Progress in second-generation holographic data storage

Size: px
Start display at page:

Download "Progress in second-generation holographic data storage"

Transcription

1 Progress in second-generation holographic data storage Mark R. Ayres *, Ken Anderson, Fred Askham, Brad Sissom Akonia Holographics, LLC, 221 Miller Dr., Longmont, CO, USA, 851 ABSTRACT Holographic data storage (HDS) remains an attractive technology for big data. We report on recent results achieved with a demonstrator platform incorporating several new second-generation techniques for increasing HDS recording density and speed. This demonstrator has been designed to achieve densities that support the multi-terabyte storage capacities required for a competitive product. It leverages technology from an existing state-of-the-art pre-production prototype, while incorporating a new optical head designed to demonstrate several new technical advances. The demonstrator employs the new technique of dynamic aperture multiplexing in a monocular architecture. In a previous report, a monocular system employing angle-polytopic multiplexing achieved a recording density over 7 Gbit/in 2, exceeding that of contemporaneously shipping hard drives [1]. Dynamic aperture multiplexing represents an evolutionary improvement with the potential to increase this figure by over 2%, while still using proven anglepolytopic multiplexing in a monocular architecture. Additionally, the demonstrator is capable of two revolutionary advances in HDS technology. The first, quadrature homodyne detection, enables the use of phase shift keying (PSK) for signal encoding, which dramatically improves recording intensity homogeneity and increases SNR. The second, phase quadrature holographic multiplexing, further doubles density by recording pairs of holograms in quadrature (QPSK encoding). We report on the design and construction of the demonstrator, and on the results of current recording experiments. Keywords: holographic data storage, big data, optical data storage, holography 1. INTRODUCTION The Akonia Holographics AP1 demonstrator platform was designed and constructed in 213, with data density experiments commencing in early 214. Development is ongoing, with many key technical features yet to be engaged. Nevertheless, as of this writing, AP1 has already demonstrated the recovery of data written at a raw areal density of 1.35 Tbit/in 2, exceeding that of shipping hard drives (currently at approximately 1 Tbit/in 2 [2]). 2. SECOND GENERATION HDS Despite a number of highly publicized efforts, no commercial HDS product has ever been sold to a general market. However, the Bell Labs spin-off, InPhase Technologies, Inc., produced an advanced pre-production HDS drive capable of storing 3 GB on a removable 5 ¼ disk [3]. We shall take the features of the InPhase Tapestry prototype as typical of first generation HDS. These features include an off-axis architecture recording 32 angle-polytopic [4] multiplexed holograms in a single location, and direct-detection resampling data channel [5] operating on 1.4 megapixel holographic data pages. The InPhase drive achieved a peak areal density of 512 Gbit/in 2 in a photopolymer medium with a 1.5 mm thick recording layer, with read and write data rates of 2 MB/s. Other first generation HDS systems include the monocular [6], collinear [7] and bit-wise architectures, though none were developed to a state nearing commercial readiness. By second generation HDS, we denote a set of systems and materials innovations that will increase storage density and speed by more than an order of magnitude. These include: * mark@akoniaholographics.com; phone ; akoniaholographics.com

2 1) DRED TM Media Formulation The DRED formulation represents a significant advance over the two-chemistry recording medium developed by researchers from InPhase. The two-chemistry medium is so-named because it consists of two separate, intermixed polymer systems. The first system, the matrix, forms the solid recording layer, and the second remains unpolymerized until exposed to light [8]. Akonia has demonstrated a factor of six increase in dynamic range (M/#) using DRED technology, and is currently optimizing it for commercialization. 2) Dynamic Aperture Multiplexing Dynamic aperture multiplexing fully capitalizes on the shared beam path of a monocular objective lens. Dynamic aperture multiplexing increases the angular scan range by dynamically adjusting the data page size, increasing storage density by over 2%. 3) Quadrature Homodyne Detection Homodyne detection is the method of blending a coherent reference field with a signal and detecting the interference pattern between the two. This has the effect of amplifying the signal, eliminating nonlinear effects of coherent noise, and allowing the detection of phase as well as amplitude. Akonia has developed a novel algorithm that allows homodyne detection to be performed by combining two images taken with the reference phase changed by 9 o. We estimate this will boost the signal to noise ratio enough to more than double storage density, as well as providing a host of other benefits [9]. 4) Phase Quadrature Holographic Multiplexing The ability to detect the phase of a hologram presents another opportunity to increase storage density. A second hologram with a 9 o phase difference from the first can be recorded at each reference angle. This technique, phase quadrature holographic multiplexing, provides yet another doubling of storage density [1]. 2.1 AP1 Demonstrator Platform The AP1 demonstrator was constructed from an InPhase prototype, and hence inherited a high level of functionality from that platform. Components and subsystems incorporated with little or no modification include the SLM and detector, tunable 45 nm laser, electronics and firmware, disk loader, and various actuators and servo systems. Many optical components have also been retained, but the objective lens and reference scanner assemblies have been replaced with a newly designed.85 NA objective lens and scanner capable of delivering diffraction-limited planar reference beams over the entire ±6 o angle scan range. Figure 1. The Akonia Holographics AP1 demonstrator platform. The completed AP1 demonstrator is shown in Figure 1. The objective lens is housed within the assembly at center, and the disk is visible in the bottom of the photograph. Figure 2 is a schematic of the main optical paths. The aperture

