Revision: June 10, E Main Suite D Pullman, WA (509) Voice and Fax

Size: px
Start display at page:

Download "Revision: June 10, E Main Suite D Pullman, WA (509) Voice and Fax"

Transcription

1 Lab 6: Control System Revision: June 10, E Main Suite D Pullman, WA (509) Voice and Fax Overview In feedback control, the variable being controlled is measured by a sensor; this measurement is compared to a desired value, and the difference is as a basis to change the parameter being controlled. A common example of closedloop control is a thermostatcontrolled home heating system. The house temperature is measured by a sensor; this temperature is compared to the desired temperature as set by the thermostat. The furnace is turned on if the measured temperature is below the desired temperature and turned off if the measured temperature is above the desired temperature. In this lab assignment, we will implement a temperature control system that is analogous to the home heating system example provided above. Before beginning this lab, you should be able to: After completing this lab, you should be able to: State rules governing ideal opamps (Chapter 1.8.0) Analyze electrical circuits which include ideal opamps (Chapter 1.8.1) Design a thermistorbased temperature measurement system (Lab assignment 2) Use a MOSFET as a voltage controlled current source (Lab assignment 0) Implement a comparator using an operational amplifier Implement a MOSFETbased power amplifier Design and implement a closed loop, on/off temperature control system This lab exercise requires: Digilent Analog Parts Kit Digilent EE board USB drive Symbol Key: Demonstrate circuit operation to teaching assistant; teaching assistant should initial lab notebook and grade sheet, indicating that circuit operation is acceptable. Analysis; include principle results of analysis in laboratory report. Numerical simulation (using PSPICE or MATLAB as indicated); include results of MATLAB numerical analysis and/or simulation in laboratory report. Record data in your lab notebook. Doc: XXXYYY page 1 of 6

2 Lab 6: Control System General Discussion: In this assignment, we will construct a simple closedloop temperature control system. The thermal system to be controlled is shown in Figure 1. The system consists of a power resistor, whose temperature is to be changed, and a thermistor to monitor the resistor s temperature. Use of these components is discussed separately below. Regulation of the resistor s temperature will be implemented by applying a voltage to the power resistor; increasing the voltage across the resistor increases the power dissipated by the resistor. The resistor power is dissipated as heat, so increasing the voltage difference across the resistor increases the temperature of the resistor. In feedback control, the quantity being controlled is measured and used to apply an input to the system. In our case, we will measure the temperature of the resistor with a thermistor in order to determine what voltage should be applied to the resistor. The thermistor used in this assignment is the same device used in lab assignment 2. The student is encouraged to take advantage of the results obtained during that lab assignment when performing this lab assignment. Thermistor Power Applied Voltage, V R Figure 1. System to be controlled. The goal of this assignment is to design two subsystems which will allow the temperature of the resistor to be controlled. The first subsystem is a temperature measurement system; this system is to provide a voltage which is approximately proportional to the temperature of the aluminum block. The second subsystem will use this measured temperature, along with a voltage indicating the desired temperature, to apply a voltage to the resistor which provides the desired resistor temperature. The overall approach we will use to implement the overall temperature control system is shown in block diagram form in Figure 2. Voltage Indicating Desired Voltage Indicating Actual Controller On/Off Decision Heat loss to surroundings Measurement System Figure 2. Overall temperature control system block diagram. page 2 of 6

3 Lab 6: Control System The individual elements in the system shown in Figure 2 are described below, along with the basic approach we will use to implement these system elements. Figure 3 provides a circuit schematic showing our implementation of the elements in the system. Controller: The controller accepts as input voltages indicating the desired and measured heat resistor temperatures. If the desired resistor temperature is above the actual temperature the controller will turn on the voltage applied to the resistor, thus increasing the resistor temperature. If the desired resistor temperature is below the actual temperature the controller will turn off the voltage applied to the resistor, thus allowing the resistor to cool. Note that our implementation does not allow the resistor temperature to go below room temperature. We will implement this compensator with a comparator circuit. The comparator consists of an operational amplifier with no feedback if the noninverting input of the opamp is higher than the inverting input, the output will go to the positive supply voltage, while if the noninverting input is lower than the inverting input, the output will go to the negative supply voltage. Our operational amplifiers will not provide enough power to affect the resistor temperature, so we use an IRF 510 MOSFET as a switch to amplify the power output of the controller. Power : The power resistor accepts a voltage/current input which is dissipated as heat in the resistor. If a voltage is applied to the resistor, the resistor will heat up. If no voltage is applied to the resistor, the resistor will cool to room temperature. measurement system: Our temperature measurement system will be thermistorbased. The thermistor is bonded to the resistor; we can use the thermistor resistance in a voltage divider circuit which provides an output voltage which increases as the resistor temperature increases. (Note: we have created a similar design in lab assignment 2.) The output of the temperature measurement system is to be a voltage indicating the actual temperature of the resistor; since we have no direct measurement of the resistor temperature, this measurement will be uncalibrated our voltages will not be convertible to a specific temperature, we will only be able to determine trends in the resistor temperature. Voltage indicating desired temperature: This voltage provides the desired heat sink temperature; it is also called the reference voltage. Our temperatures will be represented as voltages; the scale of the reference voltage must be the same as the scale of the voltage output of the temperature measurement system. This voltage is set externally to the system; we will implement it with a variable voltage supply. page 3 of 6

