Initial investigation using statistical process control for quality control of accelerator beam steering

Size: px
Start display at page:

Download "Initial investigation using statistical process control for quality control of accelerator beam steering"

Transcription

1 RESEARCH Open Access Initial investigation using statistical process control for quality control of accelerator beam steering Charles M Able *, Carnell J Hampton, Alan H Baydush and Michael T Munley Abstract Background: This study seeks to increase clinical operational efficiency and accelerator beam consistency by retrospectively investigating the application of statistical process control (SPC) to linear accelerator beam steering parameters to determine the utility of such a methodology in detecting changes prior to equipment failure (interlocks actuated). Methods: Steering coil currents (SCC) for the transverse and radial planes are set such that a reproducibly useful photon or electron beam is available. SCC are sampled and stored in the control console computer each day during the morning warm-up. The transverse and radial - positioning and angle SCC for photon beam energies were evaluated using average and range (Xbar-R) process control charts (PCC). The weekly average and range values (subgroup n = 5) for each steering coil were used to develop the PCC. SCC from September 2009 (annual calibration) until two weeks following a beam steering failure in June 2010 were evaluated. PCC limits were calculated using the first twenty subgroups. Appropriate action limits were developed using conventional SPC guidelines. Results: PCC high-alarm action limit was set at 6 standard deviations from the mean. A value exceeding this limit would require beam scanning and evaluation by the physicist and engineer. Two low alarms were used to indicate negative trends. Alarms received following establishment of limits (week 20) are indicative of a non-random cause for deviation (Xbar chart) and/or an uncontrolled process (R chart). Transverse angle SCC for 6 MV and 15 MV indicated a high-alarm 90 and 108 days prior to equipment failure respectively. A downward trend in this parameter continued, with high-alarm, until failure. Transverse position and radial angle SCC for 6 and 15 MV indicated low-alarms starting as early as 124 and 116 days prior to failure, respectively. Conclusion: Radiotherapy clinical efficiency and accelerator beam consistency may be improved by instituting SPC methods to monitor the beam steering process and detect abnormal changes prior to equipment failure. PACS numbers: 87.55n, 87.55qr, 87.56bd Keywords: Quality control, quality assurance, statistical process control, radiation therapy I. Background Radiation beam uniformity is one of a number of characteristics required for high energy x-ray beams to be useful in radiation therapy treatment. Verification of radiation beam uniformity in a plane perpendicular to the direction of the beam is particularly important for linear accelerators [1]. Uniformity must be maintained * Correspondence: cable@wakehealth.edu Department of Radiation Oncology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA independent of the orientation or direction of the beam. Uniformity can be evaluated using various methods depending on the accelerator manufacturer s specifications. Typically the largest field size is evaluated at a particular depth in water and uniformity is specified over the central 80% of the beam. Figure 1 is an idealized two dimensional plot of radiation beam intensity across a typical accelerator photon beam. Beam uniformity is specified in terms of flatness and symmetry. Acceptable beam flatness and symmetry is produced by 2011 Able et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2 Able et al. Radiation Oncology 2011, 6:180 Page 2 of 9 Figure 1 Idealized radiation beam intensity profile of a typical accelerator produced photon beam. Beam flatness is the maximum plus and minus variation from the mean beam intensity within the central 80% area of full width half maximum intensity and linear symmetry is defined as the maximum variation of points symmetric to the central axis. the combination of proper beam steering and a carefully designed filter. The accelerated electron beam is steered to a specific location (position) and exit orientation (angle) as it strikes the target (Figure 2). Beam steering is accomplished using two sets of steering coils. One set is located on the solenoid of the waveguide (Figure 2) and the second set is located in the electron beam transport section prior to the beam striking the target (not shown in Figure 2[2]. The accelerator system evaluates beam uniformity internally using the ion chambers located below the flattening filter. The beam current measured in each Figure 2 Schematic diagram of a typical medical linear accelerator. (reproduced from Van Dyk, J. The modern technology of radiation oncology Madison, WI, USA: Medical Physics Publishing; p1073.)

3 Page 3 of 9 quadrant is compared and any asymmetry exceeding the specification results in a system interlock. An active system interlock takes the accelerator out of service until the problem is resolved. This interlock system prevents hazards that can cause serious injury to the patient or damage to the equipment. While the interlock system is extremely important, major interlocks disrupt workflow and retard clinical efficiency by forcing machine down time where patients can not be treated. Inthisstudyweseektocharacterizetheprocessof medical linear accelerator beam steering and demonstrate, retrospectively, the ability to provide a level of control using the statistical process control (SPC) methodology [3-11]. For a generalized system, process performance data varies naturally. The information in the variation of a process is important for an understanding of how the process is performing. SPC is primarily a tool for understanding normal and abnormal variations [3,4]. SPC is used globally in manufacturing and business management to provide an ongoing evaluation of the stability and/or variability of a process [3,4]. Its success rests upon the fact that any process can be mapped by a series of inputs and outputs. Our ability to measure and effectively evaluate the variation of a critical subset of these inputs and outputs can provide an objective basis for timely intervention to maintain a high quality product - the desired beam flatness and symmetry for a medical linear accelerator. The work reported here test the hypothesis that SPC can ensure consistency of beam uniformity and indicate when intervention is required to correct non-uniformity prior to the actuation of a system interlock (thus saving valuable machine down time). II. Materials and Methods Monitoring of radiation beam flatness and symmetry is critical to the quality of external beam radiation treatment delivery. It is possible to produce a beam with flatness that is within ± 3% of the central axis dose and has symmetry that does not exceed 2% across the central 80% of the defined field dimensions (Figure 1) [12]. Various manufacturers define flatness and symmetry differently. One common definition (Varian Medical Systems, Palo Alto, CA) of beam flatness is the maximum plus and minus variation from the mean beam intensity within the central 80% area of full width half maximum intensity. Likewise, linear symmetry is defined as the maximum variation of points symmetric to the central axis [13]. Modern linear accelerators utilize interlock systems to determine if predefined limits have been exceeded and will not allow the system to continue to operate once these limits are reached. The accelerator system used in this study, a 21 EX Varian C-series linac (Varian Medical Systems, Palo Alto, CA), performs a self-diagnostic test and creates Morning Checkout (MC) files during the initial warm-up at the start of each treatment day. Morning warm-up measurements are typically made at a single standard gantry angle and the accelerator feedback system is designed to maintain this setting as the gantry angle varies. The MC files are stored on the console computer but are not used for any specific analysis. Steering coil currents (amperes) for the transverse and radial plane position and angle steering coil currents are stored in the MC files. The Varian 21EX at one of our regional affiliates experienced down time related to a water leak in the gantry stand. A fine crack in the water circulation tube dripped water on the electrical harness. This leak had persisted for months based on the amount of water found in the bottom of the stand and the fact that our records did not indicate any notable change in the water level. The leak was detected when there was an EXQT (total asymmetry exceeds 2% of symmetrical adjustment) interlock fault that would not clear. This interlock is an indication that the beam symmetry is outside specifications. Following repair, all beams were scanned and adjusted to ensure beam flatness, symmetry, and absolute dose outputs were within operating specifications. Data from September 2009 (annual medical linear accelerator calibration) until two weeks following the beam steering failure in June 2010 were evaluated. The steering coil current (SCC) data were downloaded and manually extracted to Excel file format. The transverse and radial - positioning and angle SCC for photon beam energies were evaluated using average and range (Xbar- R) process behavior charts (Mintab v16, Minitab, Inc., State College, PA). The evaluation was limited to 6 MV and 15 MV photon beam data only. A. Process Control Charts (PCC) To monitor a process, typically two control charts are created: 1) an average chart for subgroup averages, x, and 2) a range chart for subgroup ranges, R. The centerlineforthesubgroupaveragechartisx, whichisthe average of all the subgroup averages. The centerline for the range chart is R, which is the average of all the subgroup ranges. The daily recorded SCC (transverse angle, transverse position, radial angle, and radial position) values were regrouped into nominal weekly values (subgroup of size n = 5 days/week). Values from the first 20 weeks were used to calculate the limits (upper control limit (UCL) and lower control limit (LCL)). The average chart will have an upper threshold (A u ), centerline (A c ) and lower threshold (A l ) [6,7] defined as A u = x +6 R =UCL (1) d 2 n

