Sonic crystal noise barrier using locally resonant scatterers

Size: px
Start display at page:

Download "Sonic crystal noise barrier using locally resonant scatterers"

Transcription

1 PROCEEDINGS of the 22 nd International Congress on Acoustics Road Traffic Noise Modeling and Noise Barrier: Paper ICA Sonic crystal noise barrier using locally resonant scatterers Nicole Kessissoglou (a), Samaneh M.B. Fard (b) (a) UNSW Australia, Sydney, Australia, (b) UNSW Australia, Sydney, Australia, Abstract Sonic crystal barriers have been receiving recent interest as potential noise barriers to reduce traffic noise in certain frequency bands. Sonic crystals comprise of periodic arrangements of sound scatterers for which the simplest scatterer topology is a solid cylinder. This paper investigates the acoustic performance of a sonic crystal noise barrier using vertical cylindrical shells of finite height. Locally resonant scatterers comprising of perforated or C-shaped cylindrical shells are examined. Results for the barrier insertion loss show that attenuation in a broad band gap is generated due to destructive interference between the scattered sound waves within the periodic structure. The local resonance of the scatterers creates an additional peak in insertion loss, approximately predicted by the Helmholtz resonator frequency. For the case of the perforated cylindrical shells, the location of the resonant frequency is shown to be dependent on the number and size of the holes. When the resonant frequency due to the perforations occurs within the Bragg band gap, a significant increase in insertion loss across the band gap is shown to occur. For the case of the C-shaped cylindrical shells, the size of the opening is shown to have a significant effect on both the local resonant frequency and the band gap due to Bragg scattering. Keywords: sonic crystal barrier, perforated cylindrical shell, Helmholtz resonator

2 1 Introduction Sonic crystal noise barrier using locally resonant scatterers Sonic crystals are periodic arrangements of sound scatterers in a homogeneous fluid medium, where there exists a large impedance mismatch between the scatterers and fluid. A luminous and attractive introduction to the concept of sonic crystals for noise control was presented to the general public when a sculpture comprising of a large periodic array of rigid cylinders was displayed in Madrid. An experimental study on this sonic crystal sculpture showed that the unit cell topology (a single rigid hollow cylinder), lattice symmetry (spacing between adjacent cylinder centres) and filling fraction (amount of material used per unit cell) contributed to the presence of Bragg band gaps in which propagation of sound is prohibited [1, 2]. A locally resonant sonic crystal was introduced by Liu et al. [3]. In their seminal paper, a 3D array of lead spheres coated with a thin layer of silicon rubber was stacked in a simple cubic arrangement and excited by sound waves. In addition to the Bragg band gap generated by the spatial periodicity of the cubic arrangement, a second band gap at wavelengths below the first Bragg band gap was generated, attributed to the local resonance of the individual sphere/rubber unit cells. The concept of locally resonant scatterers opened up exciting new possibilities for control of sound. Elford et al. [4] investigated sonic crystal configurations consisting of locally multi-resonant scatterers. By replacing the solid cylinders with C-shaped hollow cylinders, each scatterer essentially became a Helmholtz resonator. C-shaped resonators of increasing size were arranged concentrically around each other in a Russian doll, or Matryoshka, format. The local resonance of each slotted tube created a new band gap below the frequency of the Bragg band gap, dependent only on the dimensions of the resonance cavity and unrelated to the periodicity of the sonic crystal. Since the pioneering work by Martínez-Sala et al. [1], sonic crystals have been designed as noise barriers for reduction of road traffic noise. Krynkin et al. [5] studied the acoustic performance of periodic arrays of cylinders aligned parallel to the ground plane as a potential noise barrier. Koussa et al. [6] combined two geometries of sonic crystal scatterers also aligned parallel to the ground with a rigid straight noise barrier. To further extend the barrier insertion loss, the scatterers were modelled as either rigid cylinders or resonant cavities, where the cavities were either rigid or lined with an absorbent material. Tailoring of locally resonant sonic crystals to generate band gaps that prevent propagation of sound is ideally suited for difficult-to-address low frequency noise problems. However, the sub Bragg band gaps generated by the locally resonant scatterers may be very narrow in bandwidth, particularly at higher order harmonics [5]. This is useful for filtering but impractical for broadband noise control. This work investigates the acoustic performance of a sonic crystal noise barrier using vertical cylindrical shells of finite height. Locally resonant scatterers comprising of perforated or C-shaped cylindrical shells in the same periodic arrangement are examined. In an attempt to broaden the insertion loss, the number and size of the holes of the perforated cylindrical shells, as well as the size of the opening of the C-shaped cylindrical shells, are examined. 2

3 2 Sonic crystal parameters Parameters that affect the acoustic performance of a sonic crystal include the topology of the scatterers. The simplest unit cell comprises a sound hard circular scatterer. Other parameters that play a direct role on the creation of band gaps in sonic crystals are the lattice constant and filling fraction. The lattice constant, a, is defined as the distance between the centres of adjacent scatterers. Figure 1 shows a sonic crystal comprising of sound hard circular scatterers in a square lattice arrangement, showing the lattice constant. Figure 1: Sonic crystal comprising of sound hard circular scatterers in a square lattice The filling fraction is defined as the ratio of the volume occupied by the scattering material with respect to the total volume of the sonic crystal. For a square lattice, the filling fraction is [7] f f = πd2 4a 2 (1) where d is the diameter of the scatterers and a is the lattice constant. A band gap is represented by the centre frequency and its bandwidth. The centre frequency of the periodic structure can be approximately predicted by Bragg s law and is given by f c = nc, n = 1, 2, 3, (2) 2a where c is the speed of sound in the fluid host medium, which in this case is air. 3 Numerical model Three dimensional finite element models of sonic crystal barriers using rigid cylindrical shell scatterers, perforated cylindrical shells and C-shaped cylindrical shells were developed using COMSOL Multiphysics (4.3b). Three rows of cylindrical shell scatterers in the y-direction were considered, as shown in Figure 2. The uniform cylindrical shells were then replaced with the locally resonant rigid perforated cylindrical shells and the C-shaped cylindrical shells shown in Figure 3. Due to the periodic boundary conditions, the number of scatterers in the x-direction was extended to infinity. For all proceeding results, the cylindrical shell diameter, lattice constant 3

