# EE 210: CIRCUITS AND DEVICES

Save this PDF as:

Size: px
Start display at page:

## Transcription

2 3. Measure and record the value of the ac amplitude and dc offset of v L for the following values of load resistor: 68 kω, 680 Ω, 360 Ω, 100 Ω, and 51 Ω. a. Measure and record the value of each load resistor before inserting it into the prototyping board. b. Measure and record the value of the ac amplitude and dc offset of v L. c. Calculate the corresponding ac amplitude and dc offset of i L using Ohm s law. 4. Discuss the effect/purpose of the op amp buffer circuit. 5. Experiment 2: Inverting Summing Amplifier The purpose of this experiment is to design an inverting summing amplifier. This can be done by applying the concept of superposition to the standard inverting amplifier design as discussed previously. In this application, two voltage signals from two separate sources are added to each other, resulting in a single signal at the output. An example of where this circuit is useful is for converting stereo audio signals to mono for playback through a single speaker. This circuit can also be used to average signals together from multiple sensors in order to get a more accurate reading of whatever property you are measuring. Figure 2: Inverting Summing Amplifier Procedure: 1. Design the values values of R 1, R 2 and R 3 so that: a) the gain Vout/V_left = Vout/V_right, and b) for V_left = V_right = 1 Vpp, the voltage amplitude of the output is 10 Vpp. Since this is a linear circuit, you can compute the gain Vout/V_left and Vout/V_right via superposition. For these resistor values chosen, compute Vout with V_left = 1Vpp and V_right = 0V. EE210 Lab Op Amps 2 page 2

3 2. Construct the circuit in Figure 2 with the values of R 1, R 2, and R 3 Measure and record the actual values of R 1, R 2, and R 3 before inserting them into the circuit. 3. Since this is a linear circuit we can apply the property of superposition. This means that we can experimentally measure the output of the circuit for V_right with V_left set to zero, and V_left with V_right set to zero. The actual output will be the sum of the two responses. a. Set up the Function Generator to serve as V_right, which should be a sine wave with frequency of 440 Hz, amplitude of 1 V pp, and dc offset of 0 V. Connect the function generator to the V_right input terminal. b. Short circuit V_left to ground. c. Confirm that V_out is as predicted. This step is important in order to determine if your circuit is operating properly. d. Disconnect the function generator and open-circuit V_left. e. Set up the Function Generator to serve as V_left, which should be a sine wave with frequency of 3520 Hz, amplitude of 1 V pp, and dc offset of 0 V. Connect the function generator to the V_left input terminal. f. Short circuit V_right to ground. g. Confirm that V_out is as predicted in the prelab. This step is important in order to determine if your circuit is operating properly. h. Disconnect the function generator and open-circuit V_right. 4. We will now test this circuit by feeding it with separated L and R channels from two function generators one of then configured for V_right and the other one configured as V_left. 5. Sketch the waveforms for V_left, V_right and Vout Comment on your results. Experiment 3: Voltage Level Display The purpose of this experiment is to use opamps in comparator mode, along with light emitting diodes (LEDs), to create a simple voltage level meter. As seen in a previous experiment, when an opamp is employed without negative feedback, its output saturates to the positive or negative voltage rail depending on whether the voltage level at the inverting input or the non-inverting input is greater. (Comparators compare the voltage level at each of the inputs!). In this experiment, we ll use comparators to compare a voltage signal with a series of reference voltages and use the output of the comparators to light a string of LEDs. Specifically, we will design a simple 2-level voltage level display that will light one LED when the input signal reaches 2.5 V and light a 2 nd LED when the input reaches 5 V. EE210 Lab Op Amps 2 page 3

4 Procedure: 1. When we build our level meter, we will need some fixed voltages to serve as references of comparison. We can produce these voltage references by dividing down the positive voltage rail used to power the op amps. See Figure 3. Choose values for R1, R2, and R3 such that V1 = 5V and V2 = 2.5V. 15V R1 V1 R2 V2 R3 Figure 3 Voltage References 2. Using your results in step 1, design and build the 2-level voltage level meter in Figure 4. Use 1 kω as the initial value for Rlimiting. +15 R1 Vin 3 8 U1A 1 2 R2 4 R limting -15 LED U1B 7 6 R3 4 R limting -15 LED2 Figure 4 Two LED Level Meter EE210 Lab Op Amps 2 page 4

