The Effect of Honeycomb Cavity: Acoustic Performance of a Double-leaf Micro Perforated Panel

Size: px
Start display at page:

Download "The Effect of Honeycomb Cavity: Acoustic Performance of a Double-leaf Micro Perforated Panel"

Transcription

1 The Summer Undergraduate Research Fellowship (SURF) Symposium 4 August 26 Purdue University, West Lafayette, Indiana, USA The Effect of Honeycomb Cavity: Acoustic Performance of a Double-leaf Micro Perforated Panel Yuxian Huang Kai Ming Li Ray W. Herrick Laboratories Ray W. Herrick Laboratories School of Mechanical Engineering School of Mechanical Engineering Purdue University Purdue University West Lafayette West Lafayette IN IN huang447@purdue.edu mmkmli@purdue.edu ABSTRACT A micro perforated panel (MPP) is a device consisting of a thin plate and submillimeter perforations for reducing low frequency noise. MPPs have many advantages compared to traditional sound absorption materials, such as durability and designability, and they can be used in a variety of places such as room interior designs, passenger and crew compartments of aircrafts and combustion engines. The models in this study were designed and fabricated with the latest 3-D printing technology. The transmission loss and sound absorption coefficient of the 3-D printed double-leaf MPPs with honeycomb cavities were studied. According to the established theory, MPPs work well with the help of a backing and a cavity. Earlier experimental and theoretical developments have suggested that the acoustic performance of the MPPs can be improved by partitioning the backing cavity. A Brüel & Kjær type 426 impedance tube was used for the experiments and the one-load method was implemented for calculating the absorption and transmission coefficients of the MPPs. A honeycomb structure was chosen to be placed in the cavity because it can provide the required partitions between perforated panels so that the overall transmission loss was expected to be higher than those without the cavity partitioning. Measured results indicated that use of the honeycomb structure in the cavity have improved the acoustic performance of the MPPs. The sound absorption coefficient of a double-leaf MPP was similar to that of a single-leaf MPP if the cavity was long enough. Future studies should involve an investigation of the acoustic performance of the MPPs at oblique angles of incidence because the current study only provides the pertinent information at normal incidence since the standing wave tubes were used in the experiments. KEYWORDS Acoustics, micro-perforated panels, transmission loss, honeycomb, noise control NOMENCLATURES [Not finished ] P Pressure [Pa] u Acoustic Velocity [m/s] c Sound Velocity [m/s] f Frequency of Sound [Hz]

2 2 ω Angular Frequency of Sound [rad/s] Tc Room Temperature [ᵒC, K] x Distance from Plate to Microphone [m] R Reflection Coefficient α Sound Absorption Coefficient ρ Density of Air [kg/m 3 ] Rc σ η t φ D d b Pr Pt V Ra Ta Za TL k Gas Constant [J/(kg K)] Perforation Ratio Coefficient for Viscosity Thickness of the Plate [m] Perforation Constant Backing Space [m] Diameter of the Perforations [m] Separation between the Perforations reflected pressure [Pa] transmitted pressure [Pa] Acoustic Particle Velocity [m/s] Normal Incidence Pressure Reflection Coefficient Normal Incidence Pressure Transmission Coefficient Surface Normal Incidence impedance [Rayls] Transmission Loss [db] wave number [m] INTRODUCTION A micro-perforated panel (MPP) or micro-perforated plate is a thin plate with submillimeter perforations for reducing low frequency noise. The thickness is usually the same as the perforation diameter. As a result, the perforations can provide enough acoustic resistance and low acoustic mass reactance. The MPPs were first developed and used in the 97s by Maa []. An MPP offers a better alternative to a traditional sound absorber for numerous reasons. Conventionally, a sound absorber is made from porous or fibrous materials, such as mineral wool, glass fibers, polyester fibers, etc. However, they are often non-renewable and deteriorate overtime [2]. Although they often have facings to prevent small particles from the porous or fibrous materials from travelling through ventilation ducts, these facings are combustible and can affect the acoustical performance of the sound absorbers. On the contrary, MPPs are made with plastic or metal, so they are reclaimable, cleanable, durable, designable and aesthetically pleasing. They can even be made by hot needles burning through plastic foil to save money [3]. MPPs can withstand high temperature or other severe environments. Choosing the correct

3 3 materials can make the MPP fire-proof. One of the most important advantages of using an MPP is for its required thickness for reducing low frequency noise. For noise at 4 Hz, a.85-meter-long fibrous or porous material would be needed. Obviously, a material that thick is not practical in real life, but an MPP system (see Fig.. (a)) with the MPP thickness less than mm would be enough to treat the same noise source. MPPs are probably the most promising sound absorption device in the near future. (a) (b) Figure.: (a) A Single MPP System [4], System ; (b) 3-D Printed Micro Perforated Panel One disadvantage that MPPs have is that its manufacturing process is quite costly since the laser cutting technology may be required to make the perforations in metallic plate. In this paper, 3D-printing technology was utilized to reduce the cost. The material for printing is the polylactidie (PLA) thermoplastic materials. This way, the process for designing is more flexible, though the drawback is that accessible 3D printers cannot print submillimeter features as precisely as needed. In view of this inherent limitation, the thickness of the plate was designed to be 2 mm and perforations of.5 mm in diameter (Fig.. (b)). The perforation ratio for the big MPP was 4.69% and for the small MPP it was 3.73%. After the printed-models cooled down, these parameters were actually smaller than designed. Therefore, some estimations on the dimensions of the printed MPPs were required. According to Sakagami et al. [5], thicker MPPs (t > d) will result in a narrower effective absorption range. Although in this way, the MPPs are stronger, they do not perform as well as thin MPPs. Also, the edges and the surfaces of the two plates were not smooth, which can potentially affect the experimental results because of sound scattered by the uneven edge. There are many applications for use in noise barriers, music rooms, combustion chambers, aircraft cabins, etc. The first application using MPPs was in 993 [3]. A transparent MPP was installed in the Deutscher Bunderstag in Boon as a facing shell in front of the glass doors entering into the plenum. Aircrafts causes noise problems for the residents living near an airport. MPPs have been increasingly used as a noise barrier with the help of a honeycomb structure. The honeycomb structure not only provides the aircraft cabin strength but also maintains a lightweight for fuel economy [6]. An MPP system, in fact, consists of the plate, the cavity and the backing (see Fig. (a)) [4]. The experimental data was a result of the whole system instead of the MPP alone. One of the advantages is that MPPs are very thin thus very lightweight. However, this advantage is also one of the weaknesses of the MPPs - they cannot provide enough strength to be used for the interior design due to their small plate thickness. It has been proposed recently by a few authors that a honeycomb structure can greatly improve MPPs acoustical performance [2, 4, 6, 7, 2]. On the other hand, a honeycomb structure can stiffen MPPs structurally, and improve the acoustic performance effectively as well [7]. This is largely due to the fact that the honeycomb partition separates the air cavity so the sound waves are forced to propagate in the direction normal to the MPP structure.