3 sharing element (ASE) combines the signal and reference beams, allowing angular regions to be allocated in real time between the two beams for dynamic aperture multiplexing. Figure 2. AP1 schematic. Since AP1 uses the legacy 1.4 megapixel SLM, laser, and electronics from the 2 MB/s InPhase prototype, it cannot directly demonstrate data transfer rates that would be attractive for a commercial product. Akonia has instead developed a model based on a modern 4K-class SLM that supports competitive 2 MB/s recording and recovery speeds, even without the benefit of the coherent homodyne data channel, which would further boost transfer rates. Fortunately, however, the legacy components can support recording densities equaling those achievable with newer components. More media M/# is required since the data payload of each hologram is smaller, but once that is achieved switching to a larger page size will actually result in a system with more margin. Hence, the overarching goal of the AP1 demonstrator is to achieve full density with no asterisks, thereby demonstrating with high confidence the feasibility of the technology for commercial products. 2.2 DRED Recording Medium Although the number of holograms per book is currently the same as for Tapestry, the higher-density AP1 architecture requires considerably more dynamic range. Density experiments are currently being conducted using a DRED formulation with an M/# of 16 per 2 µm thickness, resulting in a total M/# of 12 in the 1.5 mm thick recording layer. This exceeds the M/# of the InPhase Tapestry formulation by a factor of four. The media is bonded between two 13 mm plastic disk substrates using the InPhase Zerowave TM bonding process [11]. The resulting disk is fitted with a hub and cartridge, and has sufficient recording area for over a hundred automated recording experiments. Akonia owns InPhase manufacturing equipment capable of large-scale media production. 3. EXPERIMENTAL PROGRESS Density demonstration experiments are performed by recording a grid, typically of 6 9 books of angularly-multiplexed holograms spaced at a book pitch of 34 µm. Gridding is necessary because the exposure footprint of each book is considerably larger than the book spacing, so several neighbors are required on all sides of a given book to replicate the hologram overlap conditions that will obtain in a full-capacity medium. In the case of a 6 9 grid, the inner 2 3 books are so overlapped, and thus at density. For a large production medium, only those books at the outer edges of the medium or of a recording partition will not be fully overlapped, and the peak data density will dominate. This crucial step is sometimes omitted from reported density demonstrations.

4 3.1 Monocular-Mode Results AP1 features a monocular architecture with both signal and reference beams delivered through the same high-na objective lens. As such, it is capable of exceeding the performance of previous monocular systems [1][12] even without invoking the second-generation innovations. In the first phase of AP1 experiments, the system was operated in conventional monocular mode, i.e., using a fixed-size data page and a disjoint reference angle range. For the following experiment, 32 holograms were recorded in each book of the 6 9 grid. The data region of each page contains 66,29 pixels, so the raw areal bit density is 66,29 bits ( 34 µm) 32 pages 2. (1) = 1.35 Tbit/in 2 The data pages were recovered using the 4:3 oversampling data channel of the InPhase Tapestry [5]. The channel uses known reserved block pixel patterns embedded within the page to determine a quality metric, µ 1 µ SNR 2 log 1, (2) σ1 + σ where µ 1 and µ are the means, and σ 1 and σ are the standard deviations of the detected ones and zeros, respectively. Figure 3 shows a typical detector image of a 4 db hologram recovered at density, along with the sampled reserved block SNR map of the page Figure 3. Left: Detected data page recovered at density; Right: Regional SNR map of data page. Figure 4 shows the aggregate SNR for each hologram in the first density book within a grid written at 1.35 Tbit/in 2. The average SNR of the holograms in the book is 3.2 db, and the lone hologram below 2 db (at -37 o ) was degraded by a known dirt speck on an optical surface. Also shown is the diffracted power of holograms, demonstrating the uniform peak and trough (between hologram) signal levels. The Tapestry data channel also incorporates several layers of error correcting codes of the types that will be used in the channel for AP1. A low density parity check (LDPC) code with rate.5 and code word length 32,768 is used within each data page. The LDPC code will correct all bit errors within a recovered page with an extremely high level of probability if the SNR of the page is 2. db or higher. Additionally, an outer Reed-Solomon code can correct up to 1% of the pages within a book that are uncorrected by LDPC. Thus, the density book of Figure 4 would easily be recovered free of bit errors using the full Tapestry channel, and AP1 has demonstrated holographic data recording and recovery at a record-breaking areal density of 1.35 Tbit/in 2. Further code development in response to empirical channel characteristics will be required to meet an exacting production bit error rate specification. Of particular importance in these results is the demonstration of recording in the extremely high dynamic range DRED medium without incurring debilitating write-induced optical scatter noise. Some fraction of the dynamic range of the medium inevitably goes to writing noise rather than signal, so one early concern was that this effect could dominate at very high dynamic range levels. An indication of the scatter level is given by the detected power levels at reference -5 Though the hardware-based Tapestry error-correcting channel remains fully functional, the bring-up of an SNR/BER-only channel for AP1 was deemed the first priority.