4 and filling fraction are respectively d=0.4m, a=0.6m and f f =0.35. The maximum element size in the mesh was dictated by the requirement for a minimum of 6 elements per wavelength, resulting in a finer mesh in the vicinity of the perforated holes. Figure 2: Numerical model of the sonic crystal barrier showing the boundary conditions Figure 3: Sound hard perforated cylindrical shells (left) and C-shaped cylindrical shells (right) 4

5 4 Results and discussion 4.1 Dispersion relation Figures 4 and 5 present dispersion curves for rigid uniform cylindrical shells and C-shaped cylindrical shell scatterers, respectively. For these results, a square lattice sonic crystal array with periodic boundary conditions in both the x- and y-directions was implemented. In Figure 4, the shaded region represents the Bragg band gap in which there is no solution of the frequency for the given wavenumber. As such, this band gap represents the frequencies at which waves cannot propagate in the sonic crystal structure. In Figure 5, two shaded regions can be observed corresponding to the Bragg band gap associated with the overall periodicity of the sonic crystal array and a narrower band gap below the Bragg band gap encompassing the local resonant frequency of the C-shaped scatterers. Figure 4: Dispersion relation for a sonic crystal comprising uniform sound hard cylindrical shells Figure 5: Dispersion relation for a sonic crystal comprising C-shaped cylindrical shells 5

6 4.2 Insertion loss Comparison of the insertion loss for a sonic crystal barrier comprising of uniform, perforated and C-shaped cylindrical shells is presented in Figure 6. All cylindrical shells have a height of 3m and a shell thickness of 20mm. The perforated cylindrical shell scatterers have 4 holes around the circumference and 16 holes along the length, with a radius of 20mm. The C-shaped cylindrical shell scatterers have an opening length of 0.1m. For the parameters chosen, the local resonance of both the perforated and C-shaped cylindrical shells are tuned to the same frequency. The insertion loss was obtained as the sound pressure level at the same receiver position (in the barrier shadow zone) without and with the presence of the barrier. Using uniform cylindrical shells, a broad band gap is generated due to Bragg scattering. Using locally resonant scatterers, a large peak in insertion loss occurs below the Bragg band gap, which corresponds to Helmholtz resonance. It can be observed that the C-shaped cylindrical shell provides a wider insertion loss compared to the perforated cylindrical shell around the Helmholtz resonant frequency. However, the lower frequency of the band gap due to Bragg scattering is shifted to a higher frequency using C-shaped scatterers. Furthermore, the overall attenuation due to Bragg scattering using C-shaped scatterers is reduced. For the case of the perforated cylindrical shells, the Bragg band gap is mostly unaffected by the sub Bragg band gap associated with the local Helmholtz resonant frequency. Figure 6: Insertion loss for a sonic crystal barrier using uniform, C-shaped or perforated cylindrical shell The effect of the size of the hole radius of the perforated cylindrical shells on the barrier insertion loss is presented in Figure 7. Each perforated cylindrical shell scatterer has 8 holes around its circumference and 16 holes along its length. Increasing the hole radius from 10mm to 20mm results in an increase in the frequency at which the narrow band peak insertion loss occurs. When the hole radius is significantly increased to 40mm, the perforated cylindrical shells no longer act as a sonic crystal, attributed to the fact that air can easily pass through the holes. An interesting phenomenon occurs when the resonant frequency due to the perforations occurs 6

7 within the Bragg band gap, as in the case of the hole radius of 20mm. A global increase in insertion loss within the Bragg band gap using perforated cylindrical shell scatterers compared with uniform cylindrical shells can be observed, attributed to Fano resonance [8]. Figure 8 presents the effect of increasing the size of the opening of the C-shaped scatterers on the barrier insertion loss. The resonant frequency increases with an increase in the size of the opening. Furthermore, the lower frequency of the Bragg band gap is significantly affected by the size of the opening of the C-shaped cylindrical shells. Figure 7: Insertion loss for a sonic crystal barrier using uniform cylindrical shells or perforated cylindrical shells with varying size of hole radius Figure 8: Insertion loss for a sonic crystal barrier using uniform cylindrical shells or C-shaped cylindrical shells with varying size of opening 7

8 Figure 9 compares the insertion loss for a sonic crystal barrier using uniform cylindrical shells and perforated cylindrical shells with varying number of holes around the circumference in each row of scatterers. The hole radius is kept constant at 20mm. Two different cases associated with varying the number of holes is examined. In the first case, the first row of scatterers has 8 holes around the circumference, then 6 holes for the second row and 4 holes for the third row. In the second case, the first row of scatterers has 6 holes around the circumference, then 4 and 2 holes for the second and third rows, respectively. Three narrow insertion loss peaks can be observed, where each peak corresponds to the Helmholtz resonant frequency associated with the perforated cylindrical shell in each row. Decreasing the number of holes results in a shift of peak insertion loss to a lower resonant frequency. This is attributed to the fact that the total surface area occupied by the holes has decreased. The peak in insertion loss associated with each locally resonant scatterer only provides narrow band attenuation, with the exception when the local resonance occurs within the Bragg band gap, attributed to Fano resonance. However, since this local resonance is associated with one row of scatterers, only a very slight increase in insertion loss within the Bragg band gap occurs. Figure 9: Insertion loss for a sonic crystal barrier using uniform cylindrical shells or perforated cylindrical shells with varying number of holes around the circumference per row of cylindrical shell scatterers 5 Summary The acoustic performance of sonic crystal barriers comprising of sound hard scatterers in a square lattice periodic arrangement have been examined. Results for insertion loss revealed that a Bragg band gap was generated due to the periodic arrangement of the cylindrical shell scatterers. The band gap is dependent on the distance between the scatterers and the volume occupied by the scatterers. Locally resonant scatterers comprising of perforated and C-shaped cylindrical shells were also considered. The local resonance of the scatterers created an additional peak in insertion loss, approximately predicted by the frequency of a Helmholtz 8