4 Lab 6: Control System Vref(t) Controller Comparator 10 V Vact(t) VG(t) Power Amplifier 5 V vr(t) Thermal Subsystem (resistor plus thermistor) Power 5 V Thermistor RTh(t) R Vact(t) Measurement System Figure 3. System schematic. page 4 of 6

5 Lab 6: Control System Prelab: (a) The overall circuit to be implemented in this lab assignment is provided in Figure 3. Review this circuit schematic carefully before lab. Be able to summarize your expectations as to the response of the voltages V G (t) and V P (t) in the cases in which: i. The voltage indicating the actual heat sink temperature (V act ) is higher than the voltage indicating the desired temperature (V ref ). ii. The voltage indicating the actual heat sink temperature (V act ) is lower than the voltage indicating the desired temperature (V ref ). (b) The power amplifier will be implemented using an IRF 510 MOSFET. Use the Internet to find a specification sheet for this MOSFET. Record, in your lab notebook, the pin descriptions for the MOSFET, the MOSFET threshold voltage, and the maximum allowable voltages and currents for the MOSFET. (c) The thermistor should be attached to the power resistor before lab. Hot glue or tape work well for this process. Lab Procedures: 1. Implement your plant/temperature measurement system and check its response. To do this, apply a small voltage (approximately 0.5V to 1V) to the power resistor and verify that the temperature of the power resistor responds as desired (e.g. the output voltage goes up). Does the resistor reach a steadystate (constant) temperature? If so, about how long does it take for the resistor to reach its final value? Monitor the temperature of your resistor while conducting this test. Do not allow the resistor to become excessively hot, even if you have to terminate the test before a constant temperature is achieved! Record your observations in your lab notebook. 2. Implement the system shown in Figure 3. Use a DMM to measure the gate voltage of the MOSFET (V G (t) in Figure 3) and the voltage applied to the resistor (V R (t) in Figure 3) for the two cases listed in the prelab. Record the MOSFET gate voltage and the resistor voltage for these case in your lab notebook. Verify, using your DMM, that the expected trends in the voltage indicating the actual heat sink temperature (V act (t) in Figure 3) occur for the two cases listed in the prelab (e.g. V act (t) should increase if V ref (t) > V act (t) and V act (t) should decrease if V ref (t) < V act (t)). Demonstrate operation of your circuit to a teaching assistant and have them initial your lab notebook and the lab checklist. 3. Since temperatures and voltages are now varying with time, we will use the oscilloscope to look at the behavior of the system voltages as functions of time. The EE board oscilloscope can measure four channels of data four different voltages vs. time. Use your oscilloscope to measure (simultaneously) the following signals: V ref (t) V ac t(t) V G (t) V R (t) page 5 of 6

6 Lab 6: Control System The oscilloscopes available to us provide the ability to record the displayed data to a file. (In the oscilloscope window, select Export and then select a location and filename in which to save the data displayed in the oscilloscope window. Save the data as a.csv file. The lecture material associated with this lab assignment provides an example of this process.) Command either an increase or decrease in temperature and display the response of the signals above signals on the oscilloscope. Acquire at least 100 seconds worth of data. Save the four channels of data you are measuring to files. You will need to plot and print this data for your worksheet submission. Demonstrate your timedependent voltage measurements to a teaching assistant and have them initial your lab notebook and the lab checklist. Postlab Exercise: Plot the oscilloscope data you acquired in part 3 of the lab procedures. You can use any software you wish to do this. page 6 of 6

Revision: April 18, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: April 18, E Main Suite D Pullman, WA (509) Voice and Fax Revision: April 18, 2010 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview In this lab assignment, we will use KVL and KCL to analyze some simple circuits. The circuits will be

More information

Revision: April 18, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: April 18, E Main Suite D Pullman, WA (509) Voice and Fax Lab 1: Resistors and Ohm s Law Revision: April 18, 2010 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview In this lab, we will experimentally explore the characteristics of resistors.