4 Page 4 of 9 [( ) ] A c = x = dt /T t=1...t where T = 20 and d t = mean SCC for treatment week number (t) A l = x 6 R =LCL d 2 n where the factor 6 sets the number of standard deviations for the limit margins and n is equal to 5. Similarly, the range chart will have an upper threshold (R u ), centerline (R c ) and lower threshold (R l ) [6,7] defined as ( R u = 1+6 d ) 3 R =UCL (2) d 2 R c = R =[( R t ) t=1...t ]/T where R t = d tmax d tmin where T = 20 and d tmax and d tmin = maximum and minimum SCC for treatment week number (t) ( R l = 1 6 d ) 3 R =LCL d 2 The quantities d 2 and d 3 are correction factors that reflect the non-normality of the distribution of range values and also depend on the subgroup size n. The range limits have an asymmetric distribution about the mean range because the range is a positively skewed value and cannot be less than zero. It can be seen from equations (1) and (2) that only the quantities x, R and n need to be computed to set action thresholds for the process control charts. The implication of exceeding the average or range chart limits on the process is thoroughly presented in SPC literature and an extensive review is beyond the scope of this work [3-7]. In general, data that exceeds the average chart limits suggest a special or non-random cause and/or an uncontrolled process, while exceeding the range chart limits indicates a process that is uncontrolled. The control limits (UCL and LCL) were set using ± 6 standard deviations from the mean (equations 1 and 2). The chance of a random normal value exceeding the limits is extremely small. Typically limits are set using 3 standard deviations encompassing 99.7% of the normal distribution [4,6,8]. The cost of intervention (machine downtime, physics and engineering man-hours, scanning equipment, etc.) is considerable and a higher threshold limit appeared to be reasonable. Setting the limits at ± 6 standard deviations encompasses % of the normal distribution. The probability of a Type I error (a signal indicating an alarm incorrectly) is reduced and therefore the cost of unwarranted intervention is reduced as well. While there is an increase in the probability of a Type II error (a signal indicating there is no alarm when in fact a problem exist), this risk is balanced and offset by the existence of the interlock system. The data analysis was also performed using the 3 standard deviation control limits to gather a baseline understanding of how changing the limits may impact the investigation of or intervention in the process. There are a number of standard tests other than the UCL and LCL that can be applied to PCC that assist in detecting a change in the process resulting from special causes or conditions [3,4], a. k number of points in a row, on the same side of the center line b. k number of points in a row, all increasing or decreasing c. k number of points in a row, alternating up and down d. k out of k+1 points,> 2 standard deviations from the center line on the same side e. k out of k+1 points > 1 standard deviation from the center line on the same side f. k number of points in a row within 1 standard deviation from the center line on either side g. k number of points in a row > 1 standard deviation from the center line on either side These can be considered as low-alarm or warning indicators. Low-alarm indicators represent a trend with a specific probability. Determining which low-alarm indicators to apply can be decided by using historical data to create a run chart. A run chart is simply a plot of individual or subgroup data points which allows the investigator to broadly characterize the process data. Reviewing the characteristics of the process data sampled can assist in determining which low alarm indicators may be most useful. Two low-alarm indicators (a & d) were used in this study: 1) the observation of nine consecutive weekly samples on one side of the mean and 2) the observation of two out of three consecutive weekly samples greater than two standard deviations from the mean but not exceeding the UCL or LCL. For the first low-alarm indicator, the probability of a single value on one side of the mean but not exceeding the limit is 0.5. The probability of nine in a row is (0.5) 9 or ~ The chance of this occurring is similar to a single value exceeding 3 standard deviations. For the second low-alarm indicator, the probability of a single value on one side of the mean being less than two standard deviations from the mean is Also the probability of a single value on one side of the mean being greater than two standard

5 Page 5 of 9 Figure 3 Process control charts (average and range charts) for 6 MV photon beam transverse angle steering coil current. Note: Red data points indicate an alarm has been signaled. Valid alarms occur after the first 20 data points which establish the calculated control limits. deviations from the mean is The probability for this low-alarm is then ( ) or This alarm indicates a lack of process control and an acute shift in the mean. It is a powerful warning indicator whose probability of occurrence is smaller than that of a single value exceeding 3 standard deviations. III. Results and discussion Figure 3 and 4 are the SPC results of the transverse angle SCC for the 6 MV and 15 MV beams, respectively. The high-alarm action limit is indicated by a 1 below a red data point. The low-alarms are indicated by a 2 [nineweeklysamplesononesideofthemean]ora5 Figure 4 Process control charts (average and range charts) for 15 MV photon beam transverse angle steering coil current. Note: Red data points indicate an alarm has been signaled. Valid alarms occur after the first 20 data points which establish the calculated control limits.

6 Page 6 of 9 Figure 5 Process control charts (average and range charts) for 6 MV photon beam transverse position steering coil current. Note: Red data points indicate an alarm has been signaled. Valid alarms occur after the first 20 data points which establish the calculated control limits. [two out of three consecutive weekly samples greater than two standard deviations from the mean] below a red data point respectively. SPC analysis of transverse angle SCC for 6 MV and 15 MV indicated a high-alarm on April 14 th and March 13 th - 90 and 108 days prior to failure, respectively. In each case, a downward trend in this parameter continued, with high-alarm, until failure. Transverse position (Figure 5 and 6) and radial angle SCC for both energies indicated a low-alarm starting in March or April. Transverse position SCC results show sensitivity similar to the transverse angle results. Analysis of the SCC in the radial plane did not indicate the same sensitivity as early as the SCC in the transverse plane. All the results are summarized in Figure 7 and show the number of days prior to failure that an alarm was triggered. Figure 6 Process control charts (average and range charts) for 15 MV photon beam transverse position steering coil current. Note: Red data points indicate an alarm has been signaled. Valid alarms occur after the first 20 data points which establish the calculated control limits.

7 Page 7 of 9 Figure 7 Process control chart warning results. Bars indicate the number of days prior to failure that an action level threshold was first triggered for each of the monitored steering coil parameters. A - High Alarm triggered indicating parameters exceeding ± 6 standard deviations of the mean weekly sample value. B - Low alarm indicating the observation of nine consecutive weekly samples on one side of the mean. C - Low alarm indicating the observation of two out of three consecutive weekly samples greater than two standard deviations from the mean but not exceeding the high alarm limit.