5 3. With the circuit powered, but without applying any input signal, measure the voltage level at the inverting input of each of the comparators and record these values in your Lab Notebook. Verify that these reference voltages are identical to the desired references from step Supply a voltage at Vin. Start at 0V and increase the voltage slowly until the first LED comes on. Measure this input signal voltage and record the value in your Lab Notebook. Continue to increase the voltage until the second LED comes on. Measure the signal voltage again and record the value in your lab notebook. Compare the operation of this voltage level display with the desired operation. 5. Now use the function generator to change Vin to a 440 Hz sinusoid with amplitude of 1V. This is a reasonable mathematical model of a typical voice/music signal. Slowly increase the amplitude of this sinusoid and observe what happens to the LEDs as the input signal s amplitude increases beyond the 2.5 V and 5.0 V thresholds. When the LEDs are on, do they appear to be steady or blinking? Are they actually steady or not? Explain in your lab notebook. WRITE A LABORATORY REPORT FOLLOWING THE GUIDELINES FOR LABORATORY REPORTS IN THIS COURSE. EE210 Lab Op Amps 2 page 5

### Operational Amplifiers: Part II

1. Introduction Operational Amplifiers: Part II The name "operational amplifier" comes from this amplifier's ability to perform mathematical operations. Three good examples of this are the summing amplifier,

### Lab 10: Single Supply Amplifier

Overview This lab assignment implements an inverting voltage amplifier circuit with a single power supply. The amplifier output contains a bias point which is removed by AC coupling the output signal.

### ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

### ECEN Network Analysis Section 3. Laboratory Manual

ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

### Lab #6: Op Amps, Part 1

Fall 2013 EELE 250 Circuits, Devices, and Motors Lab #6: Op Amps, Part 1 Scope: Study basic Op-Amp circuits: voltage follower/buffer and the inverting configuration. Home preparation: Review Hambley chapter

### EE 3305 Lab I Revised July 18, 2003

Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

### ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

### Lab 6: Instrumentation Amplifier

Lab 6: Instrumentation Amplifier INTRODUCTION: A fundamental building block for electrical measurements of biological signals is an instrumentation amplifier. In this lab, you will explore the operation

### PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

### Data Conversion and Lab Lab 1 Fall Operational Amplifiers

Operational Amplifiers Lab Report Objectives Materials See separate report form located on the course webpage. This form should be completed during the performance of this lab. 1) To construct and operate

### Lab: Operational Amplifiers

Page 1 of 6 Laboratory Goals Familiarize students with Integrated Circuit (IC) construction on a breadboard Introduce the LM 741 Op-amp and its applications Design and construct an inverting amplifier

### DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

### University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 Lab 1 Power Amplifier Circuits Issued August 25, 2009 Due: September 11, 2009

### When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp

Op Amp Fundamentals When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp In general, the parameters are interactive. However, in this unit, circuit input

### Michael Tang TA: Ketobi 7/18/13

Michael Tang TA: Ketobi 7/18/13 Lab Station #5 Section 1 Partners: Matt, Ryan Task 1: Basic Inverting Amplifier For this task, a basic inverting amplifier was needed to be designed to amplify the output

### A 3-STAGE 5W AUDIO AMPLIFIER

ECE 2201 PRELAB 7x BJT APPLICATIONS A 3-STAGE 5W AUDIO AMPLIFIER UTILIZING NEGATIVE FEEDBACK INTRODUCTION Figure P7-1 shows a simplified schematic of a 3-stage audio amplifier utilizing three BJT amplifier

### Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electronic Circuits Spring 2007

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Electronic Circuits Spring 2007 Homework #11 Handout S07053 Issued 4/26/2007 Due 5/11/2007 Introduction

### Operational Amplifiers

Operational Amplifiers Reading Horowitz & Hill handout Notes, Chapter 9 Introduction and Objective In this lab we will examine op-amps. We will look at a few of their vast number of uses and also investigate