More information

Revision: August 8, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 8, E Main Suite D Pullman, WA (509) Voice and Fax Lab 0: Signal Conditioning evision: August 8, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 oice and Fax Overview When making timevarying measurements, the sensor being used often has lower than

More information

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax Revision: Jan 29, 2011 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The purpose of this lab assignment is to provide users with an introduction to some of the equipment which

More information

Real Analog - Circuits 1 Chapter 1: Lab Projects

Real Analog - Circuits 1 Chapter 1: Lab Projects Real Analog - Circuits 1 Chapter 1: Lab Projects 1.2.2: Dependent Sources and MOSFETs Overview: In this lab assignment, a qualitative discussion of dependent sources is presented in the context of MOSFETs

More information

Real Analog - Circuits 1 Chapter 1: Lab Projects

Real Analog - Circuits 1 Chapter 1: Lab Projects 1.4.4: Temperature Measurement System Real Analog - Circuits 1 Chapter 1: Lab Projects Overview: This lab assignment also includes our first design-related task: we will design a circuit whose output voltage

More information

Real Analog - Circuits 1 Chapter 1: Lab Projects

Real Analog - Circuits 1 Chapter 1: Lab Projects Real Analog Circuits 1 Chapter 1: Lab Projects 1.4.1: DusktoDawn Light Overview: In this lab, we will create our first circuit which appears to do something which is readily perceivable without instrumentation.

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects .3.4: Signal Conditioning Audio Application eal Analog Circuits Chapter : Lab Projects Overview: When making timevarying measurements, the sensor being used often has at least a few undesirable characteristics.

More information

Real Analog Chapter 2: Circuit Reduction. 2 Introduction and Chapter Objectives. After Completing this Chapter, You Should be Able to:

Real Analog Chapter 2: Circuit Reduction. 2 Introduction and Chapter Objectives. After Completing this Chapter, You Should be Able to: 1300 Henley Court Pullman, WA 99163 509.334.6306 www.store. digilent.com 2 Introduction and Chapter Objectives In Chapter 1, we presented Kirchhoff's laws (which govern the interaction between circuit

More information

LABORATORY 5 v3 OPERATIONAL AMPLIFIER

LABORATORY 5 v3 OPERATIONAL AMPLIFIER University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 5 v3 OPERATIONAL AMPLIFIER Integrated operational amplifiers opamps

More information

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback ECE 214 Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback 20 February 2018 Introduction: The TL082 Operational Amplifier (OpAmp) and the Texas Instruments Analog System Lab Kit Pro evaluation

More information

Non_Inverting_Voltage_Follower -- Overview

Non_Inverting_Voltage_Follower -- Overview Non_Inverting_Voltage_Follower -- Overview Non-Inverting, Unity-Gain Amplifier Objectives: After performing this lab exercise, learner will be able to: Understand and comprehend working of opamp Design

More information

ME 461 Laboratory #5 Characterization and Control of PMDC Motors

ME 461 Laboratory #5 Characterization and Control of PMDC Motors ME 461 Laboratory #5 Characterization and Control of PMDC Motors Goals: 1. Build an op-amp circuit and use it to scale and shift an analog voltage. 2. Calibrate a tachometer and use it to determine motor

More information

Real Analog Chapter 3: Nodal & Mesh Analysis. 3 Introduction and Chapter Objectives. 3.1 Introduction and Terminology

Real Analog Chapter 3: Nodal & Mesh Analysis. 3 Introduction and Chapter Objectives. 3.1 Introduction and Terminology Real Analog Chapter 3: Nodal & Mesh Analysis 1300 Henley Court Pullman, WA 99163 509.334.6306 www.store.digilent.com 3 Introduction and Chapter Objectives In Chapters 1 & 2, we introduced several tools

More information

EE 210 Lab Exercise #5: OP-AMPS I

EE 210 Lab Exercise #5: OP-AMPS I EE 210 Lab Exercise #5: OP-AMPS I ITEMS REQUIRED EE210 crate, DMM, EE210 parts kit, T-connector, 50Ω terminator, Breadboard Lab report due at the ASSIGNMENT beginning of the next lab period Data and results

More information

Thermal Monitor. PI Feedback TL074. Opamp #3. Set Point Monitor. Figure 1. PI temperature control servolock circuit.