9 resonator. For the case of the perforated cylindrical shells, the location of the resonant frequency was shown to be dependent on the number and size of the holes. When the resonant frequency due to the perforations occurred within the Bragg band gap, a significant increase in insertion loss within the band gap was found to occur. For the case of the C-shaped cylindrical shells, the size of the opening was found to have a significant effect on both the location of the resonant frequency and the band gap due to Bragg scattering. Whilst the use of locally resonant scatterers has been shown to provide greater insertion loss compared with the use of uniform cylindrical shell scatterers, further work is required to design a sonic crystal barrier for broadband noise attenuation. References [1] Martínez-Sala, R.; Sancho, J.; Sánchez, J.V.; Gómez, V.; Llinares J.; Meseguer. F. Sound attenuation by sculpture, Nature, Vol 378, 1995, pp 241. [2] Kushwaha, M.S. Stop-bands for periodic metallic rods: Sculptures that can filter the noise, Applied Physics Letters, Vol 70, 1997, pp [3] Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y.Y.; Yang, Z.; Chan C.T.; Sheng. P. Locally resonant sonic materials, Science, Vol 289 (5485), 2000, pp [4] Elford, D.P.; Chalmers, L.; Kusmartsev, F.V.; Swallowe, G.M. Matryoshka locally resonant sonic crystal. Journal of the Acoustical Society of America, Vol 130 (5), 2011, pp [5] Krynkin, A.; Umnova, O.; Taherzadeh, S.; Attenborough, K. Analytical approximations for low frequency band gaps in periodic arrays of elastic shells, Journal of the Acoustical Society of America, Vol 133, 2013, pp [6] Koussa, F.; Defrance, J.; Jean P.; Blanc-Benon. P. Acoustical efficiency of a sonic crystal assisted noise barrier, Acta Acustica united with Acustica, Vol 99, 2013, pp [7] Gupta, A.; Lim, K.; Chew, C. A quasi two-dimensional model for sound attenuation by the sonic crystals. Journal of the Acoustical Society of America, Vol 132 (4), 2012, pp [8] Xiao, X.; Wu, J.; Miyamaru, F.; Zhang M.; Li, S.; Takeda, M.W.; Wen, W.; Sheng, P. Fano effect of metamaterial resonance in terahertz extraordinary transmission, Applied Physics Letters, Vol 98 (1), 2011, pp

Matryoshka Locally Resonant Sonic Crystal

Matryoshka Locally Resonant Sonic Crystal Matryoshka Locally Resonant Sonic Crystal D. P. Elford, L. Chalmers, F. Kusmartsev and G. M. Swallowe Department of Physics, Loughborough University, Loughborough, LE11 3TU, United Kingdom To verify methods

More information

QUASI-PERIODIC NOISE BARRIER WITH HELMHOLTZ RESONATORS FOR TAILORED LOW FREQUENCY NOISE REDUCTION

QUASI-PERIODIC NOISE BARRIER WITH HELMHOLTZ RESONATORS FOR TAILORED LOW FREQUENCY NOISE REDUCTION Abstract QUASI-PERIODIC NOISE BARRIER WITH HELMHOLTZ RESONATORS FOR TAILORED LOW FREQUENCY NOISE REDUCTION Samaneh M. B. Fard 1, Herwig Peters 1, Nicole Kessissoglou 1 and Steffen Marburg 2 1 School of

More information

Laboratory and full-scale experimental evaluation of the acoustic behaviour of sonic crystal noise barriers

Laboratory and full-scale experimental evaluation of the acoustic behaviour of sonic crystal noise barriers PROCEEDINGS of the 22 nd International Congress on Acoustics Phononic Crystals and Acoustic Metamaterials: Paper ICA2016-896 Laboratory and full-scale experimental evaluation of the acoustic behaviour

More information

Analysis on Acoustic Attenuation by Periodic Array Structure EH KWEE DOE 1, WIN PA PA MYO 2

Analysis on Acoustic Attenuation by Periodic Array Structure EH KWEE DOE 1, WIN PA PA MYO 2 www.semargroup.org, www.ijsetr.com ISSN 2319-8885 Vol.03,Issue.24 September-2014, Pages:4885-4889 Analysis on Acoustic Attenuation by Periodic Array Structure EH KWEE DOE 1, WIN PA PA MYO 2 1 Dept of Mechanical

More information

From concert halls to noise barriers : attenuation from interference gratings

From concert halls to noise barriers : attenuation from interference gratings From concert halls to noise barriers : attenuation from interference gratings Davies, WJ Title Authors Type URL Published Date 22 From concert halls to noise barriers : attenuation from interference gratings

More information

Simulation of Cylindrical Resonator with Spiral Neck and Straight Neck to Attenuate the Low Frequency Noise of Muffler

Simulation of Cylindrical Resonator with Spiral Neck and Straight Neck to Attenuate the Low Frequency Noise of Muffler Simulation of Cylindrical Resonator with Spiral Neck and Straight Neck to Attenuate the Low Frequency Noise of Muffler Dr. Amit Kumar Gupta 1 Devesh Kumar Ratnavat 2 1 Mechanical Engineering Department,

More information

Open noise barriers based on sonic crystals. Advances in noise control in transport infrastructures.

Open noise barriers based on sonic crystals. Advances in noise control in transport infrastructures. XII Conference on Transport Engineering, CIT 2016, 7-9 June 2016, Valencia, Spain Open noise barriers based on sonic crystals. Advances in noise control in transport infrastructures. M.P. Peiró-Torres

More information

Acoustic Performance of Helmholtz Resonator with Neck as Metallic Bellows

Acoustic Performance of Helmholtz Resonator with Neck as Metallic Bellows ISSN 2395-1621 Acoustic Performance of Helmholtz Resonator with Neck as Metallic Bellows #1 Mr. N.H. Nandekar, #2 Mr. A.A. Panchwadkar 1 nil.nandekar@gmail.com 2 panchwadkaraa@gmail.com 1 PG Student, Pimpri

More information

Elastic wave propagation along waveguides in three-dimensional phononic crystals

Elastic wave propagation along waveguides in three-dimensional phononic crystals PHYSICAL REVIEW B 70, 054302 (2004) Elastic wave propagation along waveguides in three-dimensional phononic crystals H. Chandra, 1 P. A. Deymier, 1 and J. O. Vasseur 2 1 Department of Materials Science

More information

Development of a Reactive Silencer for Turbo Compressors

Development of a Reactive Silencer for Turbo Compressors Development of a Reactive Silencer for Turbo Compressors Jan Smeulers Nestor Gonzalez TNO Fluid Dynamics TNO Fluid Dynamics Stieltjesweg 1 Stieltjesweg 1 2628CK Delft 2628CK Delft jan.smeulers@tno.nl nestor.gonzalezdiez@tno.nl