4 4 2 THEORY 2. Maa s Single MPP Theory For a single MPP system without the honeycomb, Maa developed a theory in 987 which he improved in 998 [8], and he used an electrical analogy to determine its acoustical impedance. Jaouen et al. simplified his equations further [9]. The relative acoustic resistance r (relative to the characteristic acoustic impedance in air), the mass reactance Xm and the perforate constant ɸ were defined in Maa s theory as, r = 32ηt σρcd 2 k r, () X m = wm = ωt σc k m, (2) φ = d ωρ 4η, (3) where k r = [ + φ2 32 ] φ d, the perforation ratio σ = 32 t (π) 4 (d b )2, and k m = +[ + φ2 2 ] d. d is the diameter of the perforations, t is the thickness of the MPP, η is the coefficient of viscosity, t σ is the perforation ratio, ρ is the air density, and c is the air velocity. The sound absorption coefficient is the fraction of sound energy absorbed by a material. The expression is, α = 2.2 Double-leaf MPP with Honeycomb 4r (+r) 2 +[X m cot ( ωd c )]2, (4) The theoretical equations were developed by Sakagami et al. for double-leaf MPPs with honeycomb cavity [7]. The reflected pressure Pr and the transmitted pressure Pt are, p r (x, z) = [ + iρ ω 2 Γ (k sinθ) k A m {A Γ (k sinθ)+a 2 Γ 2 (k sinθ)+a 3 } ] e [i(k sinθx k cosθz)], (5) k cosθ p t (x, z) = [ iρ ω 2 Γ 2 (k sinθ)+k A m2 {B Γ (k sinθ)+b 2 Γ 2 (k sinθ)+b 3 } ] e [i(k sinθx k cosθz)], (6) k cosθ where θ is the oblique incidence angle, shown in Fig.3.3. The sound absorption coefficient and the sound transmission coefficient are, α θ = p r 2, (9) τ θ = p t 2, (8) With the above equations, theoretical results can be produced. In this project, because normal incidence sound waves were assumed, the value of θ is zero. 2.3 Transfer Matrix Function The one load method with four microphones is introduced and simplified by Bolton et al. to relate the pressures and normal acoustic particle velocities [9,]. The transfer matrix is for calculating the experimental results. This method can be used for porous materials, MPPs, MPPs with honeycomb cavities if there are multiple and any type of material that can be fitted into the impedance tubes. A, B, C and D can be found in Fig Note that the D here is different from the D that represents the backing length.

5 5 where, [ P V ] x= = [ T T 2 ] [ P T 2 T 22 V ], (9) x=d P x= = A + B = + R a, () P x=d = Ce jkd + De jkd = T a e jkd, () V x= = A B ρ c = R a ρ c, (2) V x=d = Ce jkd De jkd ρ c = T ae jkd, (3) ρ c where, P is the pressure, V is the particle velocity. The complex sound pressures are: P = Ae jkx + Be jkx, (4) P 2 = Ae jkx 2 + Be jkx 2, (5) P 3 = Ce jkx 3 + De jkx 3, (6) P 4 = Ce jkx 4 + De jkx 4, (7) where, the wave number is k = ω = 2πf, c = T c c c, and Tc is the environmental temperature. Therefore, 3 METHODS TL = log T a 2, (8) α = R a 2, (9) The standing wave tubes, as shown in Fig.3., were used to do the measurement for the MPPs. It is assumed that the sound waves only propagate normal to the MPPs. The small tube which has a diameter of 2.9 cm is for high frequency measurement (5 64 Hz) and the big tube which has a diameter of cm is for low frequency measurement (5 6Hz) []. Figure 3.: Brüel & Kjær Type 426 Impedance (Standing Wave) Tubes

6 6 Figure 3.2: Sketch of Experimental Configuration Figure 3.3: Geometry of 3D-Printed Double-Leaf MPP [2], System 2 Figure 3.4: How the Parts Were Assembled Fig. 3.4 shows a honeycomb structure of cm and Fig. 3.5 shows how the parts were glued together. In this way, the length of the honeycomb can be easily adjusted and the printing material can be saved. The front and the back of the system were the circular plates. The front plate is F and the back plate is B (indicated in Fig. 3.2 and Fig. 3.3). For the big tube, the side of one hexagon is 5mm; for the small tube, it is.45mm. Figure 3.5: System 3

7 7 In order to determine the effect of the honeycombs and MPPs, an experimental procedure was designed. First of all, the theoretical results using equation () (4) and system (Fig..) were plotted in order to clarify the effects among the parameters. Then an estimation of what the actual perforation diameter and the thickness of the MPP were was given by plotting experimental results against the theoretical results. Second of all, system 2 was analyzed. The parameters can be seen in Table 4.. Plain plate indicates a plate with no perforations. F stands for Front Plate and B stands for Back Plate (Fig. 3.3). The length of the honeycomb was larger than 6 cm because low frequency noise has large wavelength. Using shorter honeycombs will result in resonance occurring in high frequency. However, each big honeycomb (cm in thickness) took more than 6 hours to print. Therefore, only 7 honeycombs were used in this study. At last, system 3 (Fig. 3.5) was analyzed. Because there were a limited number of the honeycombs, D = cm and s = 5 cm. However, ideally the length of the backing cavity, D, should be much larger. Table 4.: Parameters # Plate Indication Length of Honeycomb D [cm] F B Plain Plate Plain Plate 2 Plain Plate MPP 3 MPP Plain Plate 4 MPP MPP RESULTS AND DISCUSSION 4. Effects of the thickness, the diameter of the perforations and the length of the backing In order to find out the effects of the MPP parameters the diameter of the perforations, d, the thickness of the MPP, t, and the backing length, D, on the acoustical performance of a single MPP system (Fig.. (a)), theoretical results were compared using equations () (4). In these calculations, the leaf vibration caused by sound waves was neglected. The noise source was assumed to only come from the loud speaker. For all the figures shown later, in the high frequency regime, the sound absorption coefficient sometimes is zero. That is because a correction is needed, but since the sound absorption ability in the high frequency range is not interested, it is not necessary to add the correction. First, the diameter of the perforations was changed from.4 mm to.2 mm. As shown in Fig. 4.., the sound absorption performance deteriorates when the diameter becomes larger. The peak also shifts to a higher frequency. This shows how important it is to keep the diameter under.6 mm. Also, the smaller the diameter, the smaller the peak frequency, which is desired for low frequency noise.

8 8.8.6 d =.4mm d =.5mm d =.6mm d =.8mm d =.2mm Figure 4..: The Effect of the Diameter of the Perforations. t =.6 mm, D = 6 mm..8.6 t =.4mm t =.5mm t =.6mm t =.8mm t =.2mm Figure 4..2: The Effect of the Thickness of the MPP. d =.4 mm, D = 6 mm. Next, the thickness of the MPP was changed from.4 to.2 mm. As the MPP became thicker, the peak shifted to lower frequencies and the maximum sound absorption coefficient went down by a couple of decimals. At last, the length of the backing space (D) was increased from to mm. The peak shifted to lower frequencies. There was also a minor improvement on the maximum sound absorption coefficient as D increased.

9 9.8.6 D = mm D = 5mm D = 6mm D = 7mm D = mm Figure 4..3: The Effect of the Length of the Backing. d =.4 mm, t =.6 mm..8 Two-Mic Method Four-Mic Method Maa's Theory Figure 4..4: Estimation of the parameters. d =.4 mm, t =.4 mm, D = 3 mm, 2.9 cm Tube. As mentioned before, the diameter of the perforation and the thickness of the MPP, so there has to be a way to estimate the parameters. Fig shows the results from different methods. The results from the two-mic method and the four-mic method (or the one load method) do not match exactly because, for one, there are defects of the 3-D print, such as the uneven edges and the unsmooth surfaces which caused some leakage of the sound or unwanted reflection; for two, the boundary conditions were different. The two-mic methods had a hard back termination. However, the termination for the four-mic method was anechoic, and that is why at low frequencies, the sound absorption coefficient is higher. When using d = t =.4 mm and D = 3 mm as the theoretical inputs, the peaks roughly matched. Therefore, it was decided that the diameter of the perforation and the thickness of the MPP were.4 mm. Even though the models were 3-D printed, the experimental results still aligned quite well with the theoretical estimation.