Thermal Monitor. PI Feedback TL074. Opamp #3. Set Point Monitor. Figure 1. PI temperature control servolock circuit. References. [1] K.B. MacAdam, A. Steinback and C. Wieman. A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb. Am. J. Phys. 60, 1098 (1992).

More information

Operational Amplifiers

Operational Amplifiers 1. Introduction Operational Amplifiers The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2005

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2005 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Circuits & Electronics Spring 2005 Lab #2: MOSFET Inverting Amplifiers & FirstOrder Circuits Introduction

More information

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS Issued 9/22/2008 Pre Lab Completed 9/29/2008 Lab Due in Lecture 10/6/2008 Introduction In this lab you will design a

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects Real Analog - Circuits 1 Chapter 11: Lab Projects 11.2.1: Signals with Multiple Frequency Components Overview: In this lab project, we will calculate the magnitude response of an electrical circuit and

More information

ENGS 26 CONTROL THEORY. Thermal Control System Laboratory

ENGS 26 CONTROL THEORY. Thermal Control System Laboratory ENGS 26 CONTROL THEORY Thermal Control System Laboratory Equipment Thayer school thermal control experiment board DT2801 Data Acquisition board 2-4 BNC-banana connectors 3 Banana-Banana connectors +15

More information

Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached.

Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached. EE 352 Design Project Spring 2015 FM Receiver Revision 0, 03-02-15 Interim report due: Friday April 3, 2015, 5:00PM Project Demonstrations: April 28, 29, 30 during normal lab section times Final report

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS Issued 10/5/2008 Pre Lab Completed 10/12/2008 Lab Due in Lecture 10/21/2008 Introduction In this lab you will characterize

More information

Section 2 Lab Experiments

Section 2 Lab Experiments Section 2 Lab Experiments Section Overview This set of labs is provided as a means of learning and applying mechanical engineering concepts as taught in the mechanical engineering orientation course at

More information

UNIVERSITY OF PENNSYLVANIA EE 206

UNIVERSITY OF PENNSYLVANIA EE 206 UNIVERSITY OF PENNSYLVANIA EE 206 TRANSISTOR BIASING CIRCUITS Introduction: One of the most critical considerations in the design of transistor amplifier stages is the ability of the circuit to maintain

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Exercise 1: PWM Modulator University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Lab 3: Power-System Components and

More information

Operational Amplifier Circuits

Operational Amplifier Circuits ECE VIII. Basic 5 Operational Amplifier Circuits Lab 8 In this lab we will verify the operation of inverting and noninverting amplifiers constructed using Operational Amplifiers. We will also observe the

More information

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page! ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

More information

Assignment 8 Analyzing Operational Amplifiers in MATLAB and PSpice

Assignment 8 Analyzing Operational Amplifiers in MATLAB and PSpice ECEL 301 ECE Laboratory I Dr. A. Fontecchio Assignment 8 Analyzing Operational Amplifiers in MATLAB and PSpice Goal Characterize critical parameters of the inverting or non-inverting opampbased amplifiers.

More information

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps University of Portland EE 271 Electrical Circuits Laboratory Experiment: Op Amps I. Objective The objective of this experiment is to learn how to use an op amp circuit to prevent loading and to amplify

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Hands-On Introduction to EE Lab Skills Laboratory No. 2 BJT, Op Amps IAP 2008

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Hands-On Introduction to EE Lab Skills Laboratory No. 2 BJT, Op Amps IAP 2008 Name MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.09 Hands-On Introduction to EE Lab Skills Laboratory No. BJT, Op Amps IAP 008 Objective In this laboratory, you will become familiar with a simple bipolar junction

More information

Digital Applications of the Operational Amplifier

Digital Applications of the Operational Amplifier Lab Procedure 1. Objective This project will show the versatile operation of an operational amplifier in a voltage comparator (Schmitt Trigger) circuit and a sample and hold circuit. 2. Components Qty

More information

ECE2019 Sensors, Circuits, and Systems A2015. Lab #1: Energy, Power, Voltage, Current

ECE2019 Sensors, Circuits, and Systems A2015. Lab #1: Energy, Power, Voltage, Current ECE2019 Sensors, Circuits, and Systems A2015 Lab #1: Energy, Power, Voltage, Current Introduction This lab involves measurement of electrical characteristics for two power sources: a 9V battery and a 5V