8 Page 8 of 9 Comparison of PCC using control limits of 3 standard deviations versus 6 standard deviations primarily indicates: a. Low alarms are changed to high alarms requiring intervention. b. There is an increase in the number of Type I errors observed. The result of the comparison supports the use of 6 standard deviation control limits for monitoring the beam steering process. Subsequent to the repair, continued monitoring using SPC requires the calculation of new limits based on the newly established operating SCC. The first twenty subgroups would be used to determine new limits and SPC then continues to monitor and evaluate process variation. These results indicate that evaluation of beam steering currents using SPC would have provided an early indication of deviations in the current values prior to the actuation of the interlock and required unscheduled downtime. Results of the 6 MV transverse angle SCC results show the first low-alarm (5 - two out of three points greater than two standard deviations) on March 15, which was 104 days prior to failure with a highalarm two weeks later. The low-alarm was fifteen weeks prior to actuation of the system interlock. The 15 MV transverse angle SCC show the first low-alarm (5- two out of three points greater than two standard deviations) onmarch3,whichwas116dayspriortofailure,followed by a high-alarm one week later. These alarms confirm the diagnosis that the water leak and resulting damage persisted for a relatively long period of time. Investigation of this alarm would have initiated sixteen weeks prior to the actuation of the system interlock. The radial angle and radial position low-alarms gave the earliest warnings (124 days). In addition, the low-alarm indicators were effective in signaling a change in the established operating SCC of both energies. Overall, the low-alarm indicating two out of three points greater than two standard deviations was most effective in predicting a permanent shift in the mean SCC values. Further study of additional low-alarm indicators may establish which alarms are most predictive of a clinically significant change in beam steering. Typically, standard control limits are calculated using three standard deviations to balance the cost-benefit as well as the Type I and II error probability. The use of six standard deviations for calculating the control chart limits was particularly economical in our study. The physics and engineering effort required to investigate a Type I error is significant. We believe a high threshold for action is desirable compared to current cost of unwarranted intervention or investigation. The use of digital control systems in medical linear accelerators make them ideal for the incorporation of a SPC subsystem that can use the performance data generated to monitor consistency of operation. Quality of patient treatment delivery can be improved by ensuring consistent operating parameters relative to the baseline values determined at the time of accelerator commissioning [14]. The use of an SPC subsystem is non-invasive and simply samples data already generated by the accelerator. While SPC could be used to alert the physicist and service engineer to a change in operating parameters, any use as an active control system would need to have FDA clearance provided by the manufacturer. IV. Conclusion The results of this study suggest that the use of the investigated SPC methodology with a six standard deviation high-alarm action limit would have prompted an investigation of the beam steering process prior to a significant change in beam flatness and symmetry and made detection of the water leak responsible for changes in SCC performance more likely. The impact of machine downtime on clinical operational efficiency would be minimized by the scheduling of planned maintenance to be performed without interruption of the clinic treatment schedule. System interlocks provide an important safety function to safeguard the equipment from catastrophic failure and prevent unsafe clinical use when operating specifications are exceeded. SPC could be used to detect nonstandard functioning of beam flatness and symmetry prior to these measurements creating beam interrupts and altering treatment times and schedules. This early warning alert could ultimately improve treatment delivery and clinical operational efficiency. The use of SPC to evaluate the operating parameters of critical accelerator systems has the potential to improve the quality of accelerator maintenance, treatment delivery and ultimately patient safety. SPC could be expanded to help provide a smart-accelerator system that communicates non-standard functioning of systems directly to the local service representative and physicist if automated. Authors contributions CMA designed the study, performed the data analysis and is the lead editor of the manuscript. CJH assisted in study design, data analysis as well as insight into the application of statistical process control methods. AHB performed the data capture and processing prior to the application of statistical process control and editing of the manuscript. MTM provided institutional support and played a pivotal role in manuscript editing for intellectual content. All the authors have read and approved the final manuscript.

9 Page 9 of 9 Competing interests This project was partially supported by a grant from Varian Medical Systems, Inc. Received: 7 November 2011 Accepted: 28 December 2011 Published: 28 December 2011 References 1. NCRP: Dosimetry of x-ray and gamma-ray beams for radiation therapy in the energy range 10 kev to 50 Mev. 1981, 109, Report No. 69. Bethesda, MD: National Council on Radiation Protection and Measurements. 2. Van Dyk J: The modern technology of radiation oncology. Madison, WI, USA: Medical Physics Publishing; 1999, Stapenhurst T: Mastering statistical process control. Jordan Hill, Oxford, UK: Butterworth-Heinemann; Oakland JS: Statistical process control. Jordan Hill, Oxford, UK: Butterworth- Heinemann; Burr IW: The effect of non-normality on constants for Xbar and R Charts. Industrial Quality Control 1996, Manual on quality control of materials. American Society for Testing and Materials;Philadelphia, PA, USA; Wheeler DJ: Normality and the process control chart. Knoxville. TN, USA: SPC Press; Neubauer DV: Manual on Presentation of data and control chart analysis. West Conshohocken, PA, USA: ASTM International; Wheeler DJ, Chambers DS: Understanding statistical process control. Knoxville, TN, USA: SPC Press; Able C, Bright M: Quality control of external beam treatment delivery: mechanical parameters [abstract]. Med Phys 2009, 36: Able CM, Bright M, Frizzell B: Quality Control of High-Dose-Rate Brachytherapy: Treatment Delivery Analysis Using Statistical Process Control [abstract]. Brachytherapy 2010, 9:S64-S Kahn F: The Physics of Radiation Therapy. Philadelphia, PA, USA: Lippincott Williams & Wilkins; Varian Medical Systems: High Energy Clinac Customer Acceptance Procedure, Revision E. Milpitas, CA, USA; Klein E, Hanley J, Bayouth J, Yin F, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B, Liu C, Sandin C, Holmes T: Task Group 142: Quality assurance of medical accelerators. Med Phys 36(9): doi: / x Cite this article as: Able et al.: Initial investigation using statistical process control for quality control of accelerator beam steering. Radiation Oncology :180. Submit your next manuscript to BioMed Central and take full advantage of: Convenient online submission Thorough peer review No space constraints or color figure charges Immediate publication on acceptance Inclusion in PubMed, CAS, Scopus and Google Scholar Research which is freely available for redistribution Submit your manuscript at

Development of the Use of Amorphous Silicon (ASi) Electronic Portal Imaging Devices as a Physics Tool for Routine Linear Accelerator QA

Development of the Use of Amorphous Silicon (ASi) Electronic Portal Imaging Devices as a Physics Tool for Routine Linear Accelerator QA Development of the Use of Amorphous Silicon (ASi) Electronic Portal Imaging Devices as a Physics Tool for Routine Linear Accelerator QA Gena M.A.H 1, Ahmed L.El-Attar 2, Elbadry M. Zahran 3, Hany El-Gamal

More information

IQM Detector Characteristics: Signal reproducibility

IQM Detector Characteristics: Signal reproducibility The Integral Quality Monitor (IQM) System is a real-time beam verification system that monitors the accuracy of radiation delivery throughout each patient treatment without any user interaction. IQM continuously

More information

Evaluation of dosimetry parameters of photons and electron beams using a linear ionization chamber array

Evaluation of dosimetry parameters of photons and electron beams using a linear ionization chamber array Evaluation of dosimetry parameters of photons and electron beams using a linear ionization chamber array José A. Bencomo, * Geoffrey Ibbott, Seungsoo Lee, and Joao A. Borges Department of Radiation Physics.

