Serial Step Up Resonant Frequency Static Discharge System - Tesla Gun

Size: px
Start display at page:

Download "Serial Step Up Resonant Frequency Static Discharge System - Tesla Gun"

Transcription

1 Volume 114 No , ISSN: (printed version); ISSN: (on-line version) url: ijpam.eu Serial Step Up Resonant Frequency Static Discharge System - Tesla Gun R. Ramya 1, Abhinash Kumar Patra 2, Saurodeep Adhikary 3, Rishav Ranjan Paul 4 SRM University, Kattankulathur ramya.rr@ktr.srmuniv.ac.in and abhinashpatro95@gmail.com Abstract Currently weapons research and development takes up the greatest share of any defense budget. In this aspect, India is lagging, mostly due to economical and institutional constraints. It is the largest importer of arms and ammunitions in the world. However, there is still a need for a failsafe defense system. This paper is a step towards addressing this shortcoming of the Indian military. However, this is not the first prototypal weapons system in the world. The U.S. Defense Strategic Defense Initiative put into development the technology of a similar type using a particle beam to be used as a weapon in outer space as part of the Beam Experiments Aboard Rocket (BEAR) project. This is the next step to build a weapon system that rises above ammunition constraint and environmental hazard. The basic premise of a Tesla Gun involves static discharge at a very high voltage. There are three main elements of the system. The first is the voltage step up. The next is the resonant circuit and the final element is the targeting system. Key Words and Phrases: Tesla Coil, Static Discharge, Resonant Frequency, Bounces. 1. Introduction 1 531

2 A Tesla coil is a device producing a high frequency current, at a very high voltage but of relatively small intensity. Basically, it works as a transformer and as a radio antenna, even if it differs radically from both. A Tesla coil is a radio frequency oscillator that drives an air-core double-tuned resonant transformer to produce high voltages at low currents. Tesla's original circuits as well as most modern coils use a simple spark gap to excite oscillations in the tuned transformer. More sophisticated designs use transistor or thyristor switches or vacuum tube electronic oscillators to drive the resonant transformer [1]. Tesla coils can produce output voltages from 50 kilovolts to several million volts for large coils. The alternating current output is in the low radio frequency range, usually between 50 KHz and 1 MHz. Although some oscillator-driven coils generate a continuous alternating current, most Tesla coils have a pulsed output; the high voltage consists of a rapid string of pulses of radio frequency alternating current. The common spark-excited Tesla coil circuit consists of these components: A high voltage supply transformer (T), to step the AC mains voltage up to a high enough voltage to jump the spark gap. Typical voltages are between 5 and 30 kilovolts (kv). A capacitor (C1) that forms a tuned circuit with the primary winding L1 of the Tesla transformer. A spark gap (SG) that acts as a switch in the primary circuit. The Tesla coil (L1, L2), an air-core double-tuned resonant transformer, which generates the high output voltage. Optionally, a capacitive electrode (top load) (E) in the form of a smooth metal sphere or torus attached to the secondary terminal of the coil. Its large surface area suppresses premature corona discharge and streamer arcs, increasing the Q factor and output voltage. Figure 1: Basic Tesla Coil Circuit 2 532

3 2. Simulations for system parameter 2.1 Software used JAVATC by Barton B. Anderson TESLAMAP 2.2 Spark size The spark size is directly dependent on the input power from the NST. An approximate value of the spark can be derived using where L is the spark length and P is the input power. (1) (2) Input Arc Length P Voltage Inches Cm Table 1: Correlation of input power and arc length 2.3 Primary inductance The inductance is necessary for the calculation of the resonant frequency. The primary inductance is determined from the primary coil as the other components have negligible inductances. The system has been designed to provide tuning options used taps in the primary coil. It is found using (3) 3 533

4 (4) Where L is the inductance, N is the number of turns, A is the area of conductor, D 1 is the internal diameter, W is the wire diameter and S is the wire spacing. S = mm, W = 12 mm, D = 165 mm, D 0 max = 640 mm Turns Inductance Resonant frequency Table 2: Variation in inductance The resonant frequency dictates the capacitor charging rate and thus the capacitor used. It is also instrumental in the operation of the coil as a gun. The resonant frequency is calculated from the primary circuit inductance and capacitance. where L is the inductance, C is the capacitance and F is the resonant frequency. L C F Prototype of Tesla Gun 3.1 Charging system Table 3: Resonant frequency computation The first stage is the voltage step. The supply is from a DC battery source or from the AC mains (230 V-1ph, 415 V-3ph). In the case of DC source, a fly-back transformer is used to convert low voltage of 18 V to high voltage of more than 20 kv. In case of AC source, a High Voltage Transformer used. The components of the charging system are: (5) 4 534

5 A. Neon Sign Transformer The high voltage transformer is the most important part of the system. It is simply an induction transformer which acts as the power supply of the system. Its role is to charge the primary capacitor at the beginning of each cycle. Apart from its power, its ruggedness is very important as it must withstand terrific operation conditions. The widely-used type of transformer is the neon sign transformer (NST), which is, as its name suggests, generally used to power neon signs. They generally supply between 6 and 15 kv and are current-limited often at 30 or 60 ma. They are safer and easier to find but are more fragile. But newer NST should be avoided, as they are provided with a built-in differential circuit breaker, which will prevent any Tesla gun operation as it provokes repeated spikes of current and voltages that will trigger the breaker. Beside from these two common types, one can also use a fly back transformer or a microwave oven transformer (MOT). In the case of this system the NST used has the following specifications: Output Voltage (V) = 10 kv Maximum Current (I) = 30 ma Also, important to computations is the power and impedance. Power (P) = V I = 300 W Impedance (Z) = V/I = kω B. Capacitor bank Energy stored in the capacitor is given by: The output from the transformer is used to charge the capacitor bank. The benefit of using a capacitor bank is instantaneous current release for the spark gap. This discharge goes to the primary coil. Its capacitance must be such as there is resonant amplification in the primary circuit (LC circuit in series with an alternating voltage generator). The capacitance is C res. If the capacitance is lower than C res the energy available for the rest of the cycle will be lower. The same thing would happen if the capacitance is larger than C res, but the larger capacitance allows more charge to be stored, which 5 535