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A full-parameter unidirectional metamaterial cloak for microwaves Bilinear Transformations Figure 1 Graphical depiction of the bilinear transformation and derived material parameters. (a) The transformation

More information

Posts and Telecommunications, Mailbox 280#, 66 Xinmofan Road, Nanjing , China

Posts and Telecommunications, Mailbox 280#, 66 Xinmofan Road, Nanjing , China Progress In Electromagnetics Research Letters, Vol. 27, 117 123, 2011 SUPER-WIDEBAND PRINTED ASYMMETRICAL DIPOLE ANTENNA X. H. Jin 1, X. D. Huang 1, *, C. H. Cheng 1, and L. Zhu 2 1 College of Electronic

More information

Projects in microwave theory 2017

Projects in microwave theory 2017 Electrical and information technology Projects in microwave theory 2017 Write a short report on the project that includes a short abstract, an introduction, a theory section, a section on the results and

More information

Micro-strip patch antennas became very popular because of

Micro-strip patch antennas became very popular because of Electro-Magnetic Bandgap of Microstrip Antenna Arpit Nagar, Aditya Singh Mandloi, Vishnu Narayan Saxena nagar.arpit101@gmail.com Abstract Micro-strip patch antennas became very popular because of planer

More information

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS Progress In Electromagnetics Research C, Vol. 10, 87 99, 2009 COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS A. Danideh Department of Electrical Engineering Islamic Azad University (IAU),

More information

Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays

Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays Mr. F. Benikhlef 1 and Mr. N. Boukli-Hacen 2 1 Research Scholar, telecommunication,

More information

Antenna Theory and Design

Antenna Theory and Design Antenna Theory and Design Antenna Theory and Design Associate Professor: WANG Junjun 王珺珺 School of Electronic and Information Engineering, Beihang University F1025, New Main Building wangjunjun@buaa.edu.cn

More information

Design and dynamic characterization of lightweight materials that meet automotive NVH targets. Acoustic Resonant Meta-materials.

Design and dynamic characterization of lightweight materials that meet automotive NVH targets. Acoustic Resonant Meta-materials. Design and dynamic characterization of lightweight materials that meet automotive NVH targets Acoustic Resonant Meta-materials Bert Pluymers Department of Mechanical Engineering Celestijnenlaan 300B box

More information

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China Progress In Electromagnetics Research C, Vol. 6, 93 102, 2009 A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION E. Wang Information Engineering College of NCUT China J. Zheng Beijing Electro-mechanical

More information

Enhancing the low frequency vibration reduction performance of plates with embedded Acoustic Black Holes

Enhancing the low frequency vibration reduction performance of plates with embedded Acoustic Black Holes Enhancing the low frequency vibration reduction performance of plates with embedded Acoustic Black Holes Stephen C. CONLON 1 ; John B. FAHNLINE 1 ; Fabio SEMPERLOTTI ; Philip A. FEURTADO 1 1 Applied Research

More information

BACK RADIATION REDUCTION IN PATCH ANTENNAS USING PLANAR SOFT SURFACES

BACK RADIATION REDUCTION IN PATCH ANTENNAS USING PLANAR SOFT SURFACES Progress In Electromagnetics Research Letters, Vol. 6, 123 130, 2009 BACK RADIATION REDUCTION IN PATCH ANTENNAS USING PLANAR SOFT SURFACES E. Rajo-Iglesias, L. Inclán-Sánchez, and Ó. Quevedo-Teruel Department

More information

Broadband transition between substrate integrated waveguide and rectangular waveguide based on ridged steps

Broadband transition between substrate integrated waveguide and rectangular waveguide based on ridged steps This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Broadband transition between substrate integrated

More information

Examination of Organ Flue Pipe Resonator Eigenfrequencies by Means of the Boundary Element Method

Examination of Organ Flue Pipe Resonator Eigenfrequencies by Means of the Boundary Element Method Examination of Organ Flue Pipe Resonator Eigenfrequencies by Means of the Boundary Element Method Gábor Szoliva Budapest University of Technology and Economics, Department of Telecommunications, H-1117

More information

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics Swapnil Thorat PICT, Pune-411043,India Email:swapnil.world01@gmail.com Raj Kumar DIAT (Deemed University), Girinagar,

More information

Design of a resonant metamaterial based acoustic enclosure

Design of a resonant metamaterial based acoustic enclosure Design of a resonant metamaterial based acoustic enclosure C. C. Claeys 1, B. Pluymers 1, P. Sas 1, W. Desmet 1 1 KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300 B, B-3001, Heverlee,

More information

Sound absorption and reflection with coupled tubes

Sound absorption and reflection with coupled tubes Sound absorption and reflection with coupled tubes Abstract Frits van der Eerden University of Twente, Department of Mechanical Engineering (WB-TMK) P.O. Box 27, 75 AE Enschede, The Netherlands f.j.m.vandereerden@wb.utwente.nl

More information

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Picosecond Ultrasonic Microscopy of Semiconductor Nanostructures Thomas J GRIMSLEY

More information

Noise Attenuation by Two One Degree of Freedom Helmholtz Resonators

Noise Attenuation by Two One Degree of Freedom Helmholtz Resonators Global Science and Technology Journal Vol. 3. No. 1. March 015 Issue. Pp.1-9 Noise Attenuation by Two One Degree of Freedom Helmholtz Resonators Md. Amin Mahmud a*, Md. Zahid Hossain b, Md. Shahriar Islam

More information

Gain Enhancement and Wideband RCS Reduction of a Microstrip Antenna Using Triple-Band Planar Electromagnetic Band-Gap Structure

Gain Enhancement and Wideband RCS Reduction of a Microstrip Antenna Using Triple-Band Planar Electromagnetic Band-Gap Structure Progress In Electromagnetics Research Letters, Vol. 65, 103 108, 2017 Gain Enhancement and Wideband RCS Reduction of a Microstrip Antenna Using Triple-Band Planar Electromagnetic Band-Gap Structure Yang

More information

NASA Langley Activities on Broadband Fan Noise Reduction via Novel Liner Technologies

NASA Langley Activities on Broadband Fan Noise Reduction via Novel Liner Technologies NASA Langley Activities on Broadband Fan Noise Reduction via Novel Liner Technologies Michael G. Jones NASA Langley Research Center, Hampton, VA CEAS/X-Noise Workshop on Broadband Noise of Rotors and Airframe

More information

Passive Polymer. Figure 1 (a) and (b). Diagram of a 1-3 composite (left) and a 2-2 composite (right).