More information

7/23/2014. Acknowledgements. Implementing a new digital medical accelerator. New Generation of Medical Accelerators

7/23/2014. Acknowledgements. Implementing a new digital medical accelerator. New Generation of Medical Accelerators Implementing a new digital medical accelerator John Wong Johns Hopkins University AAPM, Austin, 2014 Acknowledgements Yin Zhang, Ken Wang, Kai Ding (Commissioning - JHU) Esteban Velarde, Joe Moore (QA

More information

A positioning QA procedure for 2D/2D (kv/mv) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup

A positioning QA procedure for 2D/2D (kv/mv) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 10, NUMBER 4, FALL 2009 A positioning QA procedure for 2D/2D (kv/mv) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup Huaiqun Guan,

More information

3D Diode Array Commissioning: Building Confidence in 3D QA Technology

3D Diode Array Commissioning: Building Confidence in 3D QA Technology 3D Diode Array Commissioning: Building Confidence in 3D QA Technology Caroline Yount, MS CANCER CENTER 3D QA The complex three-dimensional (3D) shapes of intensity modulated radiation therapy (IMRT) dose

More information

SUBCHAPTER 14. THERAPEUTIC INSTALLATIONS

SUBCHAPTER 14. THERAPEUTIC INSTALLATIONS SUBCHAPTER 14. THERAPEUTIC INSTALLATIONS 7:28-14.1 Scope (a) This subchapter covers therapeutic installations used in the healing arts. These therapeutic installations include x-ray, accelerator and teletherapy

More information

A proposed method for linear accelerator photon beam steering using EPID

A proposed method for linear accelerator photon beam steering using EPID Received: 13 January 2018 Revised: 11 May 2018 Accepted: 29 June 2018 DOI: 10.1002/acm2.12419 RADIATION ONCOLOGY PHYSICS A proposed method for linear accelerator photon beam steering using EPID Michael

More information

The Current State of EPID-Based Linear Accelerator Quality Assurance. Disclosures. Purpose of this First Talk 8/3/2017

The Current State of EPID-Based Linear Accelerator Quality Assurance. Disclosures. Purpose of this First Talk 8/3/2017 The Current State of EPID-Based Linear Accelerator Quality Assurance Timothy Ritter, PhD, DABR, FAAPM 1 Disclosures Employed by the Veterans Health Administration Faculty appointment with the University

More information

A new approach to measure dwell position inaccuracy in HDR ring applicators quantification and corrective QA

A new approach to measure dwell position inaccuracy in HDR ring applicators quantification and corrective QA JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 12, NUMBER 1, WINTER 2010 A new approach to measure dwell position inaccuracy in HDR ring applicators quantification and corrective QA Abdul Qadir Jangda,

More information

A diagnostic tool for basic daily quality assurance of a tomotherapy Hi Art machine

A diagnostic tool for basic daily quality assurance of a tomotherapy Hi Art machine JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 10, NUMBER 4, FALL 2009 A diagnostic tool for basic daily quality assurance of a tomotherapy Hi Art machine Iwein Van de Vondel, 1 Koen Tournel, 1 Dirk

More information

CyberKnife Iris Beam QA using Fluence Divergence

CyberKnife Iris Beam QA using Fluence Divergence CyberKnife Iris Beam QA using Fluence Divergence Ronald Berg, Ph.D., Jesse McKay, M.S. and Brett Nelson, M.S. Erlanger Medical Center and Logos Systems, Scotts Valley, CA Introduction The CyberKnife radiosurgery

More information

Commissioning and Calibrating a Linear Accelerator State-of-the-Art in 2010

Commissioning and Calibrating a Linear Accelerator State-of-the-Art in 2010 Commissioning and Calibrating a Linear Accelerator State-of-the-Art in 2010 Indra J. Das, PhD, FACR Department of Radiation Oncology Indiana University of School of Medicine & Midwest Proton Radiation

More information

Comparison of measured Varian Clinac 21EX and TrueBeam accelerator electron field characteristics

Comparison of measured Varian Clinac 21EX and TrueBeam accelerator electron field characteristics JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 4, 2015 Comparison of measured Varian Clinac 21EX and TrueBeam accelerator electron field characteristics Samantha A.M. Lloyd, 1a Sergei Zavgorodni,

More information

Evaluation of a diode array for QA measurements on a helical tomotherapy unit

Evaluation of a diode array for QA measurements on a helical tomotherapy unit Evaluation of a diode array for QA measurements on a helical tomotherapy unit K. M. Langen, a S. L. Meeks, D. O. Poole, T. H. Wagner, T. R. Willoughby, O. A. Zeidan, and P. A. Kupelian Department of Radiation

More information

ISPFILMQATM STATE-OF-THE-ART RADIOTHERAPY VERIFICATION SOFTWARE. Supports all major radiotherapy technologies! FilmQA TM

ISPFILMQATM STATE-OF-THE-ART RADIOTHERAPY VERIFICATION SOFTWARE. Supports all major radiotherapy technologies! FilmQA TM FILMQA STATE-OF-THE-ART RADIOTHERAPY VERIFICATION SOFTWARE Supports all major radiotherapy technologies! FilmQA is optimized for use with Gafchromic film products, including EBT2 and RTQA2. FILMQA helps

More information

Introduction. Use of EPIDs for Routine Linac QA 8/3/2017. Disclosure. Our research group receives funding from Varian Medical Systems

Introduction. Use of EPIDs for Routine Linac QA 8/3/2017. Disclosure. Our research group receives funding from Varian Medical Systems Use of EPIDs for Routine Linac QA E. Van Uytven, J. Beck, T. Van Beek, P. McCowan, B. McCurdy Division of Medical Physics CancerCare Manitoba Winnipeg, Manitoba IDU/Vision WS Disclosure MATLAB Analysis

More information

A Generalized Strategy for 3D Dose Verification of IMRT/VMAT Using EPID-measured Transit Images

A Generalized Strategy for 3D Dose Verification of IMRT/VMAT Using EPID-measured Transit Images A Generalized Strategy for 3D Dose Verification of IMRT/VMAT Using EPID-measured Transit Images Aiping Ding, Bin Han, Lei Wang, Lei Xing Department of Radiation Oncology, Stanford University School of

More information

8/3/2017. Use of EPIDs for Non-Routine Linac QA. Disclosure. Learning Objectives. Parts of this project received support from Varian Medical System.

8/3/2017. Use of EPIDs for Non-Routine Linac QA. Disclosure. Learning Objectives. Parts of this project received support from Varian Medical System. Use of EPIDs for Non-Routine Linac QA Bin Cai PhD Disclosure Parts of this project received support from Varian Medical System. Learning Objectives Learn the recent development of EPID based Non-routine

More information

Analysis of Post-exposure Density Growth in Radiochromic Film with Respect to the Radiation Dose

Analysis of Post-exposure Density Growth in Radiochromic Film with Respect to the Radiation Dose J. Radiat. Res., 53, 301 305 (2012) Analysis of Post-exposure Density Growth in Radiochromic Film with Respect to the Radiation Dose Katsumi SHIMA 1,2, Kunihiko TATEOKA 1 *, Yuichi SAITOH 1,2, Junji SUZUKI

More information

ADVANCED THERAPY DOSIMETER MODEL 35040

ADVANCED THERAPY DOSIMETER MODEL 35040 ADVANCED THERAPY DOSIMETER MODEL 35040 TECHNICAL SPECIFICATIONS Designed for ultra long-term stability error of approximately 0.1% per five years. Virtually removes effects of system leakage during measurement.