6 compensates the first problem. But due to resonance that it might be judicious to make a "bigger" capacitor in order to prevent the amplification from becoming too powerful, which could easily destroy the transformer as well as the capacitor. By definition, C res could be found with the resonant frequency formula for 50 Hz, but the total inductance of the primary circuit should be known. It is important to note that the inductance of the transformer is much greater than the inductance of the primary coil, and the same is true for their impedances. Therefore, the primary inductor's contribution is neglected. The aforementioned formula is the following: C res = (2 π Z f) -1 = 9.54 nf The specifications of the Alcon FF 06 are as follows: Capacitance 100 nf DC Voltage Tolerance 2000 V Maximum pulse rise time (dv/ dt) 1500 V/µs Dissipation factor (Tan δ) 0.01 khz at 25 C Temperature Range -25 C to 85 C Table 4: Capacitor specifications The notion of dv/dt represents the speed at which a capacitor is charged or discharges (its units are V/s). In this context, it is not really the time-derivative of the potential but rather the maximal value it can take. The Alcon FF-06 boasts a dv/dt of 1500 V/μs. The amplitude of the NST's voltage is equal to V max = 2 1/2 V rms = V. But with 9 capacitors in series, each one is exposed to only one ninth of this value, i.e V. For the angular speed, ω = 2πf where the frequency f is the resonant frequency. It attains a maximum value of khz in this case. Thus, the obtained dv/dt is 3162V/µs. 3.2 Targeting system The targeting system includes the following components: A. Primary Coil The primary inductance can be computed by the formula in the simulation or the formula given below. However both give approximate values

7 where N is the number of turns, R is the mean radius and W is the coil width. B. Main Spark gap The function of the spark gap is to close the primary LC circuit when the capacitor is sufficiently charged, thus allowing free oscillations inside the primary circuit. This is a component of prime importance in a tesla coil because its closing/opening frequency will have a considerable influence on the final output. C. Secondary Coil In the Tesla gun the secondary coil is made of enameled copper "magnet wire" with a diameter of mm (SWG 24) which is wound around a PVC pipe of 110 mm external diameter. The winding height is 40.3 cm. The number of turns that have been wound can be calculated by N = H/d (7) where H is the height of the coil and d the diameter of the wire used [3]. In this case, the number of turns is 720 turns (more or less a few turns) which takes almost 249m of magnet wire. Length is given by l = (2 π N r) (8) where r is the radius of the coil. The self-inductance L in henrys of adjacent-turns solenoid is given by (6) (9) where μ represents the magnetic permeability of the medium ( N/A 2 for air, very close to the value of the void), N the number of turns of the solenoid, H its total height, and A the area of a turn. Injecting Tesla Gun secondary coil values: 7 537

8 L theoretical = 15.4 mh and L experimental = (16.4 ± 0.01) mh which is not too far from the value measured from an LCR meter: Resistance of Secondary Coil: The resistance of the secondary coil cannot be measured using a multimeter as the current through it is a high frequency AC current. Another method proposed by Fraga, Prados and Chen takes the corona and skin effects into account and has been proven to be precise for solenoids. The simulator yields the following value: R ac = Ω Inductance and capacitance at resonance: The inductance calculated and measured previously are again valid for low frequencies only. The self-inductance of the secondary coil driven at resonance is slightly different, because of the non-uniform repartition of current and because the length of the coil is comparable to the wavelength of the signal it will carry. Once again, a more precise formula must be used. The simulator gave the following value: L res = mh and C res = 6.74 pf D. Top load The top load acts like the upper "plate" of the capacitor formed by the top load and the ground. It adds capacity to the secondary LC circuit and offers a surface from which arcs can form. Computing its capacitance is difficult in the general case. However, simulation provides with an approximate value. The formula is: (10) where D 1 is the outer diameter, D 2 is the width, and C is the capacitance. C = pf 3.3 Protection system The protection system consists of the following components: A. NST protection Equipment 8 538

9 Tesla coils give a harsh treatment to the main transformer. It must withstand powerful transient currents and voltages as well as highfrequency alternating currents B. Security Spark gap It is made of two electrodes, hence the name two element static spark gap. This is an extra spark gap which is placed across the capacitor bank. C. Auto-transformer In order to protect the electronic devices connected to the mains from dangerous currents spikes and voltages fluctuation from main supply, it is recommended to connect at least a simple auto transformer between the mains and the transformer. There's an important empirical rule about the ratio between the height H and the diameter D of the coil. It has been observed that the best performances are attained with an H/D ratio between 3 and 5. Tesla coil is thus conforming to a ratio of 4. The auto-transformer also provide definitive measurement of the NST output. This is instrumental in keeping the dv/dt of the capacitors within limit. 4. Construction Constraints of Tesla Gun 4.1 Description of a cycle Considering that the primary and secondary circuits are RLC circuits with low resistance, which accords with reality. For this reason, internal resistance of the components is not represented. The currentlimited transformer is also replaced. This has no impact regarding pure theory. Some parts of the secondary circuit are drawn in dotted lines. This is because they are not directly visible on the apparatus. Regarding the secondary capacitor, it is seen that its capacity is actually distributed, the top load only being "one plate" of this capacitor. Regarding the secondary spark gap, it is shown in the schematic as a way to represent where the arcs will take place

