Sheets, University of Kansas

More information

Electronic Damper Actuators

Electronic Damper Actuators for dampers up to. square feet or. square meters based upon 4 in.lb. per square foot Desription The and are miroproessor based atuators with onditioned feedbak that operate on 4 volt AC nominal power supply.

More information

Filters. Passive Filters

Filters. Passive Filters Filter Paive Filter A filter i a iruit that i deigned to pa ignal with deired frequenie and rejet or attenuate other. A filter i a paive filter if it onit of only paive element, L, and C. A lowpa filter

More information

III. DESIGN OF CIRCUIT COMPONENTS

III. DESIGN OF CIRCUIT COMPONENTS ISSN: 77-3754 ISO 900:008 ertified Volume, Issue 5, November 0 Design and Analysis of a MOS 0.7V ow Noise Amplifier for GPS Band Najeemulla Baig, handu DS, 3 Satyanarayana hanagala, 4 B.Satish,3 Assoiate

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

Electronic Damper Actuators

Electronic Damper Actuators brushless DC driven atuators for dampers up to. square feet or. square meters based upon 4 in.lb. per square foot Desription The and are miroproessor based atuators with onditioned feedbak that operate

More information

Chapter 3 Digital Transmission Fundamentals

Chapter 3 Digital Transmission Fundamentals Chapter 3 Digital Transmission Fundamentals Modems and Digital Modulation CSE 33, Winter Instrutor: Foroohar Foroozan Modulation of Digital Data Modulation of Digital Data Modulation proess of onverting

More information

EXPLORATIONS IN COMMUNICATION SYSTEMS USING A VIRTUAL TOOLKIT

EXPLORATIONS IN COMMUNICATION SYSTEMS USING A VIRTUAL TOOLKIT EXPLORATIONS IN COMMUNICATION SYSTEMS USING A VIRTUAL TOOLKIT Murat Tanyel Dordt College Session 2320 Abstrat A typial ommuniation systems ourse is rih with proesses that are best desribed by blok diagrams.

More information

Network Analysis I Laboratory EECS 70LA

Network Analysis I Laboratory EECS 70LA Network Analysis I Laboratory EECS 70LA Spring 2018 Edition Written by: Franco De Flaviis, P. Burke Table of Contents Page no. Foreword...3 Summary...4 Report Guidelines and Grading Policy...5 Introduction

More information

Performance of Random Contention PRMA: A Protocol for Fixed Wireless Access

Performance of Random Contention PRMA: A Protocol for Fixed Wireless Access Int. J. Communiations, Network and System Sienes, 2011, 4, 417-423 doi:10.4236/ijns.2011.47049 Published Online July 2011 (http://www.sirp.org/journal/ijns) Performane of Random Contention PRMA: A Protool

More information

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies DEVELOPMENT OF SURFACE WAVE DISPERSION AND ATTENUATION MAPS AND IMPROVED METHODS FOR MEASURING SURFACE WAVES Jeffry L. Stevens, Jeffrey W. Given, G. Eli Baker and Heming Xu Siene Appliations International

More information

Design, Implementation and Simulation of Non-Intrusive Sensor for On-Line Condition Monitoring of MV Electrical Components

Design, Implementation and Simulation of Non-Intrusive Sensor for On-Line Condition Monitoring of MV Electrical Components Engineering, 2014, 6, 680-691 Published Online Otober 2014 in SiRes. http://www.sirp.org/journal/eng http://dx.doi.org/10.4236/eng.2014.611067 Design, Implementation and Simulation of Non-Intrusive Sensor

More information

CHAPTER 9. Sinusoidal Steady-State Analysis

CHAPTER 9. Sinusoidal Steady-State Analysis CHAPTER 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source A sinusoidal voltage source (independent or dependent) produces a voltage that varies sinusoidally with time. A sinusoidal current source

More information

Class #16: Experiment Matlab and Data Analysis

Class #16: Experiment Matlab and Data Analysis Class #16: Experiment Matlab and Data Analysis Purpose: The objective of this experiment is to add to our Matlab skill set so that data can be easily plotted and analyzed with simple tools. Background:

More information

Electro-acoustic transducers with cellular polymer electrets

Electro-acoustic transducers with cellular polymer electrets Proeedings of 20 th International Congress on Aoustis, ICA 2010 23-27 August 2010, Sydney, Australia Eletro-aousti transduers with ellular polymer eletrets Yoshinobu Yasuno, Hidekazu Kodama, Munehiro Date

More information

Acoustic Transmissions for Wireless Communications and Power Supply in Biomedical Devices

Acoustic Transmissions for Wireless Communications and Power Supply in Biomedical Devices roeedings of th International ongress on Aoustis, IA 1 3-7 August 1, Sydney, Australia Aousti Transmissions for Wireless ommuniations and ower Supply in Biomedial Devies Graham Wild and Steven Hinkley

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntehOpen, the world s leading publisher of Open Aess books Built by sientists, for sientists 3,800 6,000 10M Open aess books available International authors and editors Downloads Our authors are

More information

A Dual-Threshold ATI-SAR Approach for Detecting Slow Moving Targets

A Dual-Threshold ATI-SAR Approach for Detecting Slow Moving Targets A Dual-Threshold ATI-SAR Approah for Deteting Slow Moving Targets Yuhong Zhang, Ph. D., Stiefvater Consultants Abdelhak Hajjari, Ph. D. Researh Assoiates for Defense Conversion In. Kyungjung Kim, Ph. D.,

More information

The influence of source impedance on charge amplifiers

The influence of source impedance on charge amplifiers ACTA IMEKO Deember 13, Volume, Number, 56 6 www.imeko.org The influene of soure impedane on harge amplifiers Henrik Volkers, Thomas Bruns Physikalish-Tehnishe Bundesanstalt, Bundesallee 1, 38116 Braunshweig,

More information