5 angles far from any recorded holograms, e.g., the diffracted power levels of Figure 4 at reference angles below -6 o and above -3 o. Ongoing testing at Akonia has indicated that, while these levels are strongly influenced by media formulation and preparation, there is no fundamental correlation between M/# and scatter level. This result gives us confidence that both higher SNRs and higher densities will be achievable as the system and materials are refined. Raw bit density, for example, will be doubled directly by phase quadrature multiplexing, and SNR will be greatly increased by PSK modulation and homodyne detection. 5 x Hologram SNR [db] Diffracted Power [W] Reference Angle [deg] Figure 4. SNR and diffracted power of monocular holograms recovered at an areal density of 1.35 Tbit/in Dynamic Aperture Multiplexing Overview Dynamic aperture multiplexing improves storage density by greatly increasing the scan range available for angle multiplexing. This is accomplished by dynamically altering the portions of the available angular aperture used for the signal and reference beams. Figure 5 illustrates the general principle of dynamic aperture multiplexing, showing the angular location of reference beam (green dot) as it transits from the left edge of the figure (-6 o reference beam angle) to a position on the right half (+1 o reference beam angle). The black rectangle represents the footprint of the SLM image in the angular map, and the gray sub-region of the SLM indicates the active data page for the corresponding reference beam angle. As the reference beam scans from left to right, the data page is trimmed to maintain a constant angular separation between the reference beam and the closest edge of the data page, establishing the minimum Bragg selectivity for the gratings within the hologram. a) b) c) Figure 5. Angular aperture maps for reference beam angles a) 6 o, b) 2 o, c) +1 o. Dynamic aperture multiplexing more efficiently utilizes the available grating space not only by recording more holograms, but by recording larger data pages at the start of the angular scan range. However, the decreasing page size leads to diminishing returns in density and higher M/# usage as higher scan angles are used. Additionally, data transfer rates decline as more small pages are included. Figure 6 illustrates this trade-off. Although AP1 is capable of reaching

6 2.84 Tbit/in 2 by recording 1131 holograms, this would require more than twice the dynamic range needed to reach 2. Tbit/in 2 with 455 holograms. For this reason, Akonia anticipates operating in the region below the knee of the curve in a commercial product, although higher-density demonstrations may be performed in the laboratory Areal Density [Gbit/in 2 ] Transfer Rate [MB/s] 1 5 Read Write Holograms Multiplexed 3.3 Dynamic Aperture Multiplexing Progress Figure 6. Density vs. number of holograms for dynamic aperture multiplexing. Dynamic aperture multiplexing is currently being actively developed on AP1. Holograms of varying page size have been recorded and recovered, and final modifications are being made to various subsystems in preparation for density experiments. Since the number of holograms required per book to achieve 2. Tbit/in 2, 455, is only marginally larger than the 32 already demonstrated, we believe that this milestone will be passed in the near future. Dynamic aperture multiplexing is an evolutionary improvement, merely adding more available angles to an angle-multiplexing system. It requires only more M/# and sufficient noise performance, both of which are close at hand. 3.4 Quadrature Homodyne Detection Progress Quadrature homodyne detection is also being actively developed at Akonia. Quadrature homodyne detection is expected to double storage capacity by dramatically improving SNR, as well as improving data speeds. Homodyne detection also enables phase quadrature multiplexing, which will further double storage density. Testing of phase quadrature multiplexing is currently being planned. Because AP1 is still configured for direct detection in pursuit of the dynamic aperture milestones, a separate test system has been constructed implementing the homodyne data channel and using PSK signal modulation. The results from this system are extremely positive, with SNR improvements exceeding even the simulated predictions. Please refer to Homodyne detection of holographic memory systems, to be presented later in this session, for details on the results of these experiments. 4. CONCLUSION We have presented experimental results from a second-generation holographic data storage demonstrator platform. Though the second-generation features have not yet been fully deployed, the demonstrator has achieved a world-record raw areal bit density of 1.35 Tbit/in 2 operating in a conventional first-generation monocular mode. While density results have not yet been confirmed for dynamic aperture multiplexing or for quadrature homodyne detection, progress has been ongoing and both features remain on track to meet or exceed their original performance expectations.