More information

Revision: April 16, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: April 16, E Main Suite D Pullman, WA (509) Voice and Fax Revision: April 16, 010 15 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview Resistance is a property of all materials this property characterizes the loss of energy associated with

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

EE 221 L CIRCUIT II. by Ming Zhu

EE 221 L CIRCUIT II. by Ming Zhu EE 221 L CIRCUIT II LABORATORY 6: OP AMP CIRCUITS by Ming Zhu DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS OBJECTIVE Learn to use Op Amp to implement simple linear

More information

Physics 481 Experiment 3

Physics 481 Experiment 3 Physics 481 Experiment 3 LAST Name (print) FIRST Name (print) TRANSISTORS (BJT & FET) npn BJT n-channel MOSFET 1 Experiment 3 Transistors: BJT & FET In this experiment transistor properties and transistor

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 8 MOSFET AMPLIFIER CONFIGURATIONS AND INPUT/OUTPUT IMPEDANCE OBJECTIVES The purpose of this experiment

More information

Class #3: Experiment Signals, Instrumentation, and Basic Circuits

Class #3: Experiment Signals, Instrumentation, and Basic Circuits Class #3: Experiment Signals, Instrumentation, and Basic Circuits Purpose: The objectives of this experiment are to gain some experience with the tools we use (i.e. the electronic test and measuring equipment

More information

Inverting_Amplifier -- Overview

Inverting_Amplifier -- Overview Inverting_Amplifier -- Overview Inverting Amplifier Objectives: After performing this lab exercise, learner will be able to: Understand and comprehend working of opamp Design & build inverting amplifier

More information

EE 233 Circuit Theory Lab 3: First-Order Filters

EE 233 Circuit Theory Lab 3: First-Order Filters EE 233 Circuit Theory Lab 3: First-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Inverting Amplifier... 3 3.2 Non-Inverting Amplifier... 4 3.3 Integrating

More information

Physics 310 Lab 6 Op Amps

Physics 310 Lab 6 Op Amps Physics 310 Lab 6 Op Amps Equipment: Op-Amp, IC test clip, IC extractor, breadboard, silver mini-power supply, two function generators, oscilloscope, two 5.1 k s, 2.7 k, three 10 k s, 1 k, 100 k, LED,

More information

ECEN Network Analysis Section 3. Laboratory Manual

ECEN Network Analysis Section 3. Laboratory Manual ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

More information

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Kirchhoff's Laws and Voltage and Current Division

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Kirchhoff's Laws and Voltage and Current Division University of Portland EE 271 Electrical Circuits Laboratory Experiment: Kirchhoff's Laws and Voltage and Current Division I. Objective The objective of this experiment is to determine the relationship

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

EE 2274 MOSFET BASICS

EE 2274 MOSFET BASICS Pre Lab: Include your CN with prelab. EE 2274 MOSFET BASICS 1. Simulate in LTspice a family of output characteristic curves (cutve tracer) for the 2N7000 NMOS You will need to add the 2N7000 model to LTspice

More information

Lab 6 Prelab Grading Sheet

Lab 6 Prelab Grading Sheet Lab 6 Prelab Grading Sheet NAME: Read through the Background section of this lab and print the prelab and in-lab grading sheets. Then complete the steps below and fill in the Prelab 6 Grading Sheet. You

More information

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT EE 2274 DIODE OR GATE & CLIPPING CIRCUIT Prelab Part I: Wired Diode OR Gate LTspice use 1N4002 1. Design a diode OR gate, Figure 1 in which the maximum current thru R1 I R1 = 9mA assume Vin = 5Vdc. Design

More information

Lab #6: Op Amps, Part 1

Lab #6: Op Amps, Part 1 Fall 2013 EELE 250 Circuits, Devices, and Motors Lab #6: Op Amps, Part 1 Scope: Study basic Op-Amp circuits: voltage follower/buffer and the inverting configuration. Home preparation: Review Hambley chapter

More information

The PmodIA is an impedance analyzer built around the Analog Devices AD bit Impedance Converter Network Analyzer.