More information

Performance evaluation of the RITG148 + set of TomoTherapy quality assurance tools using RTQA 2 radiochromic film

Performance evaluation of the RITG148 + set of TomoTherapy quality assurance tools using RTQA 2 radiochromic film JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 4, 2016 Performance evaluation of the RITG148 + set of TomoTherapy quality assurance tools using RTQA 2 radiochromic film Eric C. Lobb Department

More information

Initial setup and subsequent temporal position monitoring using implanted RF transponders

Initial setup and subsequent temporal position monitoring using implanted RF transponders Initial setup and subsequent temporal position monitoring using implanted RF transponders James Balter, Ph.D. University of Michigan Has financial interest in Calypso Medical Technologies Acknowledgements

More information

EXPERIENCE WITH AND STUDIES OF THE SNS* TARGET IMAGING SYSTEM

EXPERIENCE WITH AND STUDIES OF THE SNS* TARGET IMAGING SYSTEM EXPERIENCE WITH AND STUDIES OF THE SNS* TARGET IMAGING SYSTEM W. Blokland, ORNL, Oak Ridge, TN 37831, USA Abstract The Target Imaging System (TIS) shows the size and position of the proton beam by using

More information

Characterization of an in vivo diode dosimetry system for clinical use

Characterization of an in vivo diode dosimetry system for clinical use JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 4, NUMBER 2, SPRING 2003 Characterization of an in vivo diode dosimetry system for clinical use Kai Huang, 1, * William S. Bice, Jr., 2, and Oscar Hidalgo-Salvatierra

More information

Advanced Engineering Statistics. Jay Liu Dept. Chemical Engineering PKNU

Advanced Engineering Statistics. Jay Liu Dept. Chemical Engineering PKNU Advanced Engineering Statistics Jay Liu Dept. Chemical Engineering PKNU Statistical Process Control (A.K.A Process Monitoring) What we will cover Reading: Textbook Ch.? ~? 2012-06-27 Adv. Eng. Stat., Jay

More information

The evaluation of minimum detectable phantom thickness change using a scanning liquid filled ion chamber EPID dose response

The evaluation of minimum detectable phantom thickness change using a scanning liquid filled ion chamber EPID dose response Iran. J. Radiat. Res., 2005; 3 (1): 3-10 The evaluation of minimum detectable phantom thickness change using a scanning liquid filled ion chamber EPID dose response M. Mohammadi 1,2,3* and E. Bezak 1,2

More information

SUN NUCLEAR. EPIDose : An Overview of EPIDose and the EPIDose Process and Algorithm. corporation. Your Most Valuable QA and Dosimetry Tools

SUN NUCLEAR. EPIDose : An Overview of EPIDose and the EPIDose Process and Algorithm. corporation. Your Most Valuable QA and Dosimetry Tools EPIDose : An Overview of EPIDose and the EPIDose Process and Algorithm SUN NUCLEAR corporation Your Most Valuable QA and Dosimetry Tools introduction Pre-treatment dose QA is an important process required

More information

Impact of energy variation on Cone Ratio, PDD10, TMR20 10 and IMRT doses for flattening filter free (FFF) beam of TomoTherapy Hi-Art TM machines

Impact of energy variation on Cone Ratio, PDD10, TMR20 10 and IMRT doses for flattening filter free (FFF) beam of TomoTherapy Hi-Art TM machines JBUON 2014; 19(4): 1105-1110 ISSN: 1107-0625, online ISSN: 2241-6293 www.jbuon.com E-mail: editorial_office@jbuon.com ORIGINAL ARTICLE Impact of energy variation on Cone Ratio, PDD10, TMR20 10 and IMRT

More information

Comparative performance evaluation of a new a-si EPID that exceeds quad high-definition resolution

Comparative performance evaluation of a new a-si EPID that exceeds quad high-definition resolution JBUON 2018; 23(2): 507-513 ISSN: 1107-0625, online ISSN: 2241-6293 www.jbuon.com E-mail: editorial_office@jbuon.com ORIGINAL ARTICLE Comparative performance evaluation of a new a-si EPID that exceeds quad

More information

Energy Monitoring Device for Electron Beam Facilities

Energy Monitoring Device for Electron Beam Facilities 1 SM/EB-18 Energy Monitoring Device for Electron Beam Facilities M. Lavalle 1, P.G. Fuochi 1, A. Martelli 1, U. Corda 1, A. Kovács 2, K. Mehta 3, F. Kuntz 4, S. Plumeri 4 1 CNR-ISOF, Via P. Gobetti 101,

More information

Peace of Mind. Automated.

Peace of Mind. Automated. 1 Peace of Mind. Automated. Automated and guided beam commissioning Why SMARTSCAN? Get thousands of beam scans done effortlessly. Save your valuable time and manual operations at the water phantom and

More information

CHAPTER 2 COMMISSIONING OF KILO-VOLTAGE CONE BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED RADIOTHERAPY

CHAPTER 2 COMMISSIONING OF KILO-VOLTAGE CONE BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED RADIOTHERAPY 14 CHAPTER 2 COMMISSIONING OF KILO-VOLTAGE CONE BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED RADIOTHERAPY 2.1 INTRODUCTION kv-cbct integrated with linear accelerators as a tool for IGRT, was developed to

More information

IMRT Delivery System QA. IMRT Dose Delivery. Acceptance testing. Why: specific tests for IMRT? Accuracy of leaf positioning (gaps) MLC Alignment

IMRT Delivery System QA. IMRT Dose Delivery. Acceptance testing. Why: specific tests for IMRT? Accuracy of leaf positioning (gaps) MLC Alignment 1 IMRT Delivery System Q Thomas LoSasso, PhD Memorial Sloan Kettering Cancer Center IMRT Dose Delivery cceptance testing Commissioning Quality assurance Verification Q Why: specific tests for IMRT? 2.

More information

Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy

Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy Thomas LoSasso, a) Chen-Shou Chui, and C. Clifton Ling Department

More information

The Evaluation of Collimator Alignment of Diagnostic X-ray Tube Using Computed Radiography System

The Evaluation of Collimator Alignment of Diagnostic X-ray Tube Using Computed Radiography System The Evaluation of Collimator Alignment of Diagnostic X-ray Tube Using Computed Radiography System The Evaluation of Collimator Alignment of Diagnostic X-ray Tube Using Computed Radiography System Manus

More information

Isocenter and Field of View Accuracy Measurement Software for Linear Accelerator

Isocenter and Field of View Accuracy Measurement Software for Linear Accelerator Isocenter and Field of View Accuracy Measurement Software for Linear Accelerator Aleksei E. Zhdanov 1 and Leonid G. Dorosinskiy 1 Ural Federal University named after the first President of Russia B. N.

More information

The VARIAN 250 MeV Superconducting Compact Proton Cyclotron

The VARIAN 250 MeV Superconducting Compact Proton Cyclotron The VARIAN 250 MeV Superconducting Compact Proton Cyclotron VARIAN Medical Systems Particle Therapy GmbH Friedrich-Ebert-Str. 1 D-51429 BERGISCH GLADBACH GERMANY OUTLINE 1. Why having a Superconducting

More information

SRS MapCHECK. SRS Patient QA, No Film. Your Most Valuable QA and Dosimetry Tools

SRS MapCHECK. SRS Patient QA, No Film. Your Most Valuable QA and Dosimetry Tools SRS MapCHECK SRS Patient QA, No Film Your Most Valuable QA and Dosimetry Tools SRS Patient QA, No Film As clinics strive to treat with the smallest field possible, the demand for SRS/SBRT QA grows as well.