7 Successful demonstration of the second-generation innovations will spark a renaissance in holographic data storage. The big data storage tsunami is generating enormous opportunities for cold storage, archival storage, and near-line storage of the sorts that will be the target of initial HDS commercial offerings. These second-generation innovations not only leapfrog the capabilities of competing technologies, they lay the foundation for Moore s-law growth for years to come. REFERENCES [1] K. Shimada, T. Ishii, T. Ide, S. Hughes, A. Hoskins, K. Curtis, High density recording using Monocular architecture for 5GB consumer system, Proc. SPIE755, Optical Data Storage 29, 755Q (29). [2] T. Coughlin, New Areal Density Point for Cloud Storage HDDs, Forbes, 7 April 214. [3] K. Curtis, L. Dhar, W. L. Wilson, A. Hill, M. R. Ayres, Holographic Data Storage: From Theory to Practical Systems, John Wiley & Sons, Ltd. (21). [4] K. Anderson, K. Curtis, Polytopic multiplexing, Opt. Lett. 29, (24). [5] M. Ayres, A. Hoskins, K. Curtis, Image oversampling for page-oriented optical data storage, Appl. Opt. 45, (26). [6] K. Anderson, et al., U.S. Patent 7,742,29, Monocular holographic data storage system architecture, June 22, 21. [7] H. Horimai, X. Tan, and J. Li, Collinear holography, Appl. Opt. 44, (25). [8] L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, F. C. Schilling, Recording media that exhibit high dynamic range for digital holographic data storage, Opt. Lett. 24, (1999). [9] M. R. Ayres, U.S. Patent 7,623,279, Method for holographic data retrieval by quadrature homodyne detection, Nov. 24, 29. [1] M. R. Ayres, Coherent techniques for terabyte holographic data storage, Optical Data Storage Topical Meeting (ODS 21), May 21. (Invited paper). [11] S. Campbell, et al., US Patent 5,932,45, Method for fabricating a multilayer optical article, August 3, [12] T. Ishii, et al., Terabyte Holographic Recording with Monocular Architecture, 212 IEEE International Conference on Consumer Electronics (ICCE).

Progress in Second-Generation Holographic Data Storage

Progress in Second-Generation Holographic Data Storage Progress in Second-Generation Holographic Data Storage Mark Ayres*, Ken Anderson, Fred Askham, Brad Sissom Akonia Holographics, LLC *Mark@AkoniaHolographics.com Optical Data Storage 2014 [9201-30] Page

More information

Holographic Drive and Media Developments at InPhase Technologies

Holographic Drive and Media Developments at InPhase Technologies Holographic Drive and Media Developments at InPhase Technologies Tom Wilke InPhase Technologies 2000 Pike Road, Longmont, Colorado 80501 Phone: 303-684-3631 FAX: 720-494-7432 E-mail: tomwilke@inphase-tech.com

More information

Exposure schedule for multiplexing holograms in photopolymer films

Exposure schedule for multiplexing holograms in photopolymer films Exposure schedule for multiplexing holograms in photopolymer films Allen Pu, MEMBER SPIE Kevin Curtis,* MEMBER SPIE Demetri Psaltis, MEMBER SPIE California Institute of Technology 136-93 Caltech Pasadena,

More information

Homodyne detection of holographic memory systems

Homodyne detection of holographic memory systems Homodyne detection of holographic memory systems Adam C. Urness* a,b, William L. Wilson a, Mark R. Ayres b a Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory,

More information

Coding & Signal Processing for Holographic Data Storage. Vijayakumar Bhagavatula

Coding & Signal Processing for Holographic Data Storage. Vijayakumar Bhagavatula Coding & Signal Processing for Holographic Data Storage Vijayakumar Bhagavatula Acknowledgements Venkatesh Vadde Mehmet Keskinoz Sheida Nabavi Lakshmi Ramamoorthy Kevin Curtis, Adrian Hill & Mark Ayres

More information

High Performance Data Storage via Volume Holography William L. Wilson InPhase Technologies 2000 Pike Road, Longmont Co 80501

High Performance Data Storage via Volume Holography William L. Wilson InPhase Technologies 2000 Pike Road, Longmont Co 80501 High Performance Data Storage via Volume Holography William L. Wilson InPhase Technologies 2000 Pike Road, Longmont Co 80501 Phone: +1-720-494-7429 FA: +1-720-494-9606 E-mail: WilliamWilson@inphase-tech.com

More information

Compensation of hologram distortion by controlling defocus component in reference beam wavefront for angle multiplexed holograms

Compensation of hologram distortion by controlling defocus component in reference beam wavefront for angle multiplexed holograms J. Europ. Opt. Soc. Rap. Public. 8, 13080 (2013) www.jeos.org Compensation of hologram distortion by controlling defocus component in reference beam wavefront for angle multiplexed holograms T. Muroi muroi.t-hc@nhk.or.jp