The PmodIA is an impedance analyzer built around the Analog Devices AD bit Impedance Converter Network Analyzer. 1300 Henley Court Pullman, WA 99163 509.334.6306 www.digilentinc.com PmodIA Reference Manual Revised April 15, 2016 This manual applies to the PmodIA rev. A Overview The PmodIA is an impedance analyzer

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #1 Lab Report Frequency Response of Operational Amplifiers Submission Date: 05/29/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

Week 15. Mechanical Waves

Week 15. Mechanical Waves Chapter 15 Week 15. Mechanical Waves 15.1 Lecture - Mechanical Waves In this lesson, we will study mechanical waves in the form of a standing wave on a vibrating string. Because it is the last week of

More information

2 Thermistor + Op-Amp + Relay = Sensor + Actuator

2 Thermistor + Op-Amp + Relay = Sensor + Actuator Physics 221 - Electronics Temple University, Fall 2005-6 C. J. Martoff, Instructor On/Off Temperature Control; Controlling Wall Current with an Op-Amp 1 Objectives Introduce the method of closed loop control

More information

Instructional Demos, In-Class Projects, & Hands-On Homework: Active Learning for Electrical Engineering using the Analog Discovery

Instructional Demos, In-Class Projects, & Hands-On Homework: Active Learning for Electrical Engineering using the Analog Discovery Instructional Demos, In-Class Projects, & Hands-On Homework: Active Learning for Electrical Engineering using the Analog Discovery by Dr. Gregory J. Mazzaro Dr. Ronald J. Hayne THE CITADEL, THE MILITARY

More information

Lab #8 Boost Converters Week of 31 March 2015

Lab #8 Boost Converters Week of 31 March 2015 ECE214: Electrical Circuits Laboratory Lab #8 Boost Converters Week of 31 March 2015 1 Introduction This is the first in a series of three labs that will culminate in a circuit that will convert a olt

More information

Lab Exercise # 9 Operational Amplifier Circuits

Lab Exercise # 9 Operational Amplifier Circuits Objectives: THEORY Lab Exercise # 9 Operational Amplifier Circuits 1. To understand how to use multiple power supplies in a circuit. 2. To understand the distinction between signals and power. 3. To understand

More information

Lab 2 Operational Amplifier

Lab 2 Operational Amplifier Lab 2 Operational Amplifier Last Name: First Name: Student Number: Lab Section: Monday Tuesday Wednesday Thursday Friday TA Signature: Note: The Pre-Lab section must be completed prior to the lab session.

More information

GE 320: Introduction to Control Systems

GE 320: Introduction to Control Systems GE 320: Introduction to Control Systems Laboratory Section Manual 1 Welcome to GE 320.. 1 www.softbankrobotics.com 1 1 Introduction This section summarizes the course content and outlines the general procedure

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES OPERATIONAL AMPLIFIERS PART II This is the second of two laboratory sessions that provide an introduction to the op amp. In this session you will study three amplifiers designs:

More information

Experiment A8 Electronics III Procedure

Experiment A8 Electronics III Procedure Experiment A8 Electronics III Procedure Deliverables: checked lab notebook, plots Overview Electronics have come a long way in the last century. Using modern fabrication techniques, engineers can now print

More information

Operational Amplifiers

Operational Amplifiers Objective Operational Amplifiers Understand the basics and general concepts of operational amplifier (op amp) function. Build and observe output of a comparator and an amplifier (inverting amplifier).

More information

Addendum Handout for the ECE3510 Project. The magnetic levitation system that is provided for this lab is a non-linear system.

Addendum Handout for the ECE3510 Project. The magnetic levitation system that is provided for this lab is a non-linear system. Addendum Handout for the ECE3510 Project The magnetic levitation system that is provided for this lab is a non-linear system. Because of this fact, it should be noted that the associated ideal linear responses

More information

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning Objectives: Use analog OP AMP circuits to scale the output of a sensor to signal levels commonly found in practical

More information

LAB 5 OPERATIONAL AMPLIFIERS

LAB 5 OPERATIONAL AMPLIFIERS LAB 5 OPERATIONAL AMPLIFIERS PRE-LAB CALCULATIONS: Use circuit analysis techniques learned in class to analyze the circuit in Figure 5.2. Solve for Vo assuming that the effective resistance of the LED

More information

The Field Effect Transistor

The Field Effect Transistor FET, OPAmps I. p. 1 Field Effect Transistors and Op Amps I The Field Effect Transistor This lab begins with some experiments on a junction field effect transistor (JFET), type 2N5458, and then continues

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

University of Pennsylvania. Department of Electrical and Systems Engineering. ESE Undergraduate Laboratory. Analog to Digital Converter

University of Pennsylvania. Department of Electrical and Systems Engineering. ESE Undergraduate Laboratory. Analog to Digital Converter University of Pennsylvania Department of Electrical and Systems Engineering ESE Undergraduate Laboratory Analog to Digital Converter PURPOSE The purpose of this lab is to design and build a simple Digital-to-Analog