### INC 253 Digital and electronics laboratory I

INC 253 Digital and electronics laboratory I Laboratory 4 Wave Shaping Diode Circuits Author: ID CoAuthors: 1. ID 2. ID 3. ID Experiment Date: Report received Date: Comments For Instructor Full Marks Pre

### Integrators, differentiators, and simple filters

BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

### Intro To Engineering II for ECE: Lab 7 The Op Amp Erin Webster and Dr. Jay Weitzen, c 2014 All rights reserved.

Lab 7: The Op Amp Laboratory Objectives: 1) To introduce the operational amplifier or Op Amp 2) To learn the non-inverting mode 3) To learn the inverting mode 4) To learn the differential mode Before You

### PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and

### Digital Applications of the Operational Amplifier

Lab Procedure 1. Objective This project will show the versatile operation of an operational amplifier in a voltage comparator (Schmitt Trigger) circuit and a sample and hold circuit. 2. Components Qty

### Chapter 3 THE DIFFERENTIATOR AND INTEGRATOR Name: Date

AN INTRODUCTION TO THE EXPERIMENTS The following two experiments are designed to demonstrate the design and operation of the op-amp differentiator and integrator at various frequencies. These two experiments

LABORATORY EXPERIMENT Infrared Transmitter/Receiver (Note to Teaching Assistant: The week before this experiment is performed, place students into groups of two and assign each group a specific frequency

### Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170

Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Megan Ong Diana Wu Wong B01 Tuesday 11am April 28 st, 2015 Abstract: The

### ECE159H1S University of Toronto 2014 EXPERIMENT #2 OP AMP CIRCUITS AND WAVEFORMS ECE159H1S

ECE159H1S University of Toronto 2014 EXPERIMENT #2 OP AMP CIRCUITS AND WAVEFORMS ECE159H1S OBJECTIVES: To study the performance and limitations of basic op-amp circuits: the inverting and noninverting

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 5 GAIN-BANDWIDTH PRODUCT AND SLEW RATE OBJECTIVES In this experiment the student will explore two

### Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) 1. Objective: Junction FETs - the operation of a junction field-effect transistor (J-FET)

### EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

### EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab Prelab Part I: RC Circuit 1. Design a high pass filter (Fig. 1) which has a break point f b = 1 khz at 3dB below the midband level (the -3dB

### Operational Amplifiers

1. Introduction Operational Amplifiers The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

### EE 2274 DIODE OR GATE & CLIPPING CIRCUIT

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT Prelab Part I: Wired Diode OR Gate LTspice use 1N4002 1. Design a diode OR gate, Figure 1 in which the maximum current thru R1 I R1 = 9mA assume Vin = 5Vdc. Design

### EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS

2.16 EXPERIMENT 2.2 NONLINEAR OPAMP CIRCUITS 2.2.1 OBJECTIVE a. To study the operation of 741 opamp as comparator. b. To study the operation of active diode circuits (precisions circuits) using opamps,

### ES250: Electrical Science. HW6: The Operational Amplifier

ES250: Electrical Science HW6: The Operational Amplifier Introduction This chapter introduces the operational amplifier or op amp We will learn how to analyze and design circuits that contain op amps,

### EE 3111 Lab 7.1. BJT Amplifiers

EE 3111 Lab 7.1 BJT Amplifiers BJT Amplifier Device/circuit that alters the amplitude of a signal, while keeping input waveform shape BJT amplifiers run the BJT in active mode. Forward current gain is

### Experiments #7. Operational Amplifier part 1

Experiments #7 Operational Amplifier part 1 1) Objectives: The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op-amp

### Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore)

Laboratory 9 Operational Amplifier Circuits (modified from lab text by Alciatore) Required Components: 1x 741 op-amp 2x 1k resistors 4x 10k resistors 1x l00k resistor 1x 0.1F capacitor Optional Components:

### DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 3 TITLE : Operational Amplifier (Op-Amp) OUTCOME : Upon completion of this unit, the student should be able to: 1. Gain

### EXPERIMENT NUMBER 8 Introduction to Active Filters

EXPERIMENT NUMBER 8 Introduction to Active Filters i-1 Preface: Preliminary exercises are to be done and submitted individually. Laboratory hardware exercises are to be done in groups. This laboratory