More information

Image oversampling for page-oriented optical data storage

Image oversampling for page-oriented optical data storage Image oversampling for page-oriented optical data storage Mark Ayres, Alan Hoskins, and Kevin Curtis Page-oriented data storage systems incorporate optical detector arrays [such as complementary metaloxide

More information

Holographic Data Storage

Holographic Data Storage Holographic Data Storage From Theory to Practical Systems Kevin Curtis, Lisa Dhar, Adrian Hill, William Wilson and Mark Ayres InPhase Technologies, Longmont, CO, USA Holographic Data Storage Holographic

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

Holographic RAM for optical fiber communications

Holographic RAM for optical fiber communications Header for SPIE use Holographic RAM for optical fiber communications Pierpaolo Boffi, Maria Chiara Ubaldi, Davide Piccinin, Claudio Frascolla and Mario Martinelli * CoreCom, Via Amp re 3, 2131-Milano,

More information

The Photorefractive Effect

The Photorefractive Effect The Photorefractive Effect Rabin Vincent Photonics and Optical Communication Spring 2005 1 Outline Photorefractive effect Steps involved in the photorefractive effect Photosensitive materials Fixing Holographic

More information

Copyright 2000 Society of Photo Instrumentation Engineers.

Copyright 2000 Society of Photo Instrumentation Engineers. Copyright 2000 Society of Photo Instrumentation Engineers. This paper was published in SPIE Proceedings, Volume 4043 and is made available as an electronic reprint with permission of SPIE. One print or

More information

Thermal tuning of volume Bragg gratings for high power spectral beam combining

Thermal tuning of volume Bragg gratings for high power spectral beam combining Thermal tuning of volume Bragg gratings for high power spectral beam combining Derrek R. Drachenberg, Oleksiy Andrusyak, Ion Cohanoschi, Ivan Divliansky, Oleksiy Mokhun, Alexei Podvyaznyy, Vadim Smirnov,

More information

The range of applications which can potentially take advantage of CGH is very wide. Some of the

The range of applications which can potentially take advantage of CGH is very wide. Some of the CGH fabrication techniques and facilities J.N. Cederquist, J.R. Fienup, and A.M. Tai Optical Science Laboratory, Advanced Concepts Division Environmental Research Institute of Michigan P.O. Box 8618, Ann

More information

4-2 Image Storage Techniques using Photorefractive

4-2 Image Storage Techniques using Photorefractive 4-2 Image Storage Techniques using Photorefractive Effect TAKAYAMA Yoshihisa, ZHANG Jiasen, OKAZAKI Yumi, KODATE Kashiko, and ARUGA Tadashi Optical image storage techniques using the photorefractive effect

More information

Linewidth control by overexposure in laser lithography

Linewidth control by overexposure in laser lithography Optica Applicata, Vol. XXXVIII, No. 2, 2008 Linewidth control by overexposure in laser lithography LIANG YIYONG*, YANG GUOGUANG State Key Laboratory of Modern Optical Instruments, Zhejiang University,

More information

1. INTRODUCTION ABSTRACT

1. INTRODUCTION ABSTRACT Experimental verification of Sub-Wavelength Holographic Lithography physical concept for single exposure fabrication of complex structures on planar and non-planar surfaces Michael V. Borisov, Dmitry A.

More information

System demonstrator for board-to-board level substrate-guided wave optoelectronic interconnections

System demonstrator for board-to-board level substrate-guided wave optoelectronic interconnections Header for SPIE use System demonstrator for board-to-board level substrate-guided wave optoelectronic interconnections Xuliang Han, Gicherl Kim, Hitesh Gupta, G. Jack Lipovski, and Ray T. Chen Microelectronic

More information

Integrated Photonics based on Planar Holographic Bragg Reflectors

Integrated Photonics based on Planar Holographic Bragg Reflectors Integrated Photonics based on Planar Holographic Bragg Reflectors C. Greiner *, D. Iazikov and T. W. Mossberg LightSmyth Technologies, Inc., 86 W. Park St., Ste 25, Eugene, OR 9741 ABSTRACT Integrated

More information

Servo Track Writing Technology

Servo Track Writing Technology UDC 681.327.11:681.327.634 Servo Track Writing Technology vyukihiro Uematsu vmasanori Fukushi (Manuscript received September 11, 21) To achieve an ultra high track density in hard disk drives, the track-following

More information

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

More information

Gerhard K. Ackermann and Jurgen Eichler. Holography. A Practical Approach BICENTENNIAL. WILEY-VCH Verlag GmbH & Co. KGaA

Gerhard K. Ackermann and Jurgen Eichler. Holography. A Practical Approach BICENTENNIAL. WILEY-VCH Verlag GmbH & Co. KGaA Gerhard K. Ackermann and Jurgen Eichler Holography A Practical Approach BICENTENNIAL BICENTENNIAL WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XVII Part 1 Fundamentals of Holography 1 1 Introduction