10 Figure 2: Schematic of the basic features of a Tesla coil 4.2 Charging The first step of the cycle is the charging of the primary capacitor by the generator. The input has a frequency is 50 Hz. Because the generator is current-limited, the capacity of the capacitor must be carefully chosen so it will be fully charged in exactly 1/100 seconds. Figure 3: The generator (NST) charges the primary capacitor 4.3 Oscillations The coupling constant k between the two circuits is kept low, generally between 0.05 and 0.2. Several oscillations will therefore be required to transfer the totality of the energy. Figure 4: Oscillations in primary and secondary coils The oscillations in the primary will thus act a bit like an AC voltage generator placed in series on the secondary circuit. To maximize the voltage in the secondary, it is intuitively clear that both circuits must share exactly the same resonant frequency, as it will be demonstrated

11 below. This will allow the voltage in the secondary to increase dramatically, as in equations describing a harmonically driven LC circuit. This is called the resonant rise. The voltage becoming rapidly enormous, generally several hundreds of thousands of volts, sparks will form at the top load. (11) Figure 5: Oscillations of diminishing amplitude in the primary (ringdown) Figure 6: Oscillations of increasing amplitude in the primary (ringup) 4.4 Bounces All the energy is now in the secondary circuit. The ring-up is very fast and the path of ionized air in the spark gap subsists a few moments even when the intensity of the field has fallen below the critical value. The energy of the secondary can therefore be transmitted to the primary in a similar fashion. Current and voltage in the secondary will then diminish while those in the primary will increase. Such bounces can occur 3, 4, 5 times or even more. At each rebound, a fraction of the energy is definitively lost. This is the reason why the envelop of the waveform falls exponentially. After a certain number of bounces, voltage will have decreased significantly and the spark gap finally opens at the next primary notch [5]

12 These rebounds are actually important for the creation of long arcs, because arcs grow on the ionized air path created during the previous rebounds. At each bounce, the spark gets longer. The complete process happens several hundred times per second. Figure 7: General waveform of the oscillation in the primary circuit with 3 rebound Figure 8: General waveform of the oscillation in the secondary circuit with 3 rebounds Higher number of rebounds is very helpful for a classic tesla coil operation. However, for the coil to act as a gun it should discharge instantaneously. Hence the coupling coefficient is slightly greater to ensure less number of bounces and full discharge of energy in minimum cycles. 4.5 Decay Once the main spark gap has stopped firing, the primary circuit is open and all the remaining energy is trapped in the secondary. This situation is thus the same as in a free RLC circuit. Oscillations will decay exponentially as the charge dissipates through the sparks

13 Figure 9: When the spark gap has opened, secondary oscillation decays exponentially 4.6 Voltage Gain The following derivation is based on conservation of energy, we'll suppose there's no ohmic losses (R = 0) and that the primary and secondary circuits are perfectly at resonance. From [6], the formula giving the energy stored in a capacitor as a function of the voltage E = CV 2 /2. The energy of the primary E p circuit is thus given by where C p is the capacity of the primary circuit. The energy E s stored in the secondary circuit (capacity is C s ) is (12) (13) It is more convenient to express this gain in terms of the inductance of the circuits. (14) The gain can therefore be rewritten this way: (15) So, this is how the Tesla coil can reach such tremendous voltages: the secondary coil, which has around 800 turns, has an inductance considerably higher than the primary coil, which generally has about 10 turns. Using typical values, this formula will yield a V out of the order of 10 5 V or even 10 6 V for the largest coils. 4.7 Energy Losses In most cases, primary and secondary circuits are rarely at perfect resonance, which contributes to a further reduction of the secondary voltage. And there are certain losses like copper loss, corono loss and Electromagnetic loss. 4.8 Distribution of Capacitance within the secondary circuit The capacitance of secondary coil consists of many contributions and is difficult to compute, but its major components are top load, secondary circuit

14 Figure 10: The major contributions to the secondary capacitance C The total capacitance as all these "capacitors" are in parallel, so the total capacity of the secondary circuit will be given by: C s = C t + C b + C e (16) where, C s is the stray capacitance, C t is the capacitance of the top load, C b is the capacitance of the secondary circuit. The reason why secondary capacitance is so hard to define is because it is truly small (a few dozens of Pico farads). That is why all the factors must be taken in account. Indeed, they would also apply for the capacity of the primary circuit, but this one has a much greater capacity, which is totally concentrated in the primary capacitor, so the aforementioned factors are truly negligible. Figure 11: Full tesla coil setup 5. Conclusion The aim of this paper is to develop a static discharge weapon system, more popularly known as a Tesla Gun. Although there are some experimental prototypes but such system has not been given proper

15 scientific attention yet due to difficulties in the development cycle and material constraints. This paper addresses these issues in the design and development phases. The Tesla Gun is a low cost, relatively stable static discharge prototype. The firing system is a High-Tension Tesla Coil undergoing a two-phase step up. The study begins with a thorough analysis of the working of LC, RLC circuits with a focus on resonance condition and quality factor as these are instrumental in the design of the primary and secondary coils. The next step is simulating the design to identify the range of the system. This prototype acts as an active defense mechanism within the ascertained range which is around 30 inches. The static discharge length can be varied by adjusting the input, capacitor bank, or the tap in the primary to obtain fine control. References [1] N. Tesla, "Apparatus for transmitting electrical energy", US Patent no , [2] Maxwell, J. Clerk "A Dynamical Theory of the Electromagnetic Field". Philosophical Transactions of the Royal Society of London.1 January, [3] Hayt, William H. Engineering Electromagnetics, 5th edition, McGraw-Hill, [4] Marco Denicolai Tesla Transformer for Experimentation and Research, Helsinki University of Technology, [5] C. Gerekos, "The Zeus Tesla Coil - Introduction and overview Hazardous Physics" [6] Katsuhiko Ogata System Dynamics, 4th edition. University of Minnesota, [7] Cartwright, K. V.; Joseph, E.; Kaminsky, E. J. "Finding the exact maximum impedance resonant frequency of a practical parallel resonant circuit without calculus. The Technology Interface International Journal,

16 546

Design and Fabrication of Tesla Coil

Design and Fabrication of Tesla Coil Design and Fabrication of Tesla Coil Prof. S. M. Shaikh 1, Mr. Harshad Dube 2, Mrs. Sushmita Walunj 3, Mrs. Namita Thorat 4, 1 Assistant Professor, Electrical Engineering, AISSMS s IOIT, Maharashtra, India