### Operational Amplifier Circuits

ECE VIII. Basic 5 Operational Amplifier Circuits Lab 8 In this lab we will verify the operation of inverting and noninverting amplifiers constructed using Operational Amplifiers. We will also observe the

### Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

### EE100B Experiment 6. The Design of Waveform Generators. College of Engineering University of California, Riverside. Objective

EE100 Experiment 6 The esign of Waveform Generators ollege of Engineering University of alifornia, Riverside Objective To familiarize with some quite general ideas concerning the generation of waveforms

### OPERATIONAL AMPLIFIERS (OP-AMPS) II

OPERATIONAL AMPLIFIERS (OP-AMPS) II LAB 5 INTRO: INTRODUCTION TO INVERTING AMPLIFIERS AND OTHER OP-AMP CIRCUITS GOALS In this lab, you will characterize the gain and frequency dependence of inverting op-amp

### Lab 6: Building a Function Generator

ECE 212 Spring 2010 Circuit Analysis II Names: Lab 6: Building a Function Generator Objectives In this lab exercise you will build a function generator capable of generating square, triangle, and sine

### EE 233 Circuit Theory Lab 4: Second-Order Filters

EE 233 Circuit Theory Lab 4: Second-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Generic Equalizer Filter... 2 3.2 Equalizer Filter for Audio Mixer...

### Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

### Amplification. Objective. Equipment List. Introduction. The objective of this lab is to demonstrate the basic characteristics an Op amplifier.

Amplification Objective The objective of this lab is to demonstrate the basic characteristics an Op amplifier. Equipment List Introduction Computer running Windows (NI ELVIS installed) National Instruments

### PHASORS AND PHASE SHIFT CIRCUITS

PHASORS AND PHASE SHIFT CIRCUITS YOUR NAME GTA S SIGNATURE LAB MEETING TIME PHASOR CIRCUIT 4. Assemble the series RC circuit with the following circuit element values: C = 0.027 μf R = 10 kω v s (t) =

### The Field Effect Transistor

FET, OPAmps I. p. 1 Field Effect Transistors and Op Amps I The Field Effect Transistor This lab begins with some experiments on a junction field effect transistor (JFET), type 2N5458, and then continues

### Lesson number one. Operational Amplifier Basics

What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

### Physics 303 Fall Module 4: The Operational Amplifier

Module 4: The Operational Amplifier Operational Amplifiers: General Introduction In the laboratory, analog signals (that is to say continuously variable, not discrete signals) often require amplification.

### LABORATORY 5 v3 OPERATIONAL AMPLIFIER

University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 5 v3 OPERATIONAL AMPLIFIER Integrated operational amplifiers opamps

### Function Generator Op-amp Summing Circuits Pulse Width Modulation LM311 Comparator

Function Generator Op-amp Summing Circuits Pulse Width Modulation LM311 Comparator Objective ECE3204 D2015 Lab 3 The main purpose of this lab is to gain familiarity with use of the op-amp in a non-linear

### Precision Rectifier Circuits

Precision Rectifier Circuits Rectifier circuits are used in the design of power supply circuits. In such applications, the voltage being rectified are usually much greater than the diode voltage drop,

### CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II OBJECTIVE The purpose of the experiment is to examine non-ideal characteristics of an operational amplifier. The characteristics that are investigated include

### University of Utah Electrical Engineering Department ECE 2100 Experiment No. 2 Linear Operational Amplifier Circuits II

University of Utah Electrical Engineering Department ECE 2100 Experiment No. 2 Linear Operational Amplifier Circuits II Minimum required points = 51 Grade base, 100% = 85 points Recommend parts should

### Experiment 8 Frequency Response

Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will

### Laboratory Project 1: AC Circuit Measurements and Simulation

Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in C circuit analysis. In this laboratory session, each student will:

### Motomatic Servo Control

Exercise 2 Motomatic Servo Control This exercise will take two weeks. You will work in teams of two. 2.0 Prelab Read through this exercise in the lab manual. Using Appendix B as a reference, create a block

### EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting AC to DC

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting C to DC The process of converting a sinusoidal C voltage to a

### STATION NUMBER: LAB SECTION: RC Oscillators. LAB 5: RC Oscillators ELECTRICAL ENGINEERING 43/100. University Of California, Berkeley