10 TL TL 4.2 The Effect of the Honeycomb Structures cm Honeycomb Cavity According to Fig , the single MPP actually has a relatively higher sound absorption coefficient compared to System 2 (Fig. 3.3) because the single MPP has high acoustic resistance but low mass reactance. If the facing (the side closer to the sound source) of the panel was an MPP, it had higher sound absorption; if the facing of the panel was a plate without any perforations, it had higher sound transmission loss because some of the sound waves were reflected back by the hard surface. An MPP can weaken the sound energy better. The hard facing can reflect the sound waves back more as opposed to the MPP hence the higher transmission loss. However, System 2 does improve the transmission loss in general (b).4.2 Single MPP D = 2 3 Figure 4.2..: Absorption Coefficient: Honeycomb D = 6 cm. (a): cm Tube Results; (b): 2.9 cm Tube Results. (F: Front Plate, B: Back Plate, Plain: A Plate without Perforations) Single MPP D = (a) (a) Single MPP D = 3 Single MPP D = (b) Figure : Transmission Loss: Honeycomb D = 6 cm. (a): cm Tube Results; (b): 2.9 cm Tube Results. (F: Front Plate, B: Back Plate, Plain: A Plate without Perforations, Single MPP: An MPP without Honeycomb Cavity Partitioning) cm Honeycomb Cavity Similar trends can be observed. The MPP facing offered better sound absorption; the plain facing offered better sound transmission loss. However, the optimum performance happened in the higher frequency because - 3

11 TL TL the honeycomb cavity was not long enough. Therefore, in the future, it is suggested that the honeycomb cavity should be longer than 5 cm in order for the peak to happen in the lower frequencies..8.8 (b) Single MPP D = 2 3 Figure : Absorption Coefficient: Honeycomb D = 7 cm. (a): cm Tube Results; (b): 2.9 cm Tube Results. (F: Front Plate, B: Back Plate, Plain: A Plate without Perforations) Single MPP D = (a) (a) Single MPP D = 3 Single MPP D = (b) Figure : Transmission Loss: Honeycomb D = 7 cm. (a): cm Tube Results; (b): 2.9cm Tube Results. (F: Front Plate, B: Back Plate, Plain: A Plate without Perforations, Single MPP: An MPP without Honeycomb Cavity Partitioning) 4.3 Analysis of System 3 System 3 (Fig. 3.5) is almost equivalent to putting two System s (Fig..) together. As expected, the single MPP displayed better sound absorption ability because the perforations helped weakened the sound power. The sound absorption performance was rather poor. However, System 3 had much better transmission loss because the sound source hit the hard face of the panel directly and the sound waves were reflected. There is a large improvement in the transmission loss though in the low frequency, the improvement was only by about db. High frequency noise has a short wavelength which explains why the transmission loss was larger than 6 db in the high frequency regime because - 3

12 TL TL 2 the length of the backing cavity, D, was too short only cm. If D was much longer (say, 5 cm), it is expected that the transmission loss peak would happen in the low frequency regime, which is desired Single MPP System Figure : Absorption Coefficient: Honeycomb D = cm, s = 5 cm. (a): cm Tube Results; (b): 2.9cm Tube Results. (Single MPP: An MPP without Honeycomb Cavity Partitioning) 35 3 Single MPP System Single MPP System 3 3 Single MPP System Figure : Transmission Loss Honeycomb D = cm, s = 5 cm. (a): cm Tube Results; (b): 2.9cm Tube Results. (Single MPP: An MPP without Honeycomb Cavity Partitioning) 5 CONCLUSION The purpose of the MPPs is to control the low frequency noise, which happens in machineries, everyday conversations, etc. The traditional sound absorption materials do a decent job on high frequency noise but they are disadvantaged for low frequency sound. That is where MPPs come into play. Although the MPPs models in this paper were made using 3-D printing technology, the experimental and theoretical results lined up well. Firstly, the parameters of MPPs were studied. The larger the diameter, d, of the MPP perforations, the smaller the absorption coefficient, and the higher the peak frequency. If the thickness, t, of the MPP

13 3 increases, then the acoustical performance deteriorates, and the maximum absorption coefficient shifts to a lower frequency. Changing the length of the backing cavity, D, does not change the maximum absorption coefficient by too much though its peak shifts to a lower frequency. These parameters can be manipulated during the design process to target specific tonal components. Secondly, different MPP systems were examined. A hard facing panel can improve the sound transmission loss. An MPP facing panel can improve the sound absorption coefficient. The honeycomb structures can greatly improve the sound transmission loss. In this paper, the reason why PLA plastic was used was because it is the acceptable 3D-printing material for the printers available. As for exactly what kind of material would be economically, structurally and acoustically effective for MPPs, more research still needs to be done. In the future, 3-D printers with better accuracy should be used in order to make thinner MPPs with smaller submillimeter perforations. To make the MPP panels stronger, the holes should be alternating. Further, to have better acoustical performance in the low frequencies, the honeycomb cavity should be designed longer. In this study, each individual honeycomb had a thickness of cm and it took more than 6 hours to print. Making the honeycomb wall thinner can save time and materials. The impedance tubes can only offer incidence sound waves. Therefore, an experiment to investigate the acoustic performance of the MPPs at oblique angles of incidence should also be designed to see if the honeycomb structures can offer better results. As for MPP System 3, another experiment, where the honeycomb (D in Fig. 3.5) in between the two cavities is replaced with traditional sound absorption materials, should be done so that whether or not the honeycomb improves the transmission loss compared to fibrous porous can be clearly seen. ACKNOWLEDGEMENT The authors would like to thank Yangfan Liu and Nicholas Kim from Ray W. Herrick Laboratories for their technical supports.

14 4 REFERENCE [] Maa, Dah-You. "Potential of Microperforated Panel Absorber." The Journal of the Acoustical Society of America J. Acoust. Soc. Am. 4.5 (998): 286. [2] Herrin, David, Jinghao Liu, and Andy Seybert. "Properties and Applications of Microperforated Panels." Sound & Vibration. N.p., n.d. [3] Fuchs, H. V. & Zha, X. Micro-perforated structures as sound absorbers a review and outlook. Acta. Acust. United Acc. 92, (26). [4] Cheng, Yang, and Cheng Li. "MICRO PERFORATED PANEL ABSORBER IN SMALL SCALE CAVITY." The International Institute of Acoustics and Vibration IIAV. N.p., 3-7 July 24. [5] Sakagami, Kimihiro, Masayuki Morimoto, Motoki Yairi, and Atsuo Minemura. "A Pilot Study on Improving the Absorptivity of a Thick Microperforated Panel Absorber." Applied Acoustics 69.2 (28): [6] Palumbo, Dan, and Jacob Klos. "The Effects of Voids and Recesses on the Transmission Loss of Honeycomb Sandwich Panels." Noise Control Eng. J. Noise Control Engineering Journal 59.6 (2): 63. [7] Sakagami, Kimihiro, Ippei Yamashita, Motoki Yairi, and Masayuki Morimoto. "Sound Absorption Characteristics of a Honeycomb-backed Microperforated Panel Absorber: Revised Theory and Experimental Validation." Noise Control Eng. J. Noise Control Engineering Journal 58.2 (2): 57. [8] Maa, Dah-You. "Microperforated-Panel Wideband Absorbers." Noise Control Eng. J. Noise Control Engineering Journal 29.3 (987): 77. [9] Jaouen, L., and F.-X. Be cot. "Acoustical Characterization of Perforated Facings." The Journal of the Acoustical Society of America J. Acoust. Soc. Am (2): 4. [] Bolton, Stuard J., Taewook Yoo, and Oliviero Olivieri. "Technical Review - Measurement of Normal Incidence Transmission Loss and Other Acoustical Properties of Materials Placed in a Standing Wave Tube." Brüel&Kjær Sound&Vibration Measurement A/S (27). Web. 2 June 26. < [] Hou, Kang, and J. Stuart Bolton. "A Transfer Matrix Method for Estimating the Dispersion and Attenuation of Plane Waves in the Standing Wave Tube." The Journal of the Acoustical Society of America 25.4 (29): [2] Sakagami, Kimihiro, Ippei Yamashita, Motoki Yairi, and Masayuki Morimoto. "Effect of a Honeycomb on the Absorption Characteristics of Double-leaf Microperforated Panel (MPP) Space Sound Absorbers." Noise Control Eng. J. Noise Control Engineering Journal 59.4 (2): 363.