More information

Large scale rapid access holographic memory. Geoffrey W. Burr, Xin An, Fai H. Mokt, and Demetri Psaltis. Department of Electrical Engineering

Large scale rapid access holographic memory. Geoffrey W. Burr, Xin An, Fai H. Mokt, and Demetri Psaltis. Department of Electrical Engineering Large scale rapid access holographic memory Geoffrey W. Burr, Xin An, Fai H. Mokt, and Demetri Psaltis Department of Electrical Engineering California Institute of Technology, MS 116 81, Pasadena, CA 91125

More information

Developing characteristics of Thermally Fixed holograms in Fe:LiNbO 3

Developing characteristics of Thermally Fixed holograms in Fe:LiNbO 3 Developing characteristics of Thermally Fixed holograms in Fe:LiNbO 3 Ran Yang *, Zhuqing Jiang, Guoqing Liu, and Shiquan Tao College of Applied Sciences, Beijing University of Technology, Beijing 10002,

More information

DEVELOPMENT PROCESS FOR PVCz HOLOGRAM

DEVELOPMENT PROCESS FOR PVCz HOLOGRAM Journal of Photopolymer Science and Technology Volume 4, Number 1(1991) 127-134 DEVELOPMENT PROCESS FOR PVCz HOLOGRAM Yasuo YAMAGISHI, Takeshi ISHITSUKA, and Yasuhiro YONEDA Fujitsu Laboratories Ltd. Morinosato

More information

Electronically switchable Bragg gratings provide versatility

Electronically switchable Bragg gratings provide versatility Page 1 of 5 Electronically switchable Bragg gratings provide versatility Recent advances in ESBGs make them an optimal technological fabric for WDM components. ALLAN ASHMEAD, DigiLens Inc. The migration

More information

Parallel Associative Search by use of a Volume Holographic Memory*

Parallel Associative Search by use of a Volume Holographic Memory* Parallel Associative Search by use of a Volume Holographic Memory* Xiaochun Li', Fedor Dimov, William Phillips, Lambertus Hesselink, Robert McLeod' Department of Electrical Engineering, Stanford University,

More information

Holographic Data Storage Systems

Holographic Data Storage Systems Holographic Data Storage Systems LAMBERTUS HESSELINK, SERGEI S. ORLOV, AND MATTHEW C. BASHAW Invited Paper In this paper, we discuss fundamental issues underlying holographic data storage: grating formation,

More information

Synthesis of projection lithography for low k1 via interferometry

Synthesis of projection lithography for low k1 via interferometry Synthesis of projection lithography for low k1 via interferometry Frank Cropanese *, Anatoly Bourov, Yongfa Fan, Andrew Estroff, Lena Zavyalova, Bruce W. Smith Center for Nanolithography Research, Rochester

More information

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Donghui Zhao.a, Xuewen Shu b, Wei Zhang b, Yicheng Lai a, Lin Zhang a, Ian Bennion a a Photonics Research Group,

More information

Study of self-interference incoherent digital holography for the application of retinal imaging

Study of self-interference incoherent digital holography for the application of retinal imaging Study of self-interference incoherent digital holography for the application of retinal imaging Jisoo Hong and Myung K. Kim Department of Physics, University of South Florida, Tampa, FL, US 33620 ABSTRACT

More information

High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology

High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology Dejiao Lin, Xiangqian Jiang and Fang Xie Centre for Precision Technologies,

More information

from ocean to cloud THE FUTURE IS NOW - MAXIMIZING SPECTRAL EFFICIENCY AND CAPACITY USING MODERN COHERENT TRANSPONDER TECHNIQUES

from ocean to cloud THE FUTURE IS NOW - MAXIMIZING SPECTRAL EFFICIENCY AND CAPACITY USING MODERN COHERENT TRANSPONDER TECHNIQUES Required OSNR (db/0.1nm RBW) @ 10-dB Q-factor THE FUTURE IS NOW - MAXIMIZING SPECTRAL EFFICIENCY AND CAPACITY USING MODERN COHERENT TRANSPONDER TECHNIQUES Neal S. Bergano, Georg Mohs, and Alexei Pilipetskii

More information

Invited Paper. recording. Yuri N. Denisyuk, Nina M. Ganzherli and Irma A. Maurer

Invited Paper. recording. Yuri N. Denisyuk, Nina M. Ganzherli and Irma A. Maurer Invited Paper Thick-layered light-sensitive dichromated gelatin for 3D hologram recording Yuri N. Denisyuk, Nina M. Ganzherli and Irma A. Maurer loffe Physico-Technical Institute of the Academy of Sciences

More information

Polarization Gratings for Non-mechanical Beam Steering Applications

Polarization Gratings for Non-mechanical Beam Steering Applications Polarization Gratings for Non-mechanical Beam Steering Applications Boulder Nonlinear Systems, Inc. 450 Courtney Way Lafayette, CO 80026 USA 303-604-0077 sales@bnonlinear.com www.bnonlinear.com Polarization