More information

Filters And Waveform Shaping

Filters And Waveform Shaping Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and

More information

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Chapter 21. Alternating Current Circuits and Electromagnetic Waves Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal

More information

Electron Spin Resonance v2.0

Electron Spin Resonance v2.0 Electron Spin Resonance v2.0 Background. This experiment measures the dimensionless g-factor (g s ) of an unpaired electron using the technique of Electron Spin Resonance, also known as Electron Paramagnetic

More information

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) 1. In an A.C. circuit A ; the current leads the voltage by 30 0 and in circuit B, the current lags behind the voltage by 30 0. What is the

More information

Chapter Moving Charges and Magnetism

Chapter Moving Charges and Magnetism 100 Chapter Moving Charges and Magnetism 1. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is [2013] 2. [2002] zero RvB vbl/r vbl

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 4 TRANSIENT ANALYSIS Prepared by: Dr. Mohammed Hawa EXPERIMENT 4 TRANSIENT ANALYSIS

More information

Generation of Sub-nanosecond Pulses

Generation of Sub-nanosecond Pulses Chapter - 6 Generation of Sub-nanosecond Pulses 6.1 Introduction principle of peaking circuit In certain applications like high power microwaves (HPM), pulsed laser drivers, etc., very fast rise times

More information

Simple electrical circuit to light up a gas discharge lamp

Simple electrical circuit to light up a gas discharge lamp TECHNICS AND INFORMATICS IN EDUCATION 6 th International Conference, Faculty of Technical Sciences, Čačak, Serbia, 8 9th May 016 TEHNIKA I INFORMATIKA U OBRAZOVANJU 6. međunarodna konferencija, Fakultet

More information

HTC Technical Manual

HTC Technical Manual 10.04.009 Table of contents 1. General...3. Technical details...3.1. Primary winding...3.. Secondary winding...3.3. Top terminal...3.4. Rotary spark gap...3.5. Safety spark gap...4 3. Measurements...5

More information

Class XII Chapter 7 Alternating Current Physics

Class XII Chapter 7 Alternating Current Physics Question 7.1: A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. (a) What is the rms value of current in the circuit? (b) What is the net power consumed over a full cycle? Resistance of the resistor,

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 11 Electricity and Magnetism AC circuits and EM waves Resonance in a Series RLC circuit Transformers Maxwell, Hertz and EM waves Electromagnetic Waves 6/18/2007 http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1 Electromagnetic Oscillations and Currents March 23, 2014 Chapter 30 1 Driven LC Circuit! The voltage V can be thought of as the projection of the vertical axis of the phasor V m representing the time-varying

More information

FGJTCFWP"KPUVKVWVG"QH"VGEJPQNQI[" FGRCTVOGPV"QH"GNGEVTKECN"GPIKPGGTKPI" VGG"246"JKIJ"XQNVCIG"GPIKPGGTKPI

FGJTCFWPKPUVKVWVGQHVGEJPQNQI[ FGRCTVOGPVQHGNGEVTKECNGPIKPGGTKPI VGG246JKIJXQNVCIGGPIKPGGTKPI FGJTFWP"KPUKWG"QH"GEJPQNQI[" FGRTOGP"QH"GNGETKEN"GPIKPGGTKPI" GG"46"JKIJ"XQNIG"GPIKPGGTKPI Resonant Transformers: The fig. (b) shows the equivalent circuit of a high voltage testing transformer (shown

More information

VE7CNF - 630m Antenna Matching Measurements Using an Oscilloscope

VE7CNF - 630m Antenna Matching Measurements Using an Oscilloscope VE7CNF - 630m Antenna Matching Measurements Using an Oscilloscope Toby Haynes October, 2016 1 Contents VE7CNF - 630m Antenna Matching Measurements Using an Oscilloscope... 1 Introduction... 1 References...

More information

AC Circuit. What is alternating current? What is an AC circuit?

AC Circuit. What is alternating current? What is an AC circuit? Chapter 21 Alternating Current Circuits and Electromagnetic Waves 1. Alternating Current 2. Resistor in an AC circuit 3. Capacitor in an AC circuit 4. Inductor in an AC circuit 5. RLC series circuit 6.

More information

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies 1 Definitions EMI = Electro Magnetic Interference EMC = Electro Magnetic Compatibility (No EMI) Three Components

More information

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by This is a study guide for Exam 4. You are expected to understand and be able to answer mathematical questions on the following topics. Chapter 32 Self-Induction and Induction While a battery creates an

More information

PHYSICS WORKSHEET CLASS : XII. Topic: Alternating current

PHYSICS WORKSHEET CLASS : XII. Topic: Alternating current PHYSICS WORKSHEET CLASS : XII Topic: Alternating current 1. What is mean by root mean square value of alternating current? 2. Distinguish between the terms effective value and peak value of an alternating

More information

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this 1 1. In a series LCR circuit the voltage across inductor, a capacitor and a resistor are 30 V, 30 V and 60 V respectively. What is the phase difference between applied voltage and current in the circuit?

More information

Design, Construction and Optimization of Tesla Coil

Design, Construction and Optimization of Tesla Coil Design, Construction and Optimization of Tesla Coil El-Aragi GM * Plasma Physics and Nuclear Fusion Department, Nuclear Research Center, Cairo, Egypt * Corresponding author: El-Aragi GM, Plasma Physics

More information

Experiment 2: Transients and Oscillations in RLC Circuits

Experiment 2: Transients and Oscillations in RLC Circuits Experiment 2: Transients and Oscillations in RLC Circuits Will Chemelewski Partner: Brian Enders TA: Nielsen See laboratory book #1 pages 5-7, data taken September 1, 2009 September 7, 2009 Abstract Transient

More information

Introduction. Inductors in AC Circuits.