More information

LAB 4: OPERATIONAL AMPLIFIER CIRCUITS

LAB 4: OPERATIONAL AMPLIFIER CIRCUITS LAB 4: OPERATIONAL AMPLIFIER CIRCUITS ELEC 225 Introduction Operational amplifiers (OAs) are highly stable, high gain, difference amplifiers that can handle signals from zero frequency (dc signals) up

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #7 Lab Report Analog-Digital Applications Submission Date: 08/01/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams Station #2

More information

Experiment Number 1. Revised: Fall 2018 Introduction to MATLAB Simulink and Simulink Resistor Simulations Preface:

Experiment Number 1. Revised: Fall 2018 Introduction to MATLAB Simulink and Simulink Resistor Simulations Preface: Experiment Number 1 Revised: Fall 2018 Introduction to MATLAB Simulink and Simulink Resistor Simulations Preface: Experiment number 1 will be held in CLC room 105, 106, or 107. Your TA will let you know

More information

A 3-STAGE 5W AUDIO AMPLIFIER

A 3-STAGE 5W AUDIO AMPLIFIER ECE 2201 PRELAB 7x BJT APPLICATIONS A 3-STAGE 5W AUDIO AMPLIFIER UTILIZING NEGATIVE FEEDBACK INTRODUCTION Figure P7-1 shows a simplified schematic of a 3-stage audio amplifier utilizing three BJT amplifier

More information

ECE4902 C Lab 7

ECE4902 C Lab 7 ECE902 C2012 - Lab MOSFET Differential Amplifier Resistive Load Active Load PURPOSE: The primary purpose of this lab is to measure the performance of the differential amplifier. This is an important topology

More information

Lecture 7 ECEN 4517/5517

Lecture 7 ECEN 4517/5517 Lecture 7 ECEN 4517/5517 Experiments 4-5: inverter system Exp. 4: Step-up dc-dc converter (cascaded boost converters) Analog PWM and feedback controller to regulate HVDC Exp. 5: DC-AC inverter (H-bridge)

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electronic Circuits Spring 2007

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electronic Circuits Spring 2007 assachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Electronic Circuits Spring 2007 Lab 2: OSFET Inverting Amplifiers & FirstOrder Circuits Handout S07034

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

ELEC 2210 EXPERIMENT 12 NMOS Logic

ELEC 2210 EXPERIMENT 12 NMOS Logic ELEC 2210 EXPERIMENT 12 NMOS Logic Objectives: The experiments in this laboratory exercise will provide an introduction to NMOS logic. You will use the Bit Bucket breadboarding system to build and test

More information

Lab 10: Single Supply Amplifier

Lab 10: Single Supply Amplifier Overview This lab assignment implements an inverting voltage amplifier circuit with a single power supply. The amplifier output contains a bias point which is removed by AC coupling the output signal.

More information

EMG Electrodes. Fig. 1. System for measuring an electromyogram.

EMG Electrodes. Fig. 1. System for measuring an electromyogram. 1270 LABORATORY PROJECT NO. 1 DESIGN OF A MYOGRAM CIRCUIT 1. INTRODUCTION 1.1. Electromyograms The gross muscle groups (e.g., biceps) in the human body are actually composed of a large number of parallel

More information

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Digital-to-Analog Converter

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Digital-to-Analog Converter University of Portland EE 271 Electrical Circuits Laboratory Experiment: Digital-to-Analog Converter I. Objective The objective of this experiment is to build and test a circuit that can convert a binary

More information

Observer-based Engine Cooling Control System (OBCOOL) Functional Description & System Block Diagram. Students: Andrew Fouts & Kurtis Liggett

Observer-based Engine Cooling Control System (OBCOOL) Functional Description & System Block Diagram. Students: Andrew Fouts & Kurtis Liggett Observer-based Engine Cooling Control System (OBCOOL) Functional Description & System Block Diagram Students: Andrew Fouts & Kurtis Liggett Advisor: Dr. Gary Dempsey Date: November 9, 2010 Introduction

More information

BL V 2.0A 1.3MHz Synchronous Buck Converter

BL V 2.0A 1.3MHz Synchronous Buck Converter GENERATION DESCRIPTION The BL9309 is a high-efficiency, DC-to-DC step-down switching regulators, capable of delivering up to 2A of output current. The device operates from an input voltage range of 2.5V