Passive Polymer. Figure 1 (a) and (b). Diagram of a 1-3 composite (left) and a 2-2 composite (right). MINIMISATION OF MECHANICAL CROSS TALK IN PERIODIC PIEZOELECTRIC COMPOSITE ARRAYS D. Robertson, G. Hayward, A. Gachagan and P. Reynolds 2 Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow,

More information

BROADBAND AND HIGH-GAIN PLANAR VIVALDI AN- TENNAS BASED ON INHOMOGENEOUS ANISOTROPIC ZERO-INDEX METAMATERIALS

BROADBAND AND HIGH-GAIN PLANAR VIVALDI AN- TENNAS BASED ON INHOMOGENEOUS ANISOTROPIC ZERO-INDEX METAMATERIALS Progress In Electromagnetics Research, Vol. 120, 235 247, 2011 BROADBAND AND HIGH-GAIN PLANAR VIVALDI AN- TENNAS BASED ON INHOMOGENEOUS ANISOTROPIC ZERO-INDEX METAMATERIALS B. Zhou, H. Li, X. Y. Zou, and

More information

Electromagnetic Band Gap Structures in Antenna Engineering

Electromagnetic Band Gap Structures in Antenna Engineering Electromagnetic Band Gap Structures in Antenna Engineering FAN YANG University of Mississippi YAHYA RAHMAT-SAMII University of California at Los Angeles Hfl CAMBRIDGE Щ0 UNIVERSITY PRESS Contents Preface

More information

COMPACT PLANAR MICROSTRIP CROSSOVER FOR BEAMFORMING NETWORKS

COMPACT PLANAR MICROSTRIP CROSSOVER FOR BEAMFORMING NETWORKS Progress In Electromagnetics Research C, Vol. 33, 123 132, 2012 COMPACT PLANAR MICROSTRIP CROSSOVER FOR BEAMFORMING NETWORKS B. Henin * and A. Abbosh School of ITEE, The University of Queensland, QLD 4072,

More information

Characterization of a 3-D Photonic Crystal Structure Using Port and S- Parameter Analysis

Characterization of a 3-D Photonic Crystal Structure Using Port and S- Parameter Analysis Characterization of a 3-D Photonic Crystal Structure Using Port and S- Parameter Analysis M. Dong* 1, M. Tomes 1, M. Eichenfield 2, M. Jarrahi 1, T. Carmon 1 1 University of Michigan, Ann Arbor, MI, USA

More information

EQUIVALENT THROAT TECHNOLOGY

EQUIVALENT THROAT TECHNOLOGY EQUIVALENT THROAT TECHNOLOGY Modern audio frequency reproduction systems use transducers to convert electrical energy to acoustical energy. Systems used for the reinforcement of speech and music are referred

More information

Reduction of Mutual Coupling between Cavity-Backed Slot Antenna Elements

Reduction of Mutual Coupling between Cavity-Backed Slot Antenna Elements Progress In Electromagnetics Research C, Vol. 53, 27 34, 2014 Reduction of Mutual Coupling between Cavity-Backed Slot Antenna Elements Qi-Chun Zhang, Jin-Dong Zhang, and Wen Wu * Abstract Maintaining mutual

More information

An experimental investigation of cavity noise control using mistuned Helmholtz resonators

An experimental investigation of cavity noise control using mistuned Helmholtz resonators An experimental investigation of cavity noise control using mistuned Helmholtz resonators ABSTRACT V Surya Narayana Reddi CHINTAPALLI; Chandramouli PADMANABHAN 1 Machine Design Section, Department of Mechanical

More information

arxiv:physics/ v1 [physics.optics] 28 Sep 2005

arxiv:physics/ v1 [physics.optics] 28 Sep 2005 Near-field enhancement and imaging in double cylindrical polariton-resonant structures: Enlarging perfect lens Pekka Alitalo, Stanislav Maslovski, and Sergei Tretyakov arxiv:physics/0509232v1 [physics.optics]

More information

Optimization of an Acoustic Waveguide for Professional Audio Applications

Optimization of an Acoustic Waveguide for Professional Audio Applications Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Optimization of an Acoustic Waveguide for Professional Audio Applications Mattia Cobianchi* 1, Roberto Magalotti 1 1 B&C Speakers S.p.A.

More information

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 43 CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 2.1 INTRODUCTION This work begins with design of reflectarrays with conventional patches as unit cells for operation at Ku Band in

More information

Attenuation of low frequency underwater noise using arrays of air-filled resonators

Attenuation of low frequency underwater noise using arrays of air-filled resonators Attenuation of low frequency underwater noise using arrays of air-filled resonators Mark S. WOCHNER 1 Kevin M. LEE 2 ; Andrew R. MCNEESE 2 ; Preston S. WILSON 3 1 AdBm Corp, 3925 W. Braker Ln, 3 rd Floor,

More information

The effect of underground cavities on design seismic ground motion

The effect of underground cavities on design seismic ground motion The effect of underground cavities on design seismic ground motion J. Liang, J. Zhang & Z. Ba Department of Civil Engineering, Tianjin University, Tianjin 300072, China liang@tju.edu.cn SUMMARY: In this

More information

Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application

Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application Progress In Electromagnetics Research Letters, Vol. 74, 47 52, 2018 Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application Gobinda Sen * and Santanu Das Abstract A frequency tunable multi-layer

More information

Analysis and Design of Semiconductor Photonic Crystal Double Bandpass Filter for CWDM Systems

Analysis and Design of Semiconductor Photonic Crystal Double Bandpass Filter for CWDM Systems International Journal of Optics and Applications 27, 7(3): 49-54 DOI:.5923/j.optics.2773. Analysis and Design of Semiconductor Photonic Crystal Double Bandpass Filter for CWDM Systems Leila Hajshahvaladi,

More information

Waveguides. Metal Waveguides. Dielectric Waveguides

Waveguides. Metal Waveguides. Dielectric Waveguides Waveguides Waveguides, like transmission lines, are structures used to guide electromagnetic waves from point to point. However, the fundamental characteristics of waveguide and transmission line waves

More information

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers Antennas and Propagation, Article ID 9812, 6 pages http://dx.doi.org/1.1155/214/9812 Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers Yuanyuan Zhang, 1,2 Juhua Liu, 1,2