Introduction. Inductors in AC Circuits. Module 3 AC Theory What you ll learn in Module 3. Section 3.1 Electromagnetic Induction. Magnetic Fields around Conductors. The Solenoid. Section 3.2 Inductance & Back e.m.f. The Unit of Inductance. Factors

More information

Study of Inductive and Capacitive Reactance and RLC Resonance

Study of Inductive and Capacitive Reactance and RLC Resonance Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave

More information

Over-voltage Trigger Device for Marx Generators

Over-voltage Trigger Device for Marx Generators Journal of the Korean Physical Society, Vol. 59, No. 6, December 2011, pp. 3602 3607 Over-voltage Trigger Device for Marx Generators M. Sack, R. Stängle and G. Müller Karlsruhe Institute of Technology

More information

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit AC Circuits INTRODUCTION The study of alternating current 1 (AC) in physics is very important as it has practical applications in our daily lives. As the name implies, the current and voltage change directions

More information

Physics Class 12 th NCERT Solutions

Physics Class 12 th NCERT Solutions Chapter.7 Alternating Current Class XII Subject Physics 7.1. A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. a) What is the rms value of current in the circuit? b) What is the net power consumed

More information

Laboratory Exercise 6 THE OSCILLOSCOPE

Laboratory Exercise 6 THE OSCILLOSCOPE Introduction Laboratory Exercise 6 THE OSCILLOSCOPE The aim of this exercise is to introduce you to the oscilloscope (often just called a scope), the most versatile and ubiquitous laboratory measuring

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 13.2.3 Leakage inductances + v 1 (t) i 1 (t) Φ l1 Φ M Φ l2 i 2 (t) + v 2 (t) Φ l1 Φ l2 i 1 (t)

More information

Exam 3 Solutions. ! r, the ratio is ( N ) ( ) ( )( ) 2. PHY2054 Spring Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar.

Exam 3 Solutions. ! r, the ratio is ( N ) ( ) ( )( ) 2. PHY2054 Spring Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar. PHY054 Spring 009 Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar. 7, 009 Exam 3 Solutions 1. Two coils (A and B) made out of the same wire are in a uniform magnetic field with the coil axes

More information

Chapter 11. Alternating Current

Chapter 11. Alternating Current Unit-2 ECE131 BEEE Chapter 11 Alternating Current Objectives After completing this chapter, you will be able to: Describe how an AC voltage is produced with an AC generator (alternator) Define alternation,

More information

Electronic Measurements & Instrumentation. 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance?

Electronic Measurements & Instrumentation. 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance? UNIT -6 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance? Ans: Maxwell's bridge, shown in Fig. 1.1, measures an unknown inductance in of standard arm offers

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

total j = BA, [1] = j [2] total

total j = BA, [1] = j [2] total Name: S.N.: Experiment 2 INDUCTANCE AND LR CIRCUITS SECTION: PARTNER: DATE: Objectives Estimate the inductance of the solenoid used for this experiment from the formula for a very long, thin, tightly wound

More information

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit [International Campus Lab] Objective Determine the behavior of resistors, capacitors, and inductors in DC and AC circuits. Theory ----------------------------- Reference -------------------------- Young

More information

Wireless Communication

Wireless Communication Equipment and Instruments Wireless Communication An oscilloscope, a signal generator, an LCR-meter, electronic components (see the table below), a container for components, and a Scotch tape. Component

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #11 Lab Report Inductance/Transformers Submission Date: 12/04/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By: Nick Haver & Alex Williams Station

More information

Maximum Power Transfer versus Efficiency in Mid-Range Wireless Power Transfer Systems

Maximum Power Transfer versus Efficiency in Mid-Range Wireless Power Transfer Systems 97 Maximum Power Transfer versus Efficiency in Mid-Range Wireless Power Transfer Systems Paulo J. Abatti, Sérgio F. Pichorim, and Caio M. de Miranda Graduate School of Electrical Engineering and Applied

More information

Flyback Converter for High Voltage Capacitor Charging

Flyback Converter for High Voltage Capacitor Charging Flyback Converter for High Voltage Capacitor Charging Tony Alfrey (tonyalfrey at earthlink dot net) A Flyback Converter is a type of switching power supply that may be used to generate an output voltage

More information

INTRODUCTION TO AC FILTERS AND RESONANCE

INTRODUCTION TO AC FILTERS AND RESONANCE AC Filters & Resonance 167 Name Date Partners INTRODUCTION TO AC FILTERS AND RESONANCE OBJECTIVES To understand the design of capacitive and inductive filters To understand resonance in circuits driven

More information

Conventional Paper-II-2011 Part-1A

Conventional Paper-II-2011 Part-1A Conventional Paper-II-2011 Part-1A 1(a) (b) (c) (d) (e) (f) (g) (h) The purpose of providing dummy coils in the armature of a DC machine is to: (A) Increase voltage induced (B) Decrease the armature resistance

More information

11. AC-resistances of capacitor and inductors: Reactances.

11. AC-resistances of capacitor and inductors: Reactances. 11. AC-resistances of capacitor and inductors: Reactances. Purpose: To study the behavior of the AC voltage signals across elements in a simple series connection of a resistor with an inductor and with

More information

DETECTING SHORTED TURNS

DETECTING SHORTED TURNS VOLTECH NOTES DETECTING SHORTED TURNS 104-029 issue 2 Page 1 of 8 1. Introduction Inductors are made up of a length of wire, usually wound around a core. The core is usually some type of magnetic material

More information

Physics Jonathan Dowling. Lecture 35: MON 16 NOV Electrical Oscillations, LC Circuits, Alternating Current II

Physics Jonathan Dowling. Lecture 35: MON 16 NOV Electrical Oscillations, LC Circuits, Alternating Current II hysics 2113 Jonathan Dowling Lecture 35: MON 16 NOV Electrical Oscillations, LC Circuits, Alternating Current II Damped LCR Oscillator Ideal LC circuit without resistance: oscillations go on forever; ω