More information

Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPCcoded

Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPCcoded Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPCcoded modulation Hussam G. Batshon 1,*, Ivan Djordjevic 1, and Ted Schmidt 2 1 Department of Electrical and Computer

More information

PICO MASTER 200. UV direct laser writer for maskless lithography

PICO MASTER 200. UV direct laser writer for maskless lithography PICO MASTER 200 UV direct laser writer for maskless lithography 4PICO B.V. Jan Tinbergenstraat 4b 5491 DC Sint-Oedenrode The Netherlands Tel: +31 413 490708 WWW.4PICO.NL 1. Introduction The PicoMaster

More information

Pulse Shaping Application Note

Pulse Shaping Application Note Application Note 8010 Pulse Shaping Application Note Revision 1.0 Boulder Nonlinear Systems, Inc. 450 Courtney Way Lafayette, CO 80026-8878 USA Shaping ultrafast optical pulses with liquid crystal spatial

More information

Three-dimensional waveguide arrays via projection lithography into a moving photopolymer

Three-dimensional waveguide arrays via projection lithography into a moving photopolymer Invited Paper Three-dimensional waveguide arrays via projection lithography into a moving photopolymer Eric D. Moore a, Amy C. Sullivan b and Robert R. McLeod a* a Department of Electrical and Computer

More information

Diffraction, Fourier Optics and Imaging

Diffraction, Fourier Optics and Imaging 1 Diffraction, Fourier Optics and Imaging 1.1 INTRODUCTION When wave fields pass through obstacles, their behavior cannot be simply described in terms of rays. For example, when a plane wave passes through

More information

Reducing Proximity Effects in Optical Lithography

Reducing Proximity Effects in Optical Lithography INTERFACE '96 This paper was published in the proceedings of the Olin Microlithography Seminar, Interface '96, pp. 325-336. It is made available as an electronic reprint with permission of Olin Microelectronic

More information

Diffractive optical elements and their potential role in high efficiency illuminators

Diffractive optical elements and their potential role in high efficiency illuminators Diffractive optical elements and their potential role in high efficiency illuminators Patrick Naulleau Farhad Salmassi, Eric Gullikson, Erik Anderson Lawrence Berkeley National Laboratory Patrick Naulleau

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION High spectral contrast filtering produced by multiple pass reflections from paired Bragg gratings in PTR glass Daniel Ott*, Marc SeGall, Ivan Divliansky, George Venus, Leonid Glebov CREOL, College of Optics

More information

Holography as a tool for advanced learning of optics and photonics

Holography as a tool for advanced learning of optics and photonics Holography as a tool for advanced learning of optics and photonics Victor V. Dyomin, Igor G. Polovtsev, Alexey S. Olshukov Tomsk State University 36 Lenin Avenue, Tomsk, 634050, Russia Tel/fax: 7 3822

More information

Diffractive optical elements based on Fourier optical techniques: a new class of optics for extreme ultraviolet and soft x-ray wavelengths

Diffractive optical elements based on Fourier optical techniques: a new class of optics for extreme ultraviolet and soft x-ray wavelengths Diffractive optical elements based on Fourier optical techniques: a new class of optics for extreme ultraviolet and soft x-ray wavelengths Chang Chang, Patrick Naulleau, Erik Anderson, Kristine Rosfjord,

More information

Figure 7 Dynamic range expansion of Shack- Hartmann sensor using a spatial-light modulator

Figure 7 Dynamic range expansion of Shack- Hartmann sensor using a spatial-light modulator Figure 4 Advantage of having smaller focal spot on CCD with super-fine pixels: Larger focal point compromises the sensitivity, spatial resolution, and accuracy. Figure 1 Typical microlens array for Shack-Hartmann

More information

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG C. Schnitzler a, S. Hambuecker a, O. Ruebenach a, V. Sinhoff a, G. Steckman b, L. West b, C. Wessling c, D. Hoffmann

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

Silicon Photonic Device Based on Bragg Grating Waveguide

Silicon Photonic Device Based on Bragg Grating Waveguide Silicon Photonic Device Based on Bragg Grating Waveguide Hwee-Gee Teo, 1 Ming-Bin Yu, 1 Guo-Qiang Lo, 1 Kazuhiro Goi, 2 Ken Sakuma, 2 Kensuke Ogawa, 2 Ning Guan, 2 and Yong-Tsong Tan 2 Silicon photonics

More information

Laser Speckle Reducer LSR-3000 Series

Laser Speckle Reducer LSR-3000 Series Datasheet: LSR-3000 Series Update: 06.08.2012 Copyright 2012 Optotune Laser Speckle Reducer LSR-3000 Series Speckle noise from a laser-based system is reduced by dynamically diffusing the laser beam. A