More information

A five-microphone method to measure the reflection coefficients of headsets

A five-microphone method to measure the reflection coefficients of headsets A five-microphone method to measure the reflection coefficients of headsets Jinlin Liu, Huiqun Deng, Peifeng Ji and Jun Yang Key Laboratory of Noise and Vibration Research Institute of Acoustics, Chinese

More information

Chapter 7 Design of the UWB Fractal Antenna

Chapter 7 Design of the UWB Fractal Antenna Chapter 7 Design of the UWB Fractal Antenna 7.1 Introduction F ractal antennas are recognized as a good option to obtain miniaturization and multiband characteristics. These characteristics are achieved

More information

Analysis of an Air Transparent Soundproof Window System & Comparison to Physical Test Data

Analysis of an Air Transparent Soundproof Window System & Comparison to Physical Test Data Research & Development, FEA, CFD, Material Selection, Testing & Assessment Analysis of an Air Transparent Soundproof Window System & Comparison to Physical Test Data Mark S Yeoman 1, Vivekram Sivasailam

More information

Piezoelectric transducer excitation for guided waves propagation on pipeline with flexural wave modes

Piezoelectric transducer excitation for guided waves propagation on pipeline with flexural wave modes 9 th European Workshop on Structural Health Monitoring July 10-13, 2018, Manchester, United Kingdom Piezoelectric transducer excitation for guided waves propagation on pipeline with flexural wave modes

More information

A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND

A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND Progress In Electromagnetics Research Letters, Vol. 2, 77 86, 211 A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND L.-N. Chen, Y.-C. Jiao, H.-H. Xie, and F.-S. Zhang National

More information

Recon UWB Antenna for Cognitive Radio

Recon UWB Antenna for Cognitive Radio Progress In Electromagnetics Research C, Vol. 79, 79 88, 2017 Recon UWB Antenna for Cognitive Radio DeeplaxmiV.Niture *, Santosh S. Jadhav, and S. P. Mahajan Abstract This paper talks about a simple printed

More information

Circularly Polarized Microstrip Patch Antenna with T-Shaped Slot

Circularly Polarized Microstrip Patch Antenna with T-Shaped Slot IJECT Vo l. 4, Is s u e Sp l - 4, Ap r i l - Ju n e 2013 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Circularly Polarized Microstrip Patch Antenna with T-Shaped Slot 1 Sanyog Rawat, 2 K K Sharma

More information

Transformation of sound by a phononic crystal

Transformation of sound by a phononic crystal Transformation of sound by a phononic crystal Nicolas COTE 1 ; Jérôme VASSEUR 2 ; Quentin SOURON 1 ; Anne-Christine HLADKY-HENNION 1 1 IEMN, UMR 8520 CNRS, ISEN Department, 41 Boulevard Vauban, 59046 Lille,

More information

Performance Simulation and Fabrication of PZT Piezoelectric Composite Ring

Performance Simulation and Fabrication of PZT Piezoelectric Composite Ring International Journal of Materials Science and Applications 2016; 5(2): 89-94 http://www.sciencepublishinggroup.com/j/ijmsa doi: 10.11648/j.ijmsa.20160502.19 ISSN: 2327-2635 (Print); ISSN: 2327-2643 (Online)

More information

STUDY ON THE PLANAR CIRCULARLY POLARIZED ANTENNAS WITH SWASTIKA SLOT

STUDY ON THE PLANAR CIRCULARLY POLARIZED ANTENNAS WITH SWASTIKA SLOT Progress In Electromagnetics Research C, Vol. 39, 11 24, 213 STUDY ON THE PLANAR CIRCULARLY POLARIZED ANTENNAS WITH SWASTIKA SLOT Upadhyaya N. Rijal, Junping Geng *, Xianling Liang, Ronghong Jin, Xiang

More information

A. A. Kishk and A. W. Glisson Department of Electrical Engineering The University of Mississippi, University, MS 38677, USA

A. A. Kishk and A. W. Glisson Department of Electrical Engineering The University of Mississippi, University, MS 38677, USA Progress In Electromagnetics Research, PIER 33, 97 118, 2001 BANDWIDTH ENHANCEMENT FOR SPLIT CYLINDRICAL DIELECTRIC RESONATOR ANTENNAS A. A. Kishk and A. W. Glisson Department of Electrical Engineering

More information

Seismic metamaterials

Seismic metamaterials R. Craster, Paris December 2017 p. 1/30 Seismic metamaterials Richard Craster Department of Mathematics, Imperial College London joint with A. Colombi, B. Maling, O. Schnitzer (Imperial), D. Colquitt (Liverpool),

More information

Low Frequency Noise Reduction using Novel Poro-Elastic Acoustic Metamaterials

Low Frequency Noise Reduction using Novel Poro-Elastic Acoustic Metamaterials Low Frequency Noise Reduction using Novel Poro-Elastic Acoustic Metamaterials Adam C. Slagle Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment

More information

Projects in microwave theory 2009

Projects in microwave theory 2009 Electrical and information technology Projects in microwave theory 2009 Write a short report on the project that includes a short abstract, an introduction, a theory section, a section on the results and

More information

Dielectric Filled Printed Gap Waveguide for Millimeter Wave Applications

Dielectric Filled Printed Gap Waveguide for Millimeter Wave Applications Dielectric Filled Printed Gap Waveguide for Millimeter Wave Applications Jing Zhang A Thesis In the Department of Electrical and Computer Engineering Presented in Partial Fulfillment of the Requirements

More information

High-frequency transmission line transitions

High-frequency transmission line transitions High-frequency transmission line transitions Leonard T. Hall a,b,hedleyj.hansen a,b,c, and Derek Abbott a,b a Centre for Biomedical Engineering, The University of Adelaide, SA 55 Australia b Department

More information

Cylindrical electromagnetic bandgap structures for directive base station antennas

Cylindrical electromagnetic bandgap structures for directive base station antennas Loughborough University Institutional Repository Cylindrical electromagnetic bandgap structures for directive base station antennas This item was submitted to Loughborough University's Institutional Repository

More information

DEVICE FOR STRUCTURING OF ELECTROMAGNETIC RADIATION

DEVICE FOR STRUCTURING OF ELECTROMAGNETIC RADIATION PATENT FOR INVENTION 2284062 DEVICE FOR STRUCTURING OF ELECTROMAGNETIC RADIATION Patentee(s): Inventor(s): Application 2004137591 Priority of invention of December 22, 2004. Registered in the State Register