More information

Spark-Gap Tesla Transformer

Spark-Gap Tesla Transformer Spark-Gap Tesla Transformer 1 Introduction I built two secondary coils: Small coil D25.4/H119 (Diameter=25.4mm and Height=119mm) and Medium coil D73/H228. I experimented with the spark gap, and observed

More information

Physics for Scientists & Engineers 2 2 = 1 LC. Review ( ) Review (2) Review (3) e! Rt. cos "t + # ( ) q = q max. Spring Semester 2005 Lecture 30 U E

Physics for Scientists & Engineers 2 2 = 1 LC. Review ( ) Review (2) Review (3) e! Rt. cos t + # ( ) q = q max. Spring Semester 2005 Lecture 30 U E Review hysics for Scientists & Engineers Spring Semester 005 Lecture 30! If we have a single loop RLC circuit, the charge in the circuit as a function of time is given by! Where q = q max e! Rt L cos "t

More information

High Voltage Engineering

High Voltage Engineering High Voltage Engineering Course Code: EE 2316 Prof. Dr. Magdi M. El-Saadawi www.saadawi1.net E-mail : saadawi1@gmail.com www.facebook.com/magdi.saadawi 1 Contents Chapter 1 Introduction to High Voltage

More information

SOME STUDIES ON HIGH FREQUENCY RESONANT INVERTER BASED INDUCTION HEATER AND THE CORRESPONDING CHOICE OF SECONDARY METALLIC OBJECTS

SOME STUDIES ON HIGH FREQUENCY RESONANT INVERTER BASED INDUCTION HEATER AND THE CORRESPONDING CHOICE OF SECONDARY METALLIC OBJECTS SOME STUDIES ON HIGH FREQUENCY RESONANT INVERTER BASED INDUCTION HEATER AND THE CORRESPONDING CHOICE OF SECONDARY METALLIC OBJECTS ATANU BANDYOPADHYAY Reg.No-2010DR0139, dt-09.11.2010 Synopsis of Thesis

More information

A simple and compact high-voltage switch mode power supply for streak cameras

A simple and compact high-voltage switch mode power supply for streak cameras Meas. Sci. Technol. 7 (1996) 1668 1672. Printed in the UK DESIGN NOTE A simple and compact high-voltage switch mode power supply for streak cameras M Shukla, V N Rai and H C Pant Laser Plasma Group, Center

More information

Experiment 18: Driven RLC Circuit

Experiment 18: Driven RLC Circuit MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 8: Driven LC Circuit OBJECTIVES To measure the resonance frequency and the quality factor of a driven LC circuit INTODUCTION

More information

About Q. About Q, Xtal Set Society, Inc

About Q. About Q, Xtal Set Society, Inc About Q, Xtal Set Society, Inc In the crystal radio hobby and in electronics in general Q can refer to a number of things: the Q of a coil, the Q of a circuit, the quality factor of some item, or the label

More information

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF AP Physics C Alternating Current Chapter Problems Sources of Alternating EMF 1. A 10 cm diameter loop of wire is oriented perpendicular to a 2.5 T magnetic field. What is the magnetic flux through the

More information

Optimal performance for Tesla transformers

Optimal performance for Tesla transformers REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 73 NUMBER 9 SEPTEMBER 00 Optimal performance for Tesla transformers Marco Denicolai High Voltage Institute Helsinki University of Technology PO Box 3000 FIN 0015

More information

Lab 2 Radio-frequency Coils and Construction

Lab 2 Radio-frequency Coils and Construction ab 2 Radio-frequency Coils and Construction Background: In order for an MR transmitter/receiver coil to work efficiently to excite and detect the precession of magnetization, the coil must be tuned to

More information

6 - Stage Marx Generator

6 - Stage Marx Generator 6 - Stage Marx Generator Specifications - 6-stage Marx generator has two capacitors per stage for the total of twelve capacitors - Each capacitor has 90 nf with the rating of 75 kv - Charging voltage used

More information

Generator Advanced Concepts

Generator Advanced Concepts Generator Advanced Concepts Common Topics, The Practical Side Machine Output Voltage Equation Pitch Harmonics Circulating Currents when Paralleling Reactances and Time Constants Three Generator Curves

More information

HIGH VOLTAGE ENGINEERING(FEEE6402) LECTURER-24

HIGH VOLTAGE ENGINEERING(FEEE6402) LECTURER-24 LECTURER-24 GENERATION OF HIGH ALTERNATING VOLTAGES When test voltage requirements are less than about 300kV, a single transformer can be used for test purposes. The impedance of the transformer should

More information

Final Research Update - Bimodal Tesla Coil

Final Research Update - Bimodal Tesla Coil Final Research Update - Bimodal Tesla Coil Collin Matthews Advisor: Dr. Jovan Jevtic 5/21/2013 Abstract The Tesla coil, invented in the 1890s, has found applications in areas as varied as radio-technology,

More information

Properties of Inductor and Applications

Properties of Inductor and Applications LABORATORY Experiment 3 Properties of Inductor and Applications 1. Objectives To investigate the properties of inductor for different types of magnetic material To calculate the resonant frequency of a

More information

Design of an 80kV, 40A Resonant SMPS for Pulsed Power Applications

Design of an 80kV, 40A Resonant SMPS for Pulsed Power Applications Design of an 8kV, 4A Resonant SMPS for Pulsed Power Applications Paul Nonn, Andrew Seltzman, Jay Anderson University of Wisconsin Madison Department of Physics IEEE IPMHVC June 4, 212 Three Phase Resonant

More information

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five PREVIEW COPY

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five PREVIEW COPY Oscillators Table of Contents Lesson One Lesson Two Lesson Three Introduction to Oscillators...3 Flip-Flops...19 Logic Clocks...37 Lesson Four Filters and Waveforms...53 Lesson Five Troubleshooting Oscillators...69