A Desktop Procedure for Measuring the Transmission Loss of Automotive Door Seals

A Desktop Procedure for Measuring the Transmission Loss of Automotive Door Seals Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 6-14-2017 A Desktop Procedure for Measuring the Transmission Loss of Automotive Door Seals

More information

MULTIPLE-LEAF SOUND ABSORBERS WITH MICROPERFORATED PANELS: AN OVERVIEW

MULTIPLE-LEAF SOUND ABSORBERS WITH MICROPERFORATED PANELS: AN OVERVIEW MULTIPLE-LEAF SOUND ABSORBERS WITH MICROPERFORATED PANELS: AN OVERVIEW Kimihiro Sakagami 1,** ; Motoki Yairi 2 ; Masayuki Morimoto 1 1 Environmental Acoustics Lab., Graduate School of Engineering, Kobe

More information

Perforated Flexible Membrane Insertion Influence on The Sound Absorption Performance of Cavity Backed Micro Perforated Panel

Perforated Flexible Membrane Insertion Influence on The Sound Absorption Performance of Cavity Backed Micro Perforated Panel 7th International Conference on Physics and Its Applications 2014 (ICOPIA 2014) Perforated Flexible Membrane Insertion Influence on The Sound Absorption Performance of Cavity Backed Micro Perforated Panel

More information

Micro-perforated sheets as day-light ceilings

Micro-perforated sheets as day-light ceilings Micro-perforated sheets as day-light ceilings Christian NOCKE 1 ; Catja HILGE 1 ; Jean-Marc SCHERRER 1, Akustikbüro Oldenburg, Germany BARRISOL S.A.S, France ABSTRACT The theory of microperforated panel

More information

A Guide to the Application of Microperforated Panel Absorbers

A Guide to the Application of Microperforated Panel Absorbers A Guide to the Application of Microperforated Panel Absorbers David W. Herrin, Weiyun Liu, Xin Hua, and Jinghao Liu, University of Kentucky, Lexington, Kentucky Microperforated panel absorbers are increasing

More information

Sound absorption and reflection with coupled tubes

Sound absorption and reflection with coupled tubes Sound absorption and reflection with coupled tubes Abstract Frits van der Eerden University of Twente, Department of Mechanical Engineering (WB-TMK) P.O. Box 27, 75 AE Enschede, The Netherlands f.j.m.vandereerden@wb.utwente.nl

More information

Improvements to the Two-Thickness Method for Deriving Acoustic Properties of Materials

Improvements to the Two-Thickness Method for Deriving Acoustic Properties of Materials Baltimore, Maryland NOISE-CON 4 4 July 2 4 Improvements to the Two-Thickness Method for Deriving Acoustic Properties of Materials Daniel L. Palumbo Michael G. Jones Jacob Klos NASA Langley Research Center

More information

Sound absorption of Helmholtz resonator included a winding built-in neck extension

Sound absorption of Helmholtz resonator included a winding built-in neck extension Sound absorption of Helmholtz resonator included a winding built-in neck extension Shinsuke NAKANISHI 1 1 Hiroshima International University, Japan ABSTRACT Acoustic resonant absorber like a perforated

More information

NASA Langley Activities on Broadband Fan Noise Reduction via Novel Liner Technologies

NASA Langley Activities on Broadband Fan Noise Reduction via Novel Liner Technologies NASA Langley Activities on Broadband Fan Noise Reduction via Novel Liner Technologies Michael G. Jones NASA Langley Research Center, Hampton, VA CEAS/X-Noise Workshop on Broadband Noise of Rotors and Airframe

More information

Welcome Contents Back 1

Welcome Contents Back 1 Welcome Contents Back 1 Active silencers for air-conditioning units P. Leistner, H.V. Fuchs 1. Introduction The noise emission of air-conditioning units can be reduced directly at the fan during the design

More information

Optical Fiber Technology. Photonic Network By Dr. M H Zaidi

Optical Fiber Technology. Photonic Network By Dr. M H Zaidi Optical Fiber Technology Numerical Aperture (NA) What is numerical aperture (NA)? Numerical aperture is the measure of the light gathering ability of optical fiber The higher the NA, the larger the core

More information

Influence of the Cavity Mode on Tire Surface Vibration

Influence of the Cavity Mode on Tire Surface Vibration Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 9-2011 Influence of the Cavity Mode on Tire Surface Vibration J Stuart Bolton Purdue University,

More information

ENHANCEMENT OF THE TRANSMISSION LOSS OF DOUBLE PANELS BY MEANS OF ACTIVELY CONTROLLING THE CAVITY SOUND FIELD

ENHANCEMENT OF THE TRANSMISSION LOSS OF DOUBLE PANELS BY MEANS OF ACTIVELY CONTROLLING THE CAVITY SOUND FIELD ENHANCEMENT OF THE TRANSMISSION LOSS OF DOUBLE PANELS BY MEANS OF ACTIVELY CONTROLLING THE CAVITY SOUND FIELD André Jakob, Michael Möser Technische Universität Berlin, Institut für Technische Akustik,

More information

Measurement of Small Fabric Samples using the Transmission Loss Tube Apparatus

Measurement of Small Fabric Samples using the Transmission Loss Tube Apparatus Providence, Rhode Island NOISE-CON 2016 2016 June 13-15 Measurement of Small Fabric Samples using the Transmission Loss Tube Apparatus Kelby P. Weilnau Edward R. Green Brüel & Kjær North America Inc. 6855

More information

Noise Attenuation by Two One Degree of Freedom Helmholtz Resonators

Noise Attenuation by Two One Degree of Freedom Helmholtz Resonators Global Science and Technology Journal Vol. 3. No. 1. March 015 Issue. Pp.1-9 Noise Attenuation by Two One Degree of Freedom Helmholtz Resonators Md. Amin Mahmud a*, Md. Zahid Hossain b, Md. Shahriar Islam

More information

Tyre Cavity Coupling Resonance and Countermeasures Zamri Mohamed 1,a, Laith Egab 2,b and Xu Wang 2,c

Tyre Cavity Coupling Resonance and Countermeasures Zamri Mohamed 1,a, Laith Egab 2,b and Xu Wang 2,c Tyre Cavity Coupling Resonance and Countermeasures Zamri Mohamed 1,a, Laith Egab,b and Xu Wang,c 1 Fakulti Kej. Mekanikal, Univ. Malaysia Pahang, Malaysia 1, School of Aerospace, Mechanical and Manufacturing

More information

PRODUCT DATA. Applications. Uses

PRODUCT DATA. Applications. Uses PRODUCT DATA Impedance Tube Kit (50 Hz 6.4 khz) Type 4206 Impedance Tube Kit (100 Hz 3.2 khz) Type 4206-A Transmission Loss Tube Kit (50 Hz 6.4 khz) Type 4206-T Brüel & Kjær offers a complete range of

More information

This is an author-deposited version published in: Eprints ID : 14601

This is an author-deposited version published in:  Eprints ID : 14601 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Considerations about Radiated Emission Tests in Anechoic Chambers that do not fulfil the NSA Requirements

Considerations about Radiated Emission Tests in Anechoic Chambers that do not fulfil the NSA Requirements 6 th IMEKO TC Symposium Sept. -, 8, Florence, Italy Considerations about Radiated Emission Tests in Anechoic Chambers that do not fulfil the NSA Requirements M. Borsero, A. Dalla Chiara 3, C. Pravato,

More information

Validation of the Experimental Setup for the Determination of Transmission Loss of Known Reactive Muffler Model by Using Finite Element Method

Validation of the Experimental Setup for the Determination of Transmission Loss of Known Reactive Muffler Model by Using Finite Element Method Validation of the Experimental Setup for the etermination of Transmission Loss of Known Reactive Muffler Model by Using Finite Element Method M.B. Jadhav, A. P. Bhattu Abstract: The expansion chamber is

More information

Sound attenuation devices for dogs barking (estimation of aperture ratio and experimental study of silencer)

Sound attenuation devices for dogs barking (estimation of aperture ratio and experimental study of silencer) International Journal of Mechanical Engineering and Applications 014; (1): 18-4 Published online March 0, 014 (http://www.sciencepublishinggroup.com/j/ijmea) doi: 10.11648/j.ijmea.014001.14 Sound attenuation

More information

PanPhonics Panels in Active Control of Sound

PanPhonics Panels in Active Control of Sound PanPhonics White Paper PanPhonics Panels in Active Control of Sound Seppo Uosukainen VTT Building and Transport Contents Introduction... 1 Active control of sound... 1 Interference... 2 Control system...