More information

Validation of the Experimental Setup for the Determination of Transmission Loss of Known Reactive Muffler Model by Using Finite Element Method

Validation of the Experimental Setup for the Determination of Transmission Loss of Known Reactive Muffler Model by Using Finite Element Method Validation of the Experimental Setup for the etermination of Transmission Loss of Known Reactive Muffler Model by Using Finite Element Method M.B. Jadhav, A. P. Bhattu Abstract: The expansion chamber is

More information

EFFECTS OF PHYSICAL CONFIGURATIONS ON ANC HEADPHONE PERFORMANCE

EFFECTS OF PHYSICAL CONFIGURATIONS ON ANC HEADPHONE PERFORMANCE EFFECTS OF PHYSICAL CONFIGURATIONS ON ANC HEADPHONE PERFORMANCE Lifu Wu Nanjing University of Information Science and Technology, School of Electronic & Information Engineering, CICAEET, Nanjing, 210044,

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Signal Processing in Acoustics Session 1pSPc: Miscellaneous Topics in

More information

Characterization and Validation of Acoustic Cavities of Automotive Vehicles

Characterization and Validation of Acoustic Cavities of Automotive Vehicles Characterization and Validation of Acoustic Cavities of Automotive Vehicles John G. Cherng and Gang Yin R. B. Bonhard Mark French Mechanical Engineering Department Ford Motor Company Robert Bosch Corporation

More information

Multi-spectral acoustical imaging

Multi-spectral acoustical imaging Multi-spectral acoustical imaging Kentaro NAKAMURA 1 ; Xinhua GUO 2 1 Tokyo Institute of Technology, Japan 2 University of Technology, China ABSTRACT Visualization of object through acoustic waves is generally

More information

Absorbers & Diffusers

Absorbers & Diffusers 1 of 8 2/20/2008 12:18 AM Welcome to www.mhsoft.nl, a resource for DIY loudspeaker design and construction. Home Loudspeakers My System Acoustics Links Downloads Ads by Google Foam Absorber Microwave Absorber

More information

Borehole vibration response to hydraulic fracture pressure

Borehole vibration response to hydraulic fracture pressure Borehole vibration response to hydraulic fracture pressure Andy St-Onge* 1a, David W. Eaton 1b, and Adam Pidlisecky 1c 1 Department of Geoscience, University of Calgary, 2500 University Drive NW Calgary,

More information

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR Progress In Electromagnetics Research Letters, Vol. 25, 67 75, 211 DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR X. Mu *, W. Jiang, S.-X. Gong, and F.-W. Wang Science

More information

Resonance-induced wave penetration through electromagnetic opaque object

Resonance-induced wave penetration through electromagnetic opaque object Resonance-induced wave penetration through electromagnetic opaque object He Wen a,c), Bo Hou b), Yang Leng a), Weijia Wen b,d) a) Department of Mechanical Engineering, the Hong Kong University of Science

More information

MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND

MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND Progress In Electromagnetics Research Letters, Vol. 29, 167 173, 212 MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND X.-C. Zhang 1, 2, *, C.-H. Liang 1, and J.-W. Xie 2 1

More information

Dynamic Modeling of Air Cushion Vehicles

Dynamic Modeling of Air Cushion Vehicles Proceedings of IMECE 27 27 ASME International Mechanical Engineering Congress Seattle, Washington, November -5, 27 IMECE 27-4 Dynamic Modeling of Air Cushion Vehicles M Pollack / Applied Physical Sciences

More information

Introduction: Planar Transmission Lines

Introduction: Planar Transmission Lines Chapter-1 Introduction: Planar Transmission Lines 1.1 Overview Microwave integrated circuit (MIC) techniques represent an extension of integrated circuit technology to microwave frequencies. Since four

More information

Demonstration of Inverse Acoustic Band Gap Structures in AlN and Integration with Piezoelectric Contour Mode Transducers

Demonstration of Inverse Acoustic Band Gap Structures in AlN and Integration with Piezoelectric Contour Mode Transducers From the SelectedWorks of Chengjie Zuo June, 29 Demonstration of Inverse Acoustic Band Gap Structures in AlN and Integration with Piezoelectric Contour Mode Transducers Nai-Kuei Kuo, University of Pennsylvania

More information

International Journal of Engineering Trends and Technology (IJETT) Volume 11 Number 5 - May National Institute of Technology, Warangal, INDIA *

International Journal of Engineering Trends and Technology (IJETT) Volume 11 Number 5 - May National Institute of Technology, Warangal, INDIA * Hexagonal Nonradiating Edge-Coupled Patch Configuration for Bandwidth Enhancement of Patch Antenna Krishn Kant Joshi #1, NVSN Sarma * 2 # Department of Electronics and Communication Engineering National

More information

Review on Various Issues and Design Topologies of Edge Coupled Coplanar Waveguide Filters

Review on Various Issues and Design Topologies of Edge Coupled Coplanar Waveguide Filters Review on Various Issues and Design Topologies of Edge Coupled Coplanar Waveguide Filters Manoj Kumar *, Ravi Gowri Department of Electronics and Communication Engineering Graphic Era University, Dehradun,

More information

DUAL-WIDEBAND MONOPOLE LOADED WITH SPLIT RING FOR WLAN APPLICATION

DUAL-WIDEBAND MONOPOLE LOADED WITH SPLIT RING FOR WLAN APPLICATION Progress In Electromagnetics Research Letters, Vol. 21, 11 18, 2011 DUAL-WIDEBAND MONOPOLE LOADED WITH SPLIT RING FOR WLAN APPLICATION W.-J. Wu, Y.-Z. Yin, S.-L. Zuo, Z.-Y. Zhang, and W. Hu National Key

More information

Antenna Design: Simulation and Methods

Antenna Design: Simulation and Methods Antenna Design: Simulation and Methods Radiation Group Signals, Systems and Radiocommunications Department Universidad Politécnica de Madrid Álvaro Noval Sánchez de Toca e-mail: anoval@gr.ssr.upm.es Javier

More information

Development of a reactive silencer for turbocompressors

Development of a reactive silencer for turbocompressors Development of a reactive silencer for turbocompressors N. González Díez, J.P.M. Smeulers, D. Meulendijks 1 S. König TNO Heat Transfer & Fluid Dynamics Siemens AG Energy Sector The Netherlands Duisburg/Germany