More information

Elena Fernández, Celia García, Inmaculada Pascual, Manuel Ortuño, Sergi Gallego, and Augusto Beléndez

Elena Fernández, Celia García, Inmaculada Pascual, Manuel Ortuño, Sergi Gallego, and Augusto Beléndez Optimization of a thick polyvinyl alcohol acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing Elena Fernández, Celia García, Inmaculada Pascual,

More information

Holographic 3D disks using shift multiplexing. George Barbastathist, Allen Put, Michael Levene, and Demetri Psaltis

Holographic 3D disks using shift multiplexing. George Barbastathist, Allen Put, Michael Levene, and Demetri Psaltis Holographic 3D disks using shift multiplexing George Barbastathist, Allen Put, Michael Levene, and Demetri Psaltis t Department of Electrical Engineering 1: Department of Computation and Neural Systems

More information

Mutually Optimizing Resolution Enhancement Techniques: Illumination, APSM, Assist Feature OPC, and Gray Bars

Mutually Optimizing Resolution Enhancement Techniques: Illumination, APSM, Assist Feature OPC, and Gray Bars Mutually Optimizing Resolution Enhancement Techniques: Illumination, APSM, Assist Feature OPC, and Gray Bars Bruce W. Smith Rochester Institute of Technology, Microelectronic Engineering Department, 82

More information

KNIFE-EDGE RIGHT-ANGLE PRISM MIRRORS

KNIFE-EDGE RIGHT-ANGLE PRISM MIRRORS KNIFE-EDGE RIGHT-ANGLE PRISM MIRRORS Precision Cut Prisms Feature Bevel-Free 90 Angle Dielectric, Silver, Gold, and Aluminum Coatings Available 25 mm x 25 mm Faces Application Idea MRAK25-M01 Mounted on

More information

Bias errors in PIV: the pixel locking effect revisited.

Bias errors in PIV: the pixel locking effect revisited. Bias errors in PIV: the pixel locking effect revisited. E.F.J. Overmars 1, N.G.W. Warncke, C. Poelma and J. Westerweel 1: Laboratory for Aero & Hydrodynamics, University of Technology, Delft, The Netherlands,

More information

Development of a new multi-wavelength confocal surface profilometer for in-situ automatic optical inspection (AOI)

Development of a new multi-wavelength confocal surface profilometer for in-situ automatic optical inspection (AOI) Development of a new multi-wavelength confocal surface profilometer for in-situ automatic optical inspection (AOI) Liang-Chia Chen 1#, Chao-Nan Chen 1 and Yi-Wei Chang 1 1. Institute of Automation Technology,

More information

Using Variable Coding and Modulation to Increase Remote Sensing Downlink Capacity

Using Variable Coding and Modulation to Increase Remote Sensing Downlink Capacity Using Variable Coding and Modulation to Increase Remote Sensing Downlink Capacity Item Type text; Proceedings Authors Sinyard, David Publisher International Foundation for Telemetering Journal International

More information

High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode

High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode Yohei Kasai* a, Yuji Yamagata b, Yoshikazu Kaifuchi a, Akira Sakamoto a, and Daiichiro Tanaka a a

More information

An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm

An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm Ma Yangwu *, Liang Di ** Center for Optical and Electromagnetic Research, State Key Lab of Modern Optical

More information

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise Ben Wu, * Zhenxing Wang, Bhavin J. Shastri, Matthew P. Chang, Nicholas A. Frost, and Paul R. Prucnal

More information

Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors

Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors Jason H. Karp, Eric J. Tremblay and Joseph E. Ford Photonics Systems Integration Lab University of California

More information

OCT Spectrometer Design Understanding roll-off to achieve the clearest images

OCT Spectrometer Design Understanding roll-off to achieve the clearest images OCT Spectrometer Design Understanding roll-off to achieve the clearest images Building a high-performance spectrometer for OCT imaging requires a deep understanding of the finer points of both OCT theory

More information

Lecture 7. Lithography and Pattern Transfer. Reading: Chapter 7

Lecture 7. Lithography and Pattern Transfer. Reading: Chapter 7 Lecture 7 Lithography and Pattern Transfer Reading: Chapter 7 Used for Pattern transfer into oxides, metals, semiconductors. 3 types of Photoresists (PR): Lithography and Photoresists 1.) Positive: PR

More information

immersion optics Immersion Lithography with ASML HydroLith TWINSCAN System Modifications for Immersion Lithography by Bob Streefkerk

immersion optics Immersion Lithography with ASML HydroLith TWINSCAN System Modifications for Immersion Lithography by Bob Streefkerk immersion optics Immersion Lithography with ASML HydroLith by Bob Streefkerk For more than 25 years, many in the semiconductor industry have predicted the end of optical lithography. Recent developments,

More information

Wavelength-controlled hologram-waveguide modules for continuous beam-scanning in a phased-array antenna system

Wavelength-controlled hologram-waveguide modules for continuous beam