More information

Attenuation of acoustic resonances in an inclined open cavity using Micro Perforated Panels

Attenuation of acoustic resonances in an inclined open cavity using Micro Perforated Panels Attenuation of acoustic resonances in an inclined open cavity using Micro Perforated Panels Cristobal GONZALEZ DIAZ 1 ; Santiago ORTIZ 2 ; Pedro COBO 3 1,2,3 Instituto de Tecnologías Físicas y de la información

More information

Detection of Protective Coating Disbonds in Pipe Using Circumferential Guided Waves

Detection of Protective Coating Disbonds in Pipe Using Circumferential Guided Waves 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Detection of Protective Coating Disbonds in Pipe Using Circumferential Guided Waves Jason K. Van Velsor Pennsylvania State

More information

Acoustic-Laser Vibrometry for Standoff Detection of Defects in Materials

Acoustic-Laser Vibrometry for Standoff Detection of Defects in Materials 11th European Conference on Non-Destructive Testing (ECNDT 214), October 6-1, 214, Prague, Czech Republic Acoustic-Laser Vibrometry for Standoff Detection of Defects in Materials Oral BUYUKOZTURK 1, Justin

More information

Sound absorption mechanism of porous asphalt pavement

Sound absorption mechanism of porous asphalt pavement J. Acoust. Soc. Jpn. (E) 20, 1 (1999) Sound absorption mechanism of porous asphalt pavement Michiyuki Yamaguchi,* Hiroshi Nakagawa,** and Takuya Mizuno*** * Bridgestone Corporation, 1, Kashio-cho, Totsuka-ku,

More information

Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self- Powered Sound Recording

Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self- Powered Sound Recording Supporting Information Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self- Powered Sound Recording Xing Fan,,,# Jun Chen,,# Jin Yang,,# Peng Bai, Zhaoling

More information

Study of the Effect of RCS on Radar Detection

Study of the Effect of RCS on Radar Detection Study of the Effect of RCS on Radar Detection Dr. Haitham Kareem Ali (Assistant Professor) Technical College of Engineering, Sulaimani Polytechnic University, Kurdistan Region, Iraq doi: 10.19044/esj.2017.v13n15p148

More information

Modeling Diffraction of an Edge Between Surfaces with Different Materials

Modeling Diffraction of an Edge Between Surfaces with Different Materials Modeling Diffraction of an Edge Between Surfaces with Different Materials Tapio Lokki, Ville Pulkki Helsinki University of Technology Telecommunications Software and Multimedia Laboratory P.O.Box 5400,

More information

Countermeasure for Reducing Micro-pressure Wave Emitted from Railway Tunnel by Installing Hood at the Exit of Tunnel

Countermeasure for Reducing Micro-pressure Wave Emitted from Railway Tunnel by Installing Hood at the Exit of Tunnel PAPER Countermeasure for Reducing Micro-pressure Wave Emitted from Railway Tunnel by Installing Hood at the Exit of Tunnel Sanetoshi SAITO Senior Researcher, Laboratory Head, Tokuzo MIYACHI, Dr. Eng. Assistant

More information

Development of a reactive silencer for turbocompressors

Development of a reactive silencer for turbocompressors Development of a reactive silencer for turbocompressors N. González Díez, J.P.M. Smeulers, D. Meulendijks 1 S. König TNO Heat Transfer & Fluid Dynamics Siemens AG Energy Sector The Netherlands Duisburg/Germany

More information

Performance of Roadside Sound Barriers with Sound Absorbing Edges

Performance of Roadside Sound Barriers with Sound Absorbing Edges Performance of Roadside Sound Barriers with Sound Absorbing Edges Diffracted Path Transmitted Path Interference Source Luc Mongeau, Sanghoon Suh, and J. Stuart Bolton School of Mechanical Engineering,

More information

Fiberoptic and Waveguide Sensors

Fiberoptic and Waveguide Sensors Fiberoptic and Waveguide Sensors Wei-Chih Wang Department of Mecahnical Engineering University of Washington Optical sensors Advantages: -immune from electromagnetic field interference (EMI) - extreme

More information

NOVEL IN-LINE MICROSTRIP COUPLED-LINE BAND- STOP FILTER WITH SHARP SKIRT SELECTIVITY

NOVEL IN-LINE MICROSTRIP COUPLED-LINE BAND- STOP FILTER WITH SHARP SKIRT SELECTIVITY Progress In Electromagnetics Research, Vol. 137, 585 597, 2013 NOVEL IN-LINE MICROSTRIP COUPLED-LINE BAND- STOP FILTER WITH SHARP SKIRT SELECTIVITY Gui Liu 1, * and Yongle Wu 2 1 College of Physics & Electronic

More information

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Picosecond Ultrasonic Microscopy of Semiconductor Nanostructures Thomas J GRIMSLEY

More information

UNIT Write short notes on travelling wave antenna? Ans: Travelling Wave Antenna

UNIT Write short notes on travelling wave antenna? Ans:   Travelling Wave Antenna UNIT 4 1. Write short notes on travelling wave antenna? Travelling Wave Antenna Travelling wave or non-resonant or aperiodic antennas are those antennas in which there is no reflected wave i.e., standing

More information

Car Cavity Acoustics using ANSYS

Car Cavity Acoustics using ANSYS Car Cavity Acoustics using ANSYS Muthukrishnan A Assistant Consultant TATA Consultancy Services 185,Lloyds Road, Chennai- 600 086 INDIA Introduction The study of vehicle interior acoustics in the automotive

More information

Pre Test 1. Name. a Hz b Hz c Hz d Hz e Hz. 1. d

Pre Test 1. Name. a Hz b Hz c Hz d Hz e Hz. 1. d Name Pre Test 1 1. The wavelength of light visible to the human eye is on the order of 5 10 7 m. If the speed of light in air is 3 10 8 m/s, find the frequency of the light wave. 1. d a. 3 10 7 Hz b. 4

More information

A five-microphone method to measure the reflection coefficients of headsets

A five-microphone method to measure the reflection coefficients of headsets A five-microphone method to measure the reflection coefficients of headsets Jinlin Liu, Huiqun Deng, Peifeng Ji and Jun Yang Key Laboratory of Noise and Vibration Research Institute of Acoustics, Chinese

More information

Investigation of An Acoustic Temperature Transducer and its Application for Heater Temperature Measurement

Investigation of An Acoustic Temperature Transducer and its Application for Heater Temperature Measurement American Journal of Applied Sciences 4 (5): 294-299, 7 ISSN 1546-9239 7 Science Publications Corresponding Author: Investigation of An Acoustic Temperature Transducer and its Application for Heater Temperature

More information

Acoustic Performance of Helmholtz Resonator with Neck as Metallic Bellows

Acoustic Performance of Helmholtz Resonator with Neck as Metallic Bellows ISSN 2395-1621 Acoustic Performance of Helmholtz Resonator with Neck as Metallic Bellows #1 Mr. N.H. Nandekar, #2 Mr. A.A. Panchwadkar 1 nil.nandekar@gmail.com 2 panchwadkaraa@gmail.com 1 PG Student, Pimpri