More information

COMPREHENSIVE TG-142 IMAGING AND MACHINE QA

COMPREHENSIVE TG-142 IMAGING AND MACHINE QA QA SOFTWARE COMPREHENSIVE TG-142 IMAGING AND MACHINE QA Automate the analysis of over thirty TG-142 recommended QA tasks The rapid progress of Radiation Therapy has created the need for Quality Assurance

More information

Optimization of Energy Modulation Filter for Dual Energy CBCT Using Geant4 Monte-Carlo Simulation

Optimization of Energy Modulation Filter for Dual Energy CBCT Using Geant4 Monte-Carlo Simulation Original Article PROGRESS in MEDICAL PHYSICS 27(3), Sept. 2016 http://dx.doi.org/10.14316/pmp.2016.27.3.125 pissn 2508-4445, eissn 2508-4453 Optimization of Energy Modulation Filter for Dual Energy CBCT

More information

Nuclear Associates , , CT Head and Body Dose Phantom

Nuclear Associates , , CT Head and Body Dose Phantom Nuclear Associates 76-414,76-414-4150,76-415 CT Head and Body Dose Phantom Users Manual March 2005 Manual No. 76-414-1 Rev. 2 2004, 2005 Fluke Corporation, All rights reserved. Printed in U.S.A. All product

More information

Electronic Brachytherapy Sources. Thomas W. Rusch

Electronic Brachytherapy Sources. Thomas W. Rusch Electronic Brachytherapy Sources Thomas W. Rusch Educational Objectives Understand key elements of ebx source construction & operation Understand the rationale and methods for air kerma strength calibration

More information

I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB APPLICATIONS

I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB APPLICATIONS Six Sigma Quality Concepts & Cases- Volume I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB APPLICATIONS Chapter 7 Measurement System Analysis Gage Repeatability & Reproducibility (Gage R&R)

More information

Quality control of Gamma Camera. By Dr/ Ibrahim Elsayed Saad 242 NMT

Quality control of Gamma Camera. By Dr/ Ibrahim Elsayed Saad 242 NMT Quality control of Gamma Camera By Dr/ Ibrahim Elsayed Saad 242 NMT WHAT IS QUALITY? The quality of a practice is to fulfill the expectations and demands from: Patient Clinicain Your self Quality assurance

More information

Operations Management

Operations Management 10-1 Quality Control Operations Management William J. Stevenson 8 th edition 10-2 Quality Control CHAPTER 10 Quality Control McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson

More information

Detection of Non-Random Patterns in Shewhart Control Charts: Methods and Applications

Detection of Non-Random Patterns in Shewhart Control Charts: Methods and Applications Detection of Non-Random Patterns in Shewhart Control Charts: Methods and Applications A. Rakitzis and S. Bersimis Abstract- The main purpose of this article is the development and the study of runs rules

More information

DOSELAB TOMOTHERAPY TG-148 QA QUICK GUIDE TG-148 RECOMMENDED TESTS 1. V.B.1.C. - Y-JAW DIVERGENCE/BEAM CENTERING

DOSELAB TOMOTHERAPY TG-148 QA QUICK GUIDE TG-148 RECOMMENDED TESTS 1. V.B.1.C. - Y-JAW DIVERGENCE/BEAM CENTERING DOSELAB TOMOTHERAPY TG-148 QA QUICK GUIDE Rev. 1.0 DOSELAB TOMOTHERAPY TG-148 QA QUICK GUIDE DoseLab users may reference the following instructions to perform Tomotherapy Quality Assurance tests as recommended

More information

Emerging Technology: Real-Time Monitoring of Treatment Delivery EPID Exit Dose QA

Emerging Technology: Real-Time Monitoring of Treatment Delivery EPID Exit Dose QA Emerging Technology: Real-Time Monitoring of Treatment Delivery EPID Exit Dose QA Arthur Olch, PhD, FAAPM AAPM Spring Clinical Meeting, March 21, 2017 Or.. What Dose are the Patients Really Getting???

More information

Distributed source x-ray tube technology for tomosynthesis imaging

Distributed source x-ray tube technology for tomosynthesis imaging Distributed source x-ray tube technology for tomosynthesis imaging Authors: F. Sprenger a*, X. Calderon-Colon b, Y. Cheng a, K. Englestad a, J. Lu b, J. Maltz c, A. Paidi c, X. Qian b, D. Spronk a, S.

More information

SRS MapCHECK. SRS Patient QA, No Film. Your Most Valuable QA and Dosimetry Tools

SRS MapCHECK. SRS Patient QA, No Film. Your Most Valuable QA and Dosimetry Tools SRS MapCHECK SRS Patient QA, No Film Your Most Valuable QA and Dosimetry Tools SRS Patient QA, No Film With improvements in targeting and localization, stereotactic treatments have become prevalent. To

More information

Mobius3D. Software based IMRT QA

Mobius3D. Software based IMRT QA Mobius3D Software based IMRT QA What is Mobius Medical Systems? Clinical Expertise Software Expertise Nathan Childress, Ph.D., Founder Eli Stevens, Chief Technical Officer Support Expertise Physicists

More information

SUSPENSION CRITERIA FOR IMAGE MONITORS AND VIEWING BOXES.

SUSPENSION CRITERIA FOR IMAGE MONITORS AND VIEWING BOXES. SUSPENSION CRITERIA FOR IMAGE MONITORS AND VIEWING BOXES. Tingberg, Anders Published in: Radiation Protection Dosimetry DOI: 10.1093/rpd/ncs302 Published: 2013-01-01 Link to publication Citation for published

More information

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Approval: Originator: Tor Raubenheimer, Physics Support Lead Date Approved Approver: Marc Ross, Cryogenic System Manager Approver: Jose Chan,

More information

Post-irradiation colouration of Gafchromic EBT radiochromic film

Post-irradiation colouration of Gafchromic EBT radiochromic film INSTITUTE OF PHYSICS PUBLISHING Phys. Med. Biol. 5 (25) N281 N285 PHYSICS IN MEDICINE AND BIOLOGY doi:1.188/31-9155/5/2/n4 NOTE Post-irradiation colouration of Gafchromic EBT radiochromic film Tsang Cheung

More information

I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB APPLICATIONS

I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB APPLICATIONS Six Sigma Quality Concepts & Cases- Volume I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB APPLICATIONS Chapter 7 Measurement System Analysis Gage Repeatability & Reproducibility (Gage R&R)

More information

QC Testing for Computed Tomography (CT) Scanner

QC Testing for Computed Tomography (CT) Scanner QC Testing for Computed Tomography (CT) Scanner QA - Quality Assurance All planned and systematic actions needed to provide confidence on a structure, system or component. all-encompassing program, including

More information

GAFCHROMIC. Therapy Dosimetry Media Models to

GAFCHROMIC. Therapy Dosimetry Media Models to GAFCHROMIC Therapy Dosimetry Media Models 37-040 to 37-045! Superior uniformity and sensitivity! Dose rate and fractionation independent! Maps dose distribution! Provides quantitative measurements (via

More information

Check the LCLS Project website to verify 2 of 7 that this is the correct version prior to use.

Check the LCLS Project website to verify 2 of 7 that this is the correct version prior to use. 1. Introduction: The XTOD Offset System (OMS) is designed to direct the LCLS FEL beam to the instruments and experimental stations, while substantially reducing the flux of unwanted radiation which accompanies

More information

AN INITIAL investigation into the effects of proton irradiation

AN INITIAL investigation into the effects of proton irradiation IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 2, FEBRUARY 2006 205 Proton Irradiation of EMCCDs David R. Smith, Richard Ingley, and Andrew D. Holland Abstract This paper describes the irradiation

More information

Introduction to Statistical Process Control. Managing Variation over Time

Introduction to Statistical Process Control. Managing Variation over Time EE9H F3 Introduction to Statistical Process Control The assignable cause. The Control Chart. Statistical basis of the control chart. Control limits, false and true alarms and the operating characteristic

More information

8/3/2016. The EPID Strikes Back. Novel Applications for Current EPID Technology. Joerg Rottmann, PhD. Disclosures and acknowledgements