More information

Design and construction of double-blumlein HV pulse power supply

Design and construction of double-blumlein HV pulse power supply Sādhan ā, Vol. 26, Part 5, October 2001, pp. 475 484. Printed in India Design and construction of double-blumlein HV pulse power supply DEEPAK K GUPTA and P I JOHN Institute for Plasma Research, Bhat,

More information

Experiment 7: Undriven & Driven RLC Circuits

Experiment 7: Undriven & Driven RLC Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 OBJECTIVES Experiment 7: Undriven & Driven RLC Circuits 1. To explore the time dependent behavior of RLC Circuits, both driven

More information

Iron Powder Core Selection For RF Power Applications. Jim Cox Micrometals, Inc. Anaheim, CA

Iron Powder Core Selection For RF Power Applications. Jim Cox Micrometals, Inc. Anaheim, CA HOME APPLICATION NOTES Iron Powder Core Selection For RF Power Applications Jim Cox Micrometals, Inc. Anaheim, CA Purpose: The purpose of this article is to present new information that will allow the

More information

Lecture 36 Measurements of High Voltages (cont) (Refer Slide Time: 00:14)

Lecture 36 Measurements of High Voltages (cont) (Refer Slide Time: 00:14) Advances in UHV Transmission and Distribution Prof. B Subba Reddy Department of High Voltage Engg (Electrical Engineering) Indian Institute of Science, Bangalore Lecture 36 Measurements of High Voltages

More information

LM78S40 Switching Voltage Regulator Applications

LM78S40 Switching Voltage Regulator Applications LM78S40 Switching Voltage Regulator Applications Contents Introduction Principle of Operation Architecture Analysis Design Inductor Design Transistor and Diode Selection Capacitor Selection EMI Design

More information

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc.

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 30-7 AC Circuits with AC Source Resistors, capacitors, and inductors have different phase relationships between current and voltage

More information

Increasing arc length Current [A]

Increasing arc length Current [A] Lecture 10 Arc Welding Power Source II This chapter presents the dynamic characteristics of welding power sources and classes of insulation used in windings and cables of power sources. The concept of

More information

CHAPTER 6: ALTERNATING CURRENT

CHAPTER 6: ALTERNATING CURRENT CHAPTER 6: ALTERNATING CURRENT PSPM II 2005/2006 NO. 12(C) 12. (c) An ac generator with rms voltage 240 V is connected to a RC circuit. The rms current in the circuit is 1.5 A and leads the voltage by

More information

CHAPTER 2. Basic Concepts, Three-Phase Review, and Per Unit

CHAPTER 2. Basic Concepts, Three-Phase Review, and Per Unit CHAPTER 2 Basic Concepts, Three-Phase Review, and Per Unit 1 AC power versus DC power DC system: - Power delivered to the load does not fluctuate. - If the transmission line is long power is lost in the

More information

METAL DETECTOR USING DIFFERENCE RESONATOR

METAL DETECTOR USING DIFFERENCE RESONATOR METAL DETECTOR USING DIFFERENCE RESONATOR RAJU BADDI Here is described a simple metal detector using a difference resonator and a couple of transistors. It can detect conductors(metals) in its vicinity

More information

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 04, 2014 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 04, 2014 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 04, 2014 ISSN (online): 2321-0613 Conditioning Monitoring of Transformer Using Sweep Frequency Response for Winding Deformation

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 ISSN ISSN 2229-5518 1102 Resonant Inductive Power Transfer for Wireless Sensor Network Nodes Rohith R, Dr. Susan R J Abstract This paper presents the experimental study of Wireless Power Transfer through resonant

More information

ELECTRICAL CIRCUITS LABORATORY MANUAL (II SEMESTER)

ELECTRICAL CIRCUITS LABORATORY MANUAL (II SEMESTER) ELECTRICAL CIRCUITS LABORATORY MANUAL (II SEMESTER) LIST OF EXPERIMENTS. Verification of Ohm s laws and Kirchhoff s laws. 2. Verification of Thevenin s and Norton s Theorem. 3. Verification of Superposition

More information

Energy in Electromagnetic Waves

Energy in Electromagnetic Waves OpenStax-CNX module: m42446 1 Energy in Electromagnetic Waves * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain how the energy

More information

Laboratory Project 2: Electromagnetic Projectile Launcher

Laboratory Project 2: Electromagnetic Projectile Launcher 2240 Laboratory Project 2: Electromagnetic Projectile Launcher K. Durney and N. E. Cotter Electrical and Computer Engineering Department University of Utah Salt Lake City, UT 84112 Abstract-You will build

More information

The Lightning Event. White Paper

The Lightning Event. White Paper The Lightning Event White Paper The Lightning Event Surge Protection Solutions for PTC 1 The Lightning Event There are volumes of information available on what we believe lightning is and how we think

More information

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to E2.1 Lab E2: B-field of a Solenoid In this lab, we will explore the magnetic field created by a solenoid. First, we must review some basic electromagnetic theory. The magnetic flux over some area A is

More information

PHY 123/253 Shot Noise

PHY 123/253 Shot Noise PHY 123/253 Shot Noise HISTORY Complete Pre- Lab before starting this experiment In 1918, experimental physicist Walter Scottky working in the research lab at Siemens was investigating the origins of noise

More information

PRUDENT PRACTICES TO IMPROVE POWER FACTOR AND REDUCE POWER LOSS.

PRUDENT PRACTICES TO IMPROVE POWER FACTOR AND REDUCE POWER LOSS. 1 PRUDENT PRACTICES TO IMPROVE POWER FACTOR AND REDUCE POWER LOSS. DEFINATIONS Working /Active Power: Normally measured in kilowatts (kw). It does the "work" for the system--providing the motion, torque,

More information

Electromagnetic Can Crusher Victoria Meadows and Matthew Kundrock Advisor: Dr. Gore. Introduction

Electromagnetic Can Crusher Victoria Meadows and Matthew Kundrock Advisor: Dr. Gore. Introduction Electromagnetic Can Crusher Victoria Meadows and Matthew Kundrock Advisor: Dr. Gore Introduction Our Capstone Project was to build an Electromagnetic Can Crusher, a device that will crush an aluminum can

More information

Units. In the following formulae all lengths are expressed in centimeters. The inductance calculated will be in micro-henries = 10-6 henry.