More information

Effect of Bulk Density on the Acoustic Performance of Thermally Bonded Nonwovens

Effect of Bulk Density on the Acoustic Performance of Thermally Bonded Nonwovens Effect of Bulk Density on the Acoustic Performance of Thermally Bonded Nonwovens Wenbin Zhu 1, Vidya Nandikolla 2, Brian George 1 1 Philadelphia University, Philadelphia, PA UNITED STATES 2 California

More information

Passive Noise Suppression Methods for Improvement of Photoacoustic and Photothermal Measurements of Aerosol Light Absorption from Mobile Platforms

Passive Noise Suppression Methods for Improvement of Photoacoustic and Photothermal Measurements of Aerosol Light Absorption from Mobile Platforms Passive Noise Suppression Methods for Improvement of Photoacoustic and Photothermal Measurements of Aerosol Light Absorption from Mobile Platforms Control # 94 W. Patrick Arnott 1, Arthur J. Sedlacek 2,

More information

Keywords: Ultrasonic Testing (UT), Air-coupled, Contact-free, Bond, Weld, Composites

Keywords: Ultrasonic Testing (UT), Air-coupled, Contact-free, Bond, Weld, Composites Single-Sided Contact-Free Ultrasonic Testing A New Air-Coupled Inspection Technology for Weld and Bond Testing M. Kiel, R. Steinhausen, A. Bodi 1, and M. Lucas 1 Research Center for Ultrasonics - Forschungszentrum

More information

Characterization and Validation of Acoustic Cavities of Automotive Vehicles

Characterization and Validation of Acoustic Cavities of Automotive Vehicles Characterization and Validation of Acoustic Cavities of Automotive Vehicles John G. Cherng and Gang Yin R. B. Bonhard Mark French Mechanical Engineering Department Ford Motor Company Robert Bosch Corporation

More information

: Numerical Prediction of Radiated Noise Level From Suction Accumulators of Rotary Compressors

: Numerical Prediction of Radiated Noise Level From Suction Accumulators of Rotary Compressors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1998 : Numerical Prediction of Radiated Noise Level From Suction Accumulators of Rotary

More information

Interaction of Sound and. logarithms. Logarithms continued. Decibels (db) Decibels (db) continued. Interaction of Sound and Media continued

Interaction of Sound and. logarithms. Logarithms continued. Decibels (db) Decibels (db) continued. Interaction of Sound and Media continued Interaction of Sound and Media continued Interaction of Sound and Media Chapter 6 As sound travels through a media and interacts with normal anatomical structures its intensity weakens through what is

More information

INFLUENCE OF THE PERFOMANCE PARAMETERS IN TRANSMISSION LINE LOUDSPEAKER SYSTEM

INFLUENCE OF THE PERFOMANCE PARAMETERS IN TRANSMISSION LINE LOUDSPEAKER SYSTEM INFLUENCE OF THE PERFOMANCE PARAMETERS IN TRANSMISSION LINE LOUDSPEAKER SYSTEM PACS number: 43.38.Ja Basilio Pueo, José Escolano, and Miguel Romá Department of Physics, System Engineering and Signal Theory,

More information

Low Frequency Noise Reduction using Novel Poro-Elastic Acoustic Metamaterials

Low Frequency Noise Reduction using Novel Poro-Elastic Acoustic Metamaterials Low Frequency Noise Reduction using Novel Poro-Elastic Acoustic Metamaterials Adam C. Slagle Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment

More information

Analysis of an Air Transparent Soundproof Window System & Comparison to Physical Test Data

Analysis of an Air Transparent Soundproof Window System & Comparison to Physical Test Data Research & Development, FEA, CFD, Material Selection, Testing & Assessment Analysis of an Air Transparent Soundproof Window System & Comparison to Physical Test Data Mark S Yeoman 1, Vivekram Sivasailam

More information

Influence of the Vibrational Properties of the Resonance Board on the Acoustical Quality of a Piano

Influence of the Vibrational Properties of the Resonance Board on the Acoustical Quality of a Piano Influence of the Vibrational Properties of the Resonance Board on the Acoustical Quality of a Piano Zhenbo Liu,* Yixing Liu, and Jun Shen The vibrational properties of eight resonance boards made from

More information

The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient

The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient Alex ZINOVIEV 1 ; David W. BARTEL 2 1,2 Defence Science and Technology Organisation, Australia ABSTRACT

More information

Ultrasonic Level Detection Technology. ultra-wave

Ultrasonic Level Detection Technology. ultra-wave Ultrasonic Level Detection Technology ultra-wave 1 Definitions Sound - The propagation of pressure waves through air or other media Medium - A material through which sound can travel Vacuum - The absence

More information

A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites

A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites SINCE2013 Singapore International NDT Conference & Exhibition 2013, 19-20 July 2013 A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites Wei LIN, Lay Siong GOH, B.

More information

An explanation for the magic low frequency magnetic field shielding effectiveness of thin conductive foil with a relative permeability of 1

An explanation for the magic low frequency magnetic field shielding effectiveness of thin conductive foil with a relative permeability of 1 An explanation for the magic low frequency magnetic field shielding effectiveness of thin conductive foil with a relative permeability of 1 D.A. Weston K McDougall (magicse.r&d.doc) 31-7-2006 The data

More information

Development and sound absorption of interior adjustable acoustical panels

Development and sound absorption of interior adjustable acoustical panels Development and sound absorption of interior adjustable acoustical panels Chuan Wen Chou 1 ; Rong Ping Lai 2 ; Shao-Chun Chien 1 ; Po Hung Yeh 1 1 National Chen Kung University Dept. of Architecture, Tainan,

More information

A mobile reverberation cabin for acoustic measurements in an existing anechoic room

A mobile reverberation cabin for acoustic measurements in an existing anechoic room A mobile reverberation cabin for acoustic measurements in an existing anechoic room Elsa PIOLLET 1 ; Simon LAROCHE 2 ; Marc-Antoine BIANKI 3 ; Annie ROSS 4 1,2,3,4 Ecole Polytechnique de Montreal, Canada

More information

CHAPTER 7 DEVELOPMENT OF CHEMICAL BONDED NONWOVEN FABRICS MADE FROM RECLAIMED FIBERS FOR SOUND ABSORPTION BEHAVIOUR

CHAPTER 7 DEVELOPMENT OF CHEMICAL BONDED NONWOVEN FABRICS MADE FROM RECLAIMED FIBERS FOR SOUND ABSORPTION BEHAVIOUR 99 CHAPTER 7 DEVELOPMENT OF CHEMICAL BONDED NONWOVEN FABRICS MADE FROM RECLAIMED FIBERS FOR SOUND ABSORPTION BEHAVIOUR 7.1 INTRODUCTION Nonwoven is a kind of fabric with orientation or random arrangement

More information

Long-distance propagation of short-wavelength spin waves. Liu et al.

Long-distance propagation of short-wavelength spin waves. Liu et al. Long-distance propagation of short-wavelength spin waves Liu et al. Supplementary Note 1. Characterization of the YIG thin film Supplementary fig. 1 shows the characterization of the 20-nm-thick YIG film

More information

DIELECTRIC WAVEGUIDES and OPTICAL FIBERS

DIELECTRIC WAVEGUIDES and OPTICAL FIBERS DIELECTRIC WAVEGUIDES and OPTICAL FIBERS Light Light Light n 2 n 2 Light n 1 > n 2 A planar dielectric waveguide has a central rectangular region of higher refractive index n 1 than the surrounding region

More information

Presented at the 109th Convention 2000 September Los Angeles, California, USA

Presented at the 109th Convention 2000 September Los Angeles, California, USA Development of a Piezo-Electric Super Tweeter Suitable for DVD-Audio 5 Mitsukazu Kuze and Kazue Satoh Multimedia Development Center Matsushita Electric Industrial Co., Ltd. Kadoma-city, Osaka 57 l-8, Japan

More information

WIND SPEED ESTIMATION AND WIND-INDUCED NOISE REDUCTION USING A 2-CHANNEL SMALL MICROPHONE ARRAY

WIND SPEED ESTIMATION AND WIND-INDUCED NOISE REDUCTION USING A 2-CHANNEL SMALL MICROPHONE ARRAY INTER-NOISE 216 WIND SPEED ESTIMATION AND WIND-INDUCED NOISE REDUCTION USING A 2-CHANNEL SMALL MICROPHONE ARRAY Shumpei SAKAI 1 ; Tetsuro MURAKAMI 2 ; Naoto SAKATA 3 ; Hirohumi NAKAJIMA 4 ; Kazuhiro NAKADAI

More information

PRODUCT DATA USES. BENEFITS Normal incidence parameters are determined Fast and accurate measurements. Type 4206A. Type Type 4206T 50 Hz 1.