More information

WAVE SHAPING CIRCUITS USING OPERATIONAL AMPLIFIERS

WAVE SHAPING CIRCUITS USING OPERATIONAL AMPLIFIERS WAVE SHAPING CIRCUITS USING OPERATIONAL AMPLIFIERS OBJECTIVE The purpose of the experiment is to design the wave shaping circuits like Clippers, Clampers and Schmitt trigger using op-amps. EQUIPMENT REQUIRED

More information

Resistive Circuits. Lab 2: Resistive Circuits ELECTRICAL ENGINEERING 42/43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

Resistive Circuits. Lab 2: Resistive Circuits ELECTRICAL ENGINEERING 42/43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS NAME: NAME: SID: SID: STATION NUMBER: LAB SECTION: Resistive Circuits Pre-Lab: /46 Lab: /54 Total: /100 Lab 2: Resistive Circuits ELECTRICAL ENGINEERING 42/43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

More information

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load ECE4902 C2012 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

EE-3010 Lab # 5 Simulation of Operational Amplifier Circuits

EE-3010 Lab # 5 Simulation of Operational Amplifier Circuits EE-3010 Lab # 5 Simulation of Operational Amplifier Circuits Objectives Investigation of amplifier circuits containing operational amplifiers. (Note: This is a two-part lab and may be done in two consecutive

More information

ECE 2010 Laboratory # 5 J.P.O Rourke

ECE 2010 Laboratory # 5 J.P.O Rourke ECE 21 Laboratory # 5 J.P.O Rourke Prelab: Simulate the circuit used in parts 1 and 2 of the Lab and record the simulated results. Your Prelab is due at the beginning of lab and will be checked off by

More information

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS 2.16 EXPERIMENT 2.2 NONLINEAR OPAMP CIRCUITS 2.2.1 OBJECTIVE a. To study the operation of 741 opamp as comparator. b. To study the operation of active diode circuits (precisions circuits) using opamps,

More information

Practical 2P12 Semiconductor Devices

Practical 2P12 Semiconductor Devices Practical 2P12 Semiconductor Devices What you should learn from this practical Science This practical illustrates some points from the lecture courses on Semiconductor Materials and Semiconductor Devices

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #3. Operational Amplifier Application Circuits. Angsuman Roy

EE320L Electronics I. Laboratory. Laboratory Exercise #3. Operational Amplifier Application Circuits. Angsuman Roy EE320L Electronics I Laboratory Laboratory Exercise #3 Operational Amplifier Application Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective:

More information

ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier

ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier Michael W. Marcellin The first portion of this document describes preparatory work to be completed in

More information

Designing Information Devices and Systems I Fall 2018 Homework 10

Designing Information Devices and Systems I Fall 2018 Homework 10 Last Updated: 2018-10-27 04:00 1 EECS 16A Designing Information Devices and Systems I Fall 2018 Homework 10 You should plan to complete this homework by Thursday, November 1st. Everything in this homework

More information

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 9. This homework is due November 2, 2015, at Noon.

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 9. This homework is due November 2, 2015, at Noon. EECS 16A Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 9 This homework is due November 2, 2015, at Noon. 1. Homework process and study group Who else did you

More information

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits 1. Learning Outcomes In this lab, the students evaluate characteristics of the non-ideal operational amplifiers. Students use a simulation tool

More information

Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage)

Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage) Explore More! Points awarded: Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage) Name: Net ID: Laboratory Outline A voltage comparator considers two voltage waveforms,

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

LABORATORY 3 v3 CIRCUIT ELEMENTS

LABORATORY 3 v3 CIRCUIT ELEMENTS University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Leon Chua LABORATORY 3 v3 CIRCUIT ELEMENTS The purpose of this laboratory is to familiarize

More information

EE 233 Circuit Theory Lab 2: Amplifiers

EE 233 Circuit Theory Lab 2: Amplifiers EE 233 Circuit Theory Lab 2: Amplifiers Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 LM348N Op-amp Parameters... 2 3.2 Voltage Follower Circuit Analysis... 2 3.2.1

More information

EE 4314 Lab 3 Handout Speed Control of the DC Motor System Using a PID Controller Fall Lab Information

EE 4314 Lab 3 Handout Speed Control of the DC Motor System Using a PID Controller Fall Lab Information EE 4314 Lab 3 Handout Speed Control of the DC Motor System Using a PID Controller Fall 2012 IMPORTANT: This handout is common for all workbenches. 1. Lab Information a) Date, Time, Location, and Report

More information