Units. In the following formulae all lengths are expressed in centimeters. The inductance calculated will be in micro-henries = 10-6 henry. INDUCTANCE Units. In the following formulae all lengths are expressed in centimeters. The inductance calculated will be in micro-henries = 10-6 henry. Long straight round wire. If l is the length; d, the

More information

CHAPTER IV DESIGN OF TESLA COIL

CHAPTER IV DESIGN OF TESLA COIL CHAPTER IV DESIGN OF TESLA COIL In this chapter, the design and calculation regarding spark gap tesla coil is shown as well as the design for the voltage regulator and the zero voltage switching driver

More information

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University 1. OBJECTIVES Introduction to the concept of resonance Observing resonance

More information

Chapter 5 Lumped RLC Model 5 1 LUMPED RLC MODEL

Chapter 5 Lumped RLC Model 5 1 LUMPED RLC MODEL Chapter 5 Lumped RLC Model 5 1 LUMPED RLC MODEL We are now at the point of looking at models for the Extra coil. I have already discussed the conflict between the Corum brothers and most of the Tesla coil

More information

Experiment VI: The LRC Circuit and Resonance

Experiment VI: The LRC Circuit and Resonance Experiment VI: The ircuit and esonance I. eferences Halliday, esnick and Krane, Physics, Vol., 4th Ed., hapters 38,39 Purcell, Electricity and Magnetism, hapter 7,8 II. Equipment Digital Oscilloscope Digital

More information

ROEVER ENGINEERING COLLEGE ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

ROEVER ENGINEERING COLLEGE ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING ROEVER ENGINEERING COLLEGE ELAMBALUR, PERAMBALUR 621 212 DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING EE1003 HIGH VOLTAGE ENGINEERING QUESTION BANK UNIT-I OVER VOLTAGES IN ELECTRICAL POWER SYSTEM

More information

RF Energy Harvesting for Low Power Electronic Devices

RF Energy Harvesting for Low Power Electronic Devices RF Energy Harvesting for Low Power Electronic Devices Student project Kaloyan A. Mihaylov Abstract Different methods for RF energy harvesting from radio transmitters with working frequency of up to 108

More information

his report is my recent analysis of the EH antenna using the Pspice program and considering the antenna as a set of circuit elements.

his report is my recent analysis of the EH antenna using the Pspice program and considering the antenna as a set of circuit elements. his report is my recent analysis of the EH antenna using the Pspice program and considering the antenna as a set of circuit elements. The antenna can be considered as a set of circuit elements because

More information

Chapter 2. The Fundamentals of Electronics: A Review

Chapter 2. The Fundamentals of Electronics: A Review Chapter 2 The Fundamentals of Electronics: A Review Topics Covered 2-1: Gain, Attenuation, and Decibels 2-2: Tuned Circuits 2-3: Filters 2-4: Fourier Theory 2-1: Gain, Attenuation, and Decibels Most circuits

More information

EC Transmission Lines And Waveguides

EC Transmission Lines And Waveguides EC6503 - Transmission Lines And Waveguides UNIT I - TRANSMISSION LINE THEORY A line of cascaded T sections & Transmission lines - General Solution, Physical Significance of the Equations 1. Define Characteristic

More information

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 10. Electronic Circuits

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 10. Electronic Circuits Laboratory Section: Last Revised on September 21, 2016 Partners Names: Grade: EXPERIMENT 10 Electronic Circuits 1. Pre-Laboratory Work [2 pts] 1. How are you going to determine the capacitance of the unknown

More information

Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8. Look over Chapter 21 sections Examples PHYS 2212 PHYS 1112

Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8. Look over Chapter 21 sections Examples PHYS 2212 PHYS 1112 PHYS 2212 Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8 PHYS 1112 Look over Chapter 21 sections 11-14 Examples 16-18 Good Things To Know 1) How AC generators work. 2) How to find the

More information

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit.

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit. I.E.S-(Conv.)-1995 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Some useful data: Electron charge: 1.6 10 19 Coulomb Free space permeability: 4 10 7 H/m Free space permittivity: 8.85 pf/m Velocity

More information

Core Technology Group Application Note 1 AN-1

Core Technology Group Application Note 1 AN-1 Measuring the Impedance of Inductors and Transformers. John F. Iannuzzi Introduction In many cases it is necessary to characterize the impedance of inductors and transformers. For instance, power supply

More information

3. What is hysteresis loss? Also mention a method to minimize the loss. (N-11, N-12)

3. What is hysteresis loss? Also mention a method to minimize the loss. (N-11, N-12) DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE 6401 ELECTRICAL MACHINES I UNIT I : MAGNETIC CIRCUITS AND MAGNETIC MATERIALS Part A (2 Marks) 1. List

More information

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents. Lab 10. AC Circuits Goals To show that AC voltages cannot generally be added without accounting for their phase relationships. That is, one must account for how they vary in time with respect to one another.

More information

Impedance, Resonance, and Filters. Al Penney VO1NO

Impedance, Resonance, and Filters. Al Penney VO1NO Impedance, Resonance, and Filters A Quick Review Before discussing Impedance, we must first understand capacitive and inductive reactance. Reactance Reactance is the opposition to the flow of Alternating

More information

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents. Lab 10. AC Circuits Goals To show that AC voltages cannot generally be added without accounting for their phase relationships. That is, one must account for how they vary in time with respect to one another.

More information

Resonance in Circuits

Resonance in Circuits Resonance in Circuits Purpose: To map out the analogy between mechanical and electronic resonant systems To discover how relative phase depends on driving frequency To gain experience setting up circuits

More information