PRODUCT DATA USES. BENEFITS Normal incidence parameters are determined Fast and accurate measurements. Type 4206A. Type Type 4206T 50 Hz 1. PRODUCT DATA Impedance Tube Kit (50 Hz 6.4 khz) Type 4206 Impedance Tube Kit (100 Hz 3.2 khz) Type 4206 A Transmission Loss Tube Kit (50 Hz 6.4 khz) Type 4206 T Brüel & Kjær offers a complete range of

More information

Dynamic Modeling of Air Cushion Vehicles

Dynamic Modeling of Air Cushion Vehicles Proceedings of IMECE 27 27 ASME International Mechanical Engineering Congress Seattle, Washington, November -5, 27 IMECE 27-4 Dynamic Modeling of Air Cushion Vehicles M Pollack / Applied Physical Sciences

More information

Wojciech BATKO, Michał KOZUPA

Wojciech BATKO, Michał KOZUPA ARCHIVES OF ACOUSTICS 33, 4 (Supplement), 195 200 (2008) ACTIVE VIBRATION CONTROL OF RECTANGULAR PLATE WITH PIEZOCERAMIC ELEMENTS Wojciech BATKO, Michał KOZUPA AGH University of Science and Technology

More information

BUILDING A MODIFIED IMPEDANCE TUBE FOR MEASUREMENT OF SOUND TRANSMISSION LOSS AND ABSORPTION COEFFICIENTS OF POLYMER

BUILDING A MODIFIED IMPEDANCE TUBE FOR MEASUREMENT OF SOUND TRANSMISSION LOSS AND ABSORPTION COEFFICIENTS OF POLYMER BUILDING A MODIFIED IMPEDANCE TUBE FOR MEASUREMENT OF SOUND TRANSMISSION LOSS AND ABSORPTION COEFFICIENTS OF POLYMER CROSS-LINKED AEROGEL CORE COMPOSITES. By KALYAN CHAKRAVARTHY VENGALA Bachelor of Technology

More information

Development of a Reactive Silencer for Turbo Compressors

Development of a Reactive Silencer for Turbo Compressors Development of a Reactive Silencer for Turbo Compressors Jan Smeulers Nestor Gonzalez TNO Fluid Dynamics TNO Fluid Dynamics Stieltjesweg 1 Stieltjesweg 1 2628CK Delft 2628CK Delft jan.smeulers@tno.nl nestor.gonzalezdiez@tno.nl

More information

Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application

Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application Progress In Electromagnetics Research Letters, Vol. 74, 47 52, 2018 Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application Gobinda Sen * and Santanu Das Abstract A frequency tunable multi-layer

More information

EXPERIMENTS ON PERFORMANCES OF ACTIVE-PASSIVE HYBRID MUFFLERS

EXPERIMENTS ON PERFORMANCES OF ACTIVE-PASSIVE HYBRID MUFFLERS EXPERIMENTS ON PERFORMANCES OF ACTIVE-PASSIVE HYBRID MUFFLERS Hongling Sun, Fengyan An, Ming Wu and Jun Yang Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences,

More information

Simulation of Plasma Antenna Parameters

Simulation of Plasma Antenna Parameters www.ijetmas.com May 216, Volume 4, Issue 5, ISSN 2349-4476 Simulation of Plasma Antenna Parameters Prince Kumar and Rajneesh Kumar Department of Physics, Dr. H S. Gour Central University, Sagar (M. P),

More information

Resonance Tube Lab 9

Resonance Tube Lab 9 HB 03-30-01 Resonance Tube Lab 9 1 Resonance Tube Lab 9 Equipment SWS, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adaptors, channel), voltage sensor, 1.5 m leads

More information

Ultrasonic Testing using a unipolar pulse

Ultrasonic Testing using a unipolar pulse Ultrasonic Testing using a unipolar pulse by Y. Udagawa* and T. Shiraiwa** *Imaging Supersonic Laboratories Co.,Ltd. 12-7 Tezukayamanakamachi Nara Japan 63163 1. Abstract Krautkramer Japan Co.,Ltd. 9-29

More information

CHAPTER 3 THE DESIGN OF TRANSMISSION LOSS SUITE AND EXPERIMENTAL DETAILS

CHAPTER 3 THE DESIGN OF TRANSMISSION LOSS SUITE AND EXPERIMENTAL DETAILS 35 CHAPTER 3 THE DESIGN OF TRANSMISSION LOSS SUITE AND EXPERIMENTAL DETAILS 3.1 INTRODUCTION This chapter deals with the details of the design and construction of transmission loss suite, measurement details

More information

P R O D U C T D A T A

P R O D U C T D A T A P R O D U C T D A T A PULSE Acoustic Material Testing in a Tube Type 7758 PULSE Acoustic Material Testing in a Tube Type 7758 is software for determining the acoustical properties of noise control materials

More information

Design of a 915 MHz Patch Antenna with structure modification to increase bandwidth

Design of a 915 MHz Patch Antenna with structure modification to increase bandwidth Fidel Amezcua Professor: Ray Kwok Electrical Engineering 172 28 May 2010 Design of a 915 MHz Patch Antenna with structure modification to increase bandwidth 1. Introduction The objective presented in this

More information

Sonic crystal noise barrier using locally resonant scatterers

Sonic crystal noise barrier using locally resonant scatterers PROCEEDINGS of the 22 nd International Congress on Acoustics Road Traffic Noise Modeling and Noise Barrier: Paper ICA2016-904 Sonic crystal noise barrier using locally resonant scatterers Nicole Kessissoglou

More information

EFFECTS OF LINER GEOMETRY ON ACOUSTIC IMPEDANCE

EFFECTS OF LINER GEOMETRY ON ACOUSTIC IMPEDANCE EFFECTS OF LINER GEOMETRY ON ACOUSTIC IMPEDANCE Michael G. Jones, Maureen B. Tracy, Willie R. Watson and Tony L. Parrott NASA Langley Research Center Hampton, VA Abstract Current aircraft engine nacelles

More information

EXPERIMENTAL INVESTIGATIONS OF DIFFERENT MICROPHONE INSTALLATIONS FOR ACTIVE NOISE CONTROL IN DUCTS

EXPERIMENTAL INVESTIGATIONS OF DIFFERENT MICROPHONE INSTALLATIONS FOR ACTIVE NOISE CONTROL IN DUCTS EXPERIMENTAL INVESTIGATIONS OF DIFFERENT MICROPHONE INSTALLATIONS FOR ACTIVE NOISE CONTROL IN DUCTS M. Larsson, S. Johansson, L. Håkansson and I. Claesson Department of Signal Processing Blekinge Institute

More information

Injection moulding BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF POLYMER ENGINEERING

Injection moulding BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF POLYMER ENGINEERING B3 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF POLYMER ENGINEERING Injection moulding INJECTION MOULDING OF THERMOPLASTICS WWW.PT.BME.HU LOCATION OF