YOUR NAME: YOUR SID: Lab 5: RC Oscillators EE43/100 Spring 2013 Kris Pister YOUR PARTNER S NAME: YOUR PARTNER S SID: STATION NUMBER: LAB SECTION: Pre- Lab GSI Sign- Off: Pre- Lab Score: /40 In- Lab Score:

### 2. BAND-PASS NOISE MEASUREMENTS

2. BAND-PASS NOISE MEASUREMENTS 2.1 Object The objectives of this experiment are to use the Dynamic Signal Analyzer or DSA to measure the spectral density of a noise signal, to design a second-order band-pass

### EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

### Physics 123: Homework 3: Op Amps I

P123 HW 3: op amps I 1 Physics 123: Homework 3: Op Amps I Total points: 20 (plus 3 optional); due Monday, Feb. 23, 2015 REV 0 1 ; February 14, 2015 Contents 1 Bidirectional Current Source (1 point) 1 2

### INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL

INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL V SEMESTER Department of Electronics and communication Engineering Government Engineering College, Dahod-389151 http://www.gecdahod.ac.in/ L A B M A N U

### The measurement of loop gain in feedback seismometers Brett M. Nordgren April 9, 1999 Rev.

Introduction The measurement of loop gain in feedback seismometers Brett M. Nordgren http://bnordgren.org/contactb.html April 9, 1999 Rev. October 5, 2004 In reading the messages coming through PSN-L,

### EKT 314 ELECTRONIC INSTRUMENTATION

EKT 314 ELECTRONIC INSTRUMENTATION Elektronik Instrumentasi Semester 2 2012/2013 Chapter 3 Analog Signal Conditioning Session 2 Mr. Fazrul Faiz Zakaria school of computer and communication engineering.

### Lab 2: Capacitors. Integrator and Differentiator Circuits

Lab 2: Capacitors Topics: Differentiator Integrator Low-Pass Filter High-Pass Filter Band-Pass Filter Integrator and Differentiator Circuits The simple RC circuits that you built in a previous section

### Experiment No. 4 The LM 741 Operational Amplifier

Experiment No. 4 The LM 741 Operational Amplifier By: Prof. Gabriel M. Rebeiz The University of Michigan EECS Dept. Ann Arbor, Michigan The LM * 741 is the most widely used op-amp in the world due to its

### THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING

THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

### Laboratory 4: Amplification, Impedance, and Frequency Response

ES 3: Introduction to Electrical Systems Laboratory 4: Amplification, Impedance, and Frequency Response I. GOALS: In this laboratory, you will build an audio amplifier using an LM386 integrated circuit.

### Exercise 1: AC Waveform Generator Familiarization

Exercise 1: AC Waveform Generator Familiarization EXERCISE OBJECTIVE When you have completed this exercise, you will be able to operate an ac waveform generator by using equipment provided. You will verify

### Section3 Chapter 2: Operational Amplifiers

2012 Section3 Chapter 2: Operational Amplifiers Reference : Microelectronic circuits Sedra six edition 1/10/2012 Contents: 1- THE Ideal operational amplifier 2- Inverting configuration a. Closed loop gain

### Experiment 6: Biasing Circuitry

1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing

### Sonoma State University Department of Engineering Science Spring 2017

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 4 Introduction to AC Measurements (I) AC signals, Function Generators and Oscilloscopes Function Generator (AC) Battery

### Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached.

EE 352 Design Project Spring 2015 FM Receiver Revision 0, 03-02-15 Interim report due: Friday April 3, 2015, 5:00PM Project Demonstrations: April 28, 29, 30 during normal lab section times Final report

### ELR 4202C Project: Finger Pulse Display Module

EEE 4202 Project: Finger Pulse Display Module Page 1 ELR 4202C Project: Finger Pulse Display Module Overview: The project will use an LED light source and a phototransistor light receiver to create an

### UNIVERSITY OF CALIFORNIA, BERKELEY. EE40: Introduction to Microelectronic Circuits Lab 1. Introduction to Circuits and Instruments Guide