8/3/2016. The EPID Strikes Back. Novel Applications for Current EPID Technology. Joerg Rottmann, PhD. Disclosures and acknowledgements The EPID Strikes Back Joerg Rottmann Brigham and Women s Hospital / Dana-Farber Cancer Institute Harvard Medical School Disclosures and acknowledgements Disclosures Varian MRA grant Acknowledgements Boston

More information

Cylindrical Ion Chambers Victoreen Model 550 Series

Cylindrical Ion Chambers Victoreen Model 550 Series Cylindrical Ion Chambers Victoreen Model 550 Series! Cylindrical Ion Chambers for use with Model 35040 and Model 530 electrometers! Wide range of applications in Diagnostic X-Ray and Radiation Oncology

More information

Commissioning. Basic machine performance MLC Dose rate control Gantry speed control End-to-end tests

Commissioning. Basic machine performance MLC Dose rate control Gantry speed control End-to-end tests Acknowledgements David Shepard, Ph.D. Daliang Cao, Ph.D. Muhammad K. N. Afghan, Ph.D. Jinsong Ye, M.S. Tony P. Wong, Ph.D. Fan Chen, Ph.D. Min Rao, Ph.D. Vivek Mehta, M.D. Igor Gomola, Ph.D. David Housley

More information

TABLE OF CONTENTS. References

TABLE OF CONTENTS. References ANALYTICAL X-RAY EQUIPMENT USE POLICIES & PROCEDURES Page 1 of 9 Revised: 11/24/2003 TABLE OF CONTENTS 1.0 General 2.0 Purpose 3.0 Scope and Authority 4.0 Equipment Requirements 4.0.1 Safety device 4.0.2

More information

Aim. Images for this section: Page 2 of 13

Aim. Images for this section: Page 2 of 13 Changes in CT number of high atomic number materials with field of view when using an extended CT number to electron density curve and a metal artifact reduction reconstruction algorithm Poster No.: R-0094

More information

State of the Art Film Dosimetry

State of the Art Film Dosimetry State of the Art Film Dosimetry Micke A., Lewis D. Advanced Materials Ashland proprietary technology, patents pending Film Dosimetry Radiochromic Film EBT2/EBT3 One-Scan Protocol Multi-channel Film Dosimetry

More information

Clinical Experiences with a Patient Skin Dose Monitoring and Tracking Program

Clinical Experiences with a Patient Skin Dose Monitoring and Tracking Program Clinical Experiences with a Patient Skin Dose Monitoring and Tracking Program Allen R. Goode, MS, DABR Chief Diagnostic Medical Physicist Department of Radiology & Medical Imaging University of Virginia

More information

X3D in Radiation Therapy Procedure Planning. Felix G. Hamza-Lup, Ph.D. Computer Science Armstrong Atlantic State University Savannah, Georgia USA

X3D in Radiation Therapy Procedure Planning. Felix G. Hamza-Lup, Ph.D. Computer Science Armstrong Atlantic State University Savannah, Georgia USA X3D in Radiation Therapy Procedure Planning Felix G. Hamza-Lup, Ph.D. Computer Science Armstrong Atlantic State University Savannah, Georgia USA Outline 1. What is radiation therapy? 2. Treatment planning

More information

Ch. 223 VETERINARY MEDICINE CHAPTER 223. VETERINARY MEDICINE GENERAL PROVISIONS X-RAYS RADIOACTIVE MATERIAL. Authority

Ch. 223 VETERINARY MEDICINE CHAPTER 223. VETERINARY MEDICINE GENERAL PROVISIONS X-RAYS RADIOACTIVE MATERIAL. Authority Ch. 223 VETERINARY MEDICINE 25 223.1 CHAPTER 223. VETERINARY MEDICINE Sec. 223.1. Purpose and scope. 223.2. [Reserved]. 223.2a. Definitions. 223.3 223.6. [Reserved]. 223.7. Structural shielding. 223.8.

More information

HITACHI Proton Therapy System with Spot Scanning

HITACHI Proton Therapy System with Spot Scanning Workshop on Hadron Therapy of Cancer 27 th April, Erice, Sicily, Italy HITACHI Proton Therapy System with Spot Scanning Kazuo Hiramoto Energy & Environmental Systems Laboratory, Hitachi, Ltd. Contents

More information

ANALYZE. Lean Six Sigma Black Belt. Chapter 2-3. Short Run SPC Institute of Industrial Engineers 2-3-1

ANALYZE. Lean Six Sigma Black Belt. Chapter 2-3. Short Run SPC Institute of Industrial Engineers 2-3-1 Chapter 2-3 Short Run SPC 2-3-1 Consider the Following Low production quantity One process produces many different items Different operators use the same equipment These are all what we refer to as short

More information

STEREOTACTIC BREAST BIOPSY EQUIPMENT SURVEYS

STEREOTACTIC BREAST BIOPSY EQUIPMENT SURVEYS STEREOTACTIC BREAST BIOPSY EQUIPMENT SURVEYS JAMES A. TOMLINSON, M.S. Diagnostic Radiological Physicist American Board of Radiology Certified Medical Physics Consultants, Inc. Bio 28 yrs experience 100%

More information

GafChromic QuiCk Phantom with EBT3P/3+P Film and FilmQA Pro for Radiation Therapy Dosimetry Applications

GafChromic QuiCk Phantom with EBT3P/3+P Film and FilmQA Pro for Radiation Therapy Dosimetry Applications GafChromic QuiCk Phantom with EBT3P/3+P Film and FilmQA Pro for Radiation Therapy Dosimetry Applications I. SCOPE The protocol applies to GafChromic EBT3P and EBT3+P films exposed in GafChromic QuiCk Phantom

More information

Minnesota Rules, Chapter 4732 X-ray Revision

Minnesota Rules, Chapter 4732 X-ray Revision Minnesota Rules, Chapter 4732 X-ray Revision DRAFT FLUOROSCOPIC X-RAY SYSTEMS, 1.0 Subpart 1. Applicability. Subpart 2. Limitation of the useful beam. Subpart 3. Measuring compliance; primary protective

More information

Issues in Emerging Health Technologies Bulletin Process

Issues in Emerging Health Technologies Bulletin Process Issues in Emerging Health Technologies Bulletin Process Updated: April 2015 Version 1.0 REVISION HISTORY Periodically, this document will be revised as part of ongoing process improvement activities. The

More information

Determining acceptance levels for automatic daily image quality control in magnetic resonance imaging

Determining acceptance levels for automatic daily image quality control in magnetic resonance imaging Determining acceptance levels for automatic daily image quality control in magnetic resonance imaging Poster No.: C-1125 Congress: ECR 2016 Type: Authors: Keywords: DOI: Scientific Exhibit J. I. Peltonen,

More information

Cylindrical Ion Chambers

Cylindrical Ion Chambers Cylindrical Ion Chambers Radiation Oncology ON Victoreen Model 550T Series Cylindrical Ion Chambers for use with Model 35040 and Model 560 electrometers Wide range of applications in Diagnostic X-Ray and

More information

Statistical Software for Process Validation. Featuring Minitab

Statistical Software for Process Validation. Featuring Minitab Statistical Software for Process Validation Featuring Minitab Regulatory Requirements 21 CFR 820 Subpart O--Statistical Techniques Sec. 820.250 Statistical techniques. (a) Where appropriate, each manufacturer

More information

Status of Proton Beam Commissioning at MedAustron Ion Beam Therapy Center

Status of Proton Beam Commissioning at MedAustron Ion Beam Therapy Center Status of Proton Beam Commissioning at MedAustron Ion Beam Therapy Center A. Garonna, A. Wastl, C. Kurfuerst, T. Kulenkampff, C. Schmitzer, L. Penescu, M. Pivi, M. Kronberger, F. Osmic, P. Urschuetz On