More information

QUASI-PERIODIC NOISE BARRIER WITH HELMHOLTZ RESONATORS FOR TAILORED LOW FREQUENCY NOISE REDUCTION

QUASI-PERIODIC NOISE BARRIER WITH HELMHOLTZ RESONATORS FOR TAILORED LOW FREQUENCY NOISE REDUCTION Abstract QUASI-PERIODIC NOISE BARRIER WITH HELMHOLTZ RESONATORS FOR TAILORED LOW FREQUENCY NOISE REDUCTION Samaneh M. B. Fard 1, Herwig Peters 1, Nicole Kessissoglou 1 and Steffen Marburg 2 1 School of

More information

Simulation of Cylindrical Resonator with Spiral Neck and Straight Neck to Attenuate the Low Frequency Noise of Muffler

Simulation of Cylindrical Resonator with Spiral Neck and Straight Neck to Attenuate the Low Frequency Noise of Muffler Simulation of Cylindrical Resonator with Spiral Neck and Straight Neck to Attenuate the Low Frequency Noise of Muffler Dr. Amit Kumar Gupta 1 Devesh Kumar Ratnavat 2 1 Mechanical Engineering Department,

More information

Low RCS Microstrip Antenna Array with Incident Wave in Grazing Angle

Low RCS Microstrip Antenna Array with Incident Wave in Grazing Angle Progress In Electromagnetics Research C, Vol. 55, 73 82, 2014 Low RCS Microstrip Antenna Array with Incident Wave in Grazing Angle Wen Jiang *, Junyi Ren, Wei Wang, and Tao Hong Abstract In this paper,

More information

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson University

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson University Guided Propagation Along the Optical Fiber Xavier Fernando Ryerson University The Nature of Light Quantum Theory Light consists of small particles (photons) Wave Theory Light travels as a transverse electromagnetic

More information

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson Comm. Lab

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson Comm. Lab Guided Propagation Along the Optical Fiber Xavier Fernando Ryerson Comm. Lab The Nature of Light Quantum Theory Light consists of small particles (photons) Wave Theory Light travels as a transverse electromagnetic

More information

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air Resonance Tube Equipment Capstone, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adapters, channel), voltage sensor, 1.5 m leads (2), (room) thermometer, flat rubber

More information

Study of Standing Waves to Find Speed of Sound in Air

Study of Standing Waves to Find Speed of Sound in Air Study of Standing Waves to Find Speed of Sound in Air Purpose Using mobile devices as sound analyzer and sound generator to study standing waves and determine the speed of sound in air. Theory The velocity

More information

Active Control of Sound Transmission through an Aperture in a Thin Wall

Active Control of Sound Transmission through an Aperture in a Thin Wall Fort Lauderdale, Florida NOISE-CON 04 04 September 8-0 Active Control of Sound Transmission through an Aperture in a Thin Wall Ingrid Magnusson Teresa Pamies Jordi Romeu Acoustics and Mechanical Engineering

More information

MAGNETO-DIELECTRIC COMPOSITES WITH FREQUENCY SELECTIVE SURFACE LAYERS

MAGNETO-DIELECTRIC COMPOSITES WITH FREQUENCY SELECTIVE SURFACE LAYERS MAGNETO-DIELECTRIC COMPOSITES WITH FREQUENCY SELECTIVE SURFACE LAYERS M. Hawley 1, S. Farhat 1, B. Shanker 2, L. Kempel 2 1 Dept. of Chemical Engineering and Materials Science, Michigan State University;

More information

The Hong Kong University of Science and Technology Final Year Project presentation 2007

The Hong Kong University of Science and Technology Final Year Project presentation 2007 The Hong Kong University of Science and Technology Final Year Project presentation 2007 Project supervisor: Dr. Andrew Poon Department of Electronic and Computer Engineering Wong Ka Ki Chris, ee_wkkaf,

More information

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed.

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed. UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE 422H1S RADIO AND MICROWAVE WIRELESS SYSTEMS Final Examination

More information

NOISE REDUCTION OF A RECIPROCATING COMPRESSOR BY ADDING A RESONATOR IN SUCTION PATH OF REFRIGERANT

NOISE REDUCTION OF A RECIPROCATING COMPRESSOR BY ADDING A RESONATOR IN SUCTION PATH OF REFRIGERANT NOISE REDUCTION OF A RECIPROCATING COMPRESSOR BY ADDING A RESONATOR IN SUCTION PATH OF REFRIGERANT Yogesh V. Birari, Mayur M. Nadgouda Product Engineering Department, Emerson Climate Technologies (India)

More information

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging Medical Imaging X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging From: Physics for the IB Diploma Coursebook 6th Edition by Tsokos, Hoeben and Headlee And Higher Level Physics 2 nd Edition

More information

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations.

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations. Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION SUBJECT- MICROWAVE ENGINEERING(EEC-603) Unit-III 1. What are the high frequency limitations of conventional tubes? Explain clearly. 2. Explain

More information

Design of a System to Control the Noise of Dry Fluid Coolers

Design of a System to Control the Noise of Dry Fluid Coolers International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 7 (2014), pp. 839-848 Research India Publications http://www.ripublication.com Design of a System to Control the

More information

Computational optimisation of the acoustic performance of mufflers for sleep apnoea devices

Computational optimisation of the acoustic performance of mufflers for sleep apnoea devices Paper Number 65, Proceedings of ACOUSTICS 211 2-4 November 211, Gold Coast, Australia Computational optimisation of the acoustic performance of mufflers for sleep apnoea devices Peter Jones and Nicole

More information

A SYSTEM IMPLEMENTATION OF AN ACTIVE NOISE CONTROL SYSTEM COMBINED WITH PASSIVE SILENCERS FOR IMPROVED NOISE REDUCTION IN DUCTS SUMMARY INTRODUCTION

A SYSTEM IMPLEMENTATION OF AN ACTIVE NOISE CONTROL SYSTEM COMBINED WITH PASSIVE SILENCERS FOR IMPROVED NOISE REDUCTION IN DUCTS SUMMARY INTRODUCTION A SYSTEM IMPLEMENTATION OF AN ACTIVE NOISE CONTROL SYSTEM COMBINED WITH PASSIVE SILENCERS FOR IMPROVED NOISE REDUCTION IN DUCTS Martin LARSSON, Sven JOHANSSON, Lars HÅKANSSON, Ingvar CLAESSON Blekinge

More information

Department of Electrical Engineering and Computer Science

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE of TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161/6637 Practice Quiz 2 Issued X:XXpm 4/XX/2004 Spring Term, 2004 Due X:XX+1:30pm 4/XX/2004 Please utilize

More information

SmartSenseCom Introduces Next Generation Seismic Sensor Systems

SmartSenseCom Introduces Next Generation Seismic Sensor Systems SmartSenseCom Introduces Next Generation Seismic Sensor Systems Summary: SmartSenseCom, Inc. (SSC) has introduced the next generation in seismic sensing technology. SSC s systems use a unique optical sensing

More information

Analysis of Acoustic Characteristics of the Muffler on Rotary Compressor

Analysis of Acoustic Characteristics of the Muffler on Rotary Compressor Purdue University Purdue e-pubs International Compressor Engeerg Conference School of Mechanical Engeerg 2004 nalysis of coustic Characteristics of the Muffler on Rotary Compressor L Chen Shanghai Hitachi

More information

Low frequency sound reproduction in irregular rooms using CABS (Control Acoustic Bass System) Celestinos, Adrian; Nielsen, Sofus Birkedal

Low frequency sound reproduction in irregular rooms using CABS (Control Acoustic Bass System) Celestinos, Adrian; Nielsen, Sofus Birkedal Aalborg Universitet Low frequency sound reproduction in irregular rooms using CABS (Control Acoustic Bass System) Celestinos, Adrian; Nielsen, Sofus Birkedal Published in: Acustica United with Acta Acustica

More information