More information

3D Printed Metamaterial Acoustics Lens University of Illinois at Urbana-Champaign Spring 2016 Daniel Gandy & Guangya Niu

3D Printed Metamaterial Acoustics Lens University of Illinois at Urbana-Champaign Spring 2016 Daniel Gandy & Guangya Niu 3D Printed Metamaterial Acoustics Lens University of Illinois at Urbana-Champaign Spring 2016 Daniel Gandy & Guangya Niu 1 Introduction Acoustic lenses, which focus sound in much the same way that an optical

More information

Investigation of the tapered waveguide structures for terahertz quantum cascade lasers

Investigation of the tapered waveguide structures for terahertz quantum cascade lasers Invited Paper Investigation of the tapered waveguide structures for terahertz quantum cascade lasers T. H. Xu, and J. C. Cao * Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of

More information

Traveling Wave Antennas

Traveling Wave Antennas Traveling Wave Antennas Antennas with open-ended wires where the current must go to zero (dipoles, monopoles, etc.) can be characterized as standing wave antennas or resonant antennas. The current on these

More information

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index. absorption, 69 active tuning, 234 alignment, 394 396 apodization, 164 applications, 7 automated optical probe station, 389 397 avalanche detector, 268 back reflection, 164 band structures, 30 bandwidth

More information

Mutual Coupling Reduction of Micro strip antenna array by using the Electromagnetic Band Gap structures

Mutual Coupling Reduction of Micro strip antenna array by using the Electromagnetic Band Gap structures Mutual Coupling Reduction of Micro strip antenna array by using the Electromagnetic Band Gap structures A.Rajasekhar 1, K.Vara prasad 2 1M.tech student, Dept. of electronics and communication engineering,

More information

Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection

Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection ECNDT - Poster 39 Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection Yago GÓMEZ-ULLATE, Instituto de Acústica CSIC, Madrid, Spain Francisco MONTERO DE ESPINOSA, Instituto de Acústica

More information

Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I

Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I Prof. Utpal Das Professor, Department of lectrical ngineering, Laser Technology Program, Indian Institute

More information

FIVE-PORT POWER SPLITTER BASED ON PILLAR PHOTONIC CRYSTAL *

FIVE-PORT POWER SPLITTER BASED ON PILLAR PHOTONIC CRYSTAL * IJST, Transactions of Electrical Engineering, Vol. 39, No. E1, pp 93-100 Printed in The Islamic Republic of Iran, 2015 Shiraz University FIVE-PORT POWER SPLITTER BASED ON PILLAR PHOTONIC CRYSTAL * M. MOHAMMADI

More information

Guided Wave Travel Time Tomography for Bends

Guided Wave Travel Time Tomography for Bends 18 th World Conference on Non destructive Testing, 16-20 April 2012, Durban, South Africa Guided Wave Travel Time Tomography for Bends Arno VOLKER 1 and Tim van ZON 1 1 TNO, Stieltjes weg 1, 2600 AD, Delft,

More information

Virtual EM Prototyping: From Microwaves to Optics

Virtual EM Prototyping: From Microwaves to Optics Virtual EM Prototyping: From Microwaves to Optics Dr. Frank Demming, CST AG Dr. Avri Frenkel, Anafa Electromagnetic Solutions Virtual EM Prototyping Efficient Maxwell Equations solvers has been developed,

More information

M. Y. Ismail and M. Inam Radio Communications and Antenna Design Laboratory (RACAD) Universiti Tun Hussein Onn Malaysia (UTHM) Batu Pahat, Malaysia

M. Y. Ismail and M. Inam Radio Communications and Antenna Design Laboratory (RACAD) Universiti Tun Hussein Onn Malaysia (UTHM) Batu Pahat, Malaysia Progress In Electromagnetics Research C, Vol. 14, 67 78, 21 PERFORMANCE IMPROVEMENT OF REFLECTARRAYS BASED ON EMBEDDED SLOTS CONFIGURATIONS M. Y. Ismail and M. Inam Radio Communications and Antenna Design

More information

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure Antennas and Propagation Volume 215, Article ID 57693, 5 pages http://dx.doi.org/1.1155/215/57693 Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

More information

INDUCTIVE TRI-BAND DOUBLE ELEMENT FSS FOR SPACE APPLICATIONS

INDUCTIVE TRI-BAND DOUBLE ELEMENT FSS FOR SPACE APPLICATIONS Progress In Electromagnetics Research C, Vol. 18, 87 101, 2011 INDUCTIVE TRI-BAND DOUBLE ELEMENT FSS FOR SPACE APPLICATIONS D. Ramaccia and A. Toscano Department of Applied Electronics University of Rome

More information

ANALYSIS AND DESIGN OF DUAL BAND HIGH DIRECTIVITY EBG RESONATOR ANTENNA USING SQUARE LOOP FSS AS SUPERSTRATE LAYER

ANALYSIS AND DESIGN OF DUAL BAND HIGH DIRECTIVITY EBG RESONATOR ANTENNA USING SQUARE LOOP FSS AS SUPERSTRATE LAYER Progress In Electromagnetics Research, PIER 70, 1 20, 2007 ANALYSIS AND DESIGN OF DUAL BAND HIGH DIRECTIVITY EBG RESONATOR ANTENNA USING SQUARE LOOP FSS AS SUPERSTRATE LAYER A. Pirhadi Department of Electrical

More information

Experimental and theoretical investigation of edge waves propagation and scattering in a thick plate with surface-breaking crack-like defect

Experimental and theoretical investigation of edge waves propagation and scattering in a thick plate with surface-breaking crack-like defect Experimental and theoretical investigation of edge waves propagation and scattering in a thick plate with surface-breaking crack-like defect Mikhail V Golub 1, Artem A Eremin 1,2 and Maria V Wilde 3 1

More information

Amplitude-activated mechanical wave manipulation devices using nonlinear metamaterials

Amplitude-activated mechanical wave manipulation devices using nonlinear metamaterials Advanced Composites and Hybrid Materials (2018) 1:797 808 https://doi.org/10.1007/s42114-018-0068-8 ORIGINAL RESEARCH Amplitude-activated mechanical wave manipulation devices using nonlinear metamaterials

More information

CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC

CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC 4.1 INTRODUCTION Wireless communication technology has been developed very fast in the last few years.

More information