More information

Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion

Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion Michael W. Kissick, a Sarah A. Boswell, Robert Jeraj, and T. Rockwell Mackie Department of Medical

More information

APPENDIX K UNF RADIATION GENERATING DEVICE SAFETY PROCEDURES

APPENDIX K UNF RADIATION GENERATING DEVICE SAFETY PROCEDURES APPENDIX K UNF RADIATION GENERATING DEVICE SAFETY PROCEDURES Policy and Purpose This policy provides administrative control over the use of radiation generating devices and is designed to ensure that such

More information

Nathan Childress, Ph.D., DABR

Nathan Childress, Ph.D., DABR Nathan Childress, Ph.D., DABR Introduction TG-142 is a comprehensive QA protocol Covers nearly every aspect of machine and safety QA Recommends quantitative results Recommends high testing frequencies

More information

CT radiation profile width measurement using CR imaging plate raw data

CT radiation profile width measurement using CR imaging plate raw data JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015 CT radiation profile width measurement using CR imaging plate raw data Thorarin A Bjarnason, 1,2,3a Chang-Ying Joseph Yang 3,4 Diagnostic

More information

Interfaces with MPS/PSS

Interfaces with MPS/PSS Interfaces with / European Spallation Source Accelerator Division TB, 16 November 2016, Lund, Sweden / interfaces 1/21 Outline 1 Introduction 2 3 4 Conclusions / interfaces 2/21 Outline 1 Introduction

More information

Table 1: Available X-ray Beam Energy Combinations (MV) 6 10/ Yes Yes 6 16/15 6 Yes No 6 23/18 6 Yes No 6 25/20 6 Yes No

Table 1: Available X-ray Beam Energy Combinations (MV) 6 10/ Yes Yes 6 16/15 6 Yes No 6 23/18 6 Yes No 6 25/20 6 Yes No SPECIFICATIONS Introduction This specification sheet provides information for the Trilogy linear accelerators. 1.0 Photon Beams 1.1 Energy: Three photon beams may be selected in accordance with the beam

More information

Agilent 5DX System. X-ray Safety Test Procedure. for use with Software Release 8.20 and later

Agilent 5DX System. X-ray Safety Test Procedure. for use with Software Release 8.20 and later Agilent 5DX System for use with Software Release 8.20 and later Agilent Technologies, Inc. 1996-2008 Agilent Safety and Regulatory Information: Restricted Rights Notice If software is for use in the performance

More information

A new approach to film dosimetry for high energy photon beams: Lateral scatter filtering

A new approach to film dosimetry for high energy photon beams: Lateral scatter filtering A new approach to film dosimetry for high energy photon beams: Lateral scatter filtering Sandra E. Burch Department of Radiology, Medical College of Georgia, Augusta, Georgia 30912 Kimberlee J. Kearfott

More information

Introduction of a Single Chip TLD System for Patient Dosimetry

Introduction of a Single Chip TLD System for Patient Dosimetry Introduction of a Single Chip TLD System for Patient Dosimetry C. Hranitzky a, M. Halda a, G. Müller a, B. Obryk b, H. Stadtmann a* a Austrian Research Centers GmbH ARC, 2444 Seibersdorf, Austria. b Institute

More information

Comparison of peripheral dose measurements using Ionization chamber and MOSFET detector

Comparison of peripheral dose measurements using Ionization chamber and MOSFET detector ORIGINAL ARTICLES Comparison of peripheral dose measurements using Ionization chamber and MOSFET detector Gopiraj ANNAMALAI 1, Ramasubramanian VELAYUDHAM 2 ABSTRACT Received: 7.07.2009 Accepted: 2.11.2009

More information

Outline Process Control. Variation: Common and Special Causes. What is quality? Common and Special Causes (cont d)

Outline Process Control. Variation: Common and Special Causes. What is quality? Common and Special Causes (cont d) . Process Control Outline. Optimization. Statistical Process Control 3. In-Process Control What is quality? Variation: Common and Special Causes Pieces vary from each other: But they form a pattern that,

More information

Assessing Measurement System Variation

Assessing Measurement System Variation Assessing Measurement System Variation Example 1: Fuel Injector Nozzle Diameters Problem A manufacturer of fuel injector nozzles installs a new digital measuring system. Investigators want to determine

More information

Fast Real Time Calibration of a Varian 2100 (High Energy) series LINAC

Fast Real Time Calibration of a Varian 2100 (High Energy) series LINAC Fast Real Time Calibration of a Varian 2100 (High Energy) series LINAC Kenneth Chu, Ph.D., D.A.B.R., P.Eng. Marquette General Hospital Marquette, MI And Shidong Tong, Ph.D., D.A.B.R. Inova Alexandria Hospital

More information

FIELD CORRELATED LIFE TEST SUPPLEMENT TO SAE/USCAR-2 SUMMARY OF CONTENTS 1. SCOPE OUTLINE REFERENCED DOCUMENTS EQUIPMENT...

FIELD CORRELATED LIFE TEST SUPPLEMENT TO SAE/USCAR-2 SUMMARY OF CONTENTS 1. SCOPE OUTLINE REFERENCED DOCUMENTS EQUIPMENT... The Engineering Society For Advancing Mobility Land Sea Air and Space I N T E R N A T I O N A L 400 Commonwealth Drive, Warrendale, PA 15096-0001 SAE/USCAR-20 Issued December 2001 FIELD CORRELATED LIFE

More information

熊本大学学術リポジトリ. Kumamoto University Repositor

熊本大学学術リポジトリ. Kumamoto University Repositor 熊本大学学術リポジトリ Kumamoto University Repositor Title Monte Carlo calculations of the rep correction factor, Ρ_, for cy chamber cav Author(s) Araki, Fujio CitationRadiological Physics and Technology Issue

More information

C a t p h a n. T h e P h a n t o m L a b o r a t o r y. Ordering Information

C a t p h a n. T h e P h a n t o m L a b o r a t o r y. Ordering Information Ordering Information Please contact us if you have any questions or if you would like a quote or delivery schedule regarding the Catphan phantom. phone 800-525-1190, or 518-692-1190 fax 518-692-3329 mail

More information

ISO MAINTENANCE STANDARDS

ISO MAINTENANCE STANDARDS ATTACHMENT 1 CHANGES TO: ISO MAINTENANCE STANDARDS Section 1 Page C-3 Section 4.3 Pages C-17, C22-27, & C-30 Section 5.2.1b) Page C-33 Section 10 Page C-43 ISO Maintenance Standards REVISION 1 9/7/00 ISO

More information

Commissioning of a respiratory gating system involving a pressure sensor in carbon ion scanning radiotherapy

Commissioning of a respiratory gating system involving a pressure sensor in carbon ion scanning radiotherapy Received: 14 March 2018 Revised: 29 August 2018 Accepted: 31 August 2018 DOI: 10.1002/acm2.12463 RADIATION ONCOLOGY PHYSICS Commissioning of a respiratory gating system involving a pressure sensor in carbon

More information

specifications The Complete Radiation Oncology Solution

specifications The Complete Radiation Oncology Solution specifications The Complete Radiation Oncology Solution Specifications This specification sheet provides information for the UNIQUE radiation oncology solution and in particular the UNIQUE linear accelerator.

More information

Commissioning an Elekta Versa HD linear accelerator

Commissioning an Elekta Versa HD linear accelerator JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 1, 2016 Commissioning an Elekta Versa HD linear accelerator Ganesh Narayanasamy, 1,2 Daniel Saenz, 1 Wilbert Cruz, 1,3 Chul S. Ha, 1 Niko

More information