UNERSTY OF CALFORNA, BERKELEY EE40: ntroduction to Microelectronic Circuits Lab 1 ntroduction to Circuits and nstruments Guide 1. Objectives The electronic circuit is the basis for all branches of electrical

### Massachusetts Institute of Technology MIT

Massachusetts Institute of Technology MIT Real Time Wireless Electrocardiogram (ECG) Monitoring System Introductory Analog Electronics Laboratory Guilherme K. Kolotelo, Rogers G. Reichert Cambridge, MA

### Operational Amplifiers

Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

### Frequency Response and Filters

Frequency Response and Filters Objectives: This experiment provides practical experiences with frequency responses of analog filters. Filters will be constructed and graphs of gain magnitude and phase

### Operational Amplifier

Operational Amplifier Joshua Webster Partners: Billy Day & Josh Kendrick PHY 3802L 10/16/2013 Abstract: The purpose of this lab is to provide insight about operational amplifiers and to understand the

### Equipment: You will use the bench power supply, function generator and oscilloscope.

EE203 Lab #0 Laboratory Equipment and Measurement Techniques Purpose Your objective in this lab is to gain familiarity with the properties and effective use of the lab power supply, function generator

### EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10 In this experiment we will measure the characteristics of the standard common emitter amplifier. We will use the 2N3904 npn transistor. If you have

### BIOE 123 Module 3. Electronics 2: Time Varying Circuits. Lecture (30 min) Date. Learning Goals

BIOE 123 Module 3 Electronics 2: Time Varying Circuits Lecture (30 min) Date Learning Goals Learn about the behavior of capacitors and inductors Learn how to analyze time-varying circuits to quantify parameters

### ECET DAQ & Control Systems

1 Electrical Engineering Technology ECET 17700 DAQ & Control Systems Lecture # 11 Inverting Amplifier & Summer Professors Robert Herrick & J. Michael Jacob Purdue University ECET 17700 DAQ & Systems Control

### Introduction to Operational Amplifiers

P. R. Nelson ECE 322 Fall 2012 p. 1/50 Introduction to Operational Amplifiers Phyllis R. Nelson prnelson@csupomona.edu Professor, Department of Electrical and Computer Engineering California State Polytechnic

### Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

### Physics 120 Lab 1 (2018) - Instruments and DC Circuits

Physics 120 Lab 1 (2018) - Instruments and DC Circuits Welcome to the first laboratory exercise in Physics 120. Your state-of-the art equipment includes: Digital oscilloscope w/usb output for SCREENSHOTS.

### Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide

LABORATORY 3 Diode Guide Diodes Overview Diodes are mostly used in practice for emitting light (as Light Emitting Diodes, LEDs) or controlling voltages in various circuits. Typical diode packages in same

### Laboratory Project 1: Design of a Myogram Circuit

1270 Laboratory Project 1: Design of a Myogram Circuit Abstract-You will design and build a circuit to measure the small voltages generated by your biceps muscle. Using your circuit and an oscilloscope,

### Feed Forward Linearization of Power Amplifiers

EE318 Electronic Design Lab Report, EE Dept, IIT Bombay, April 2007 Feed Forward Linearization of Power Amplifiers Group-D16 Nachiket Gajare ( 04d07015) < nachiketg@ee.iitb.ac.in> Aditi Dhar ( 04d07030)

### STUDY OF RC AND RL CIRCUITS Venue: Microelectronics Laboratory in E2 L2

EXPERIMENT #1 STUDY OF RC AND RL CIRCUITS Venue: Microelectronics Laboratory in E2 L2 I. INTRODUCTION This laboratory is about verifying the transient behavior of RC and RL circuits. You need to revise

### Low_Pass_Filter_1st_Order -- Overview

Low_Pass_Filter_1st_Order -- Overview 1 st Order Low Pass Filter Objectives: After performing this lab exercise, learner will be able to: Understand and comprehend working of opamp Comprehend basics of

### Experiment 9 : Pulse Width Modulation

Name/NetID: Experiment 9 : Pulse Width Modulation Laboratory Outline In experiment 5 we learned how to control the speed of a DC motor using a variable resistor. This week, we will learn an alternative

### Op-Amp Simulation Part II

Op-Amp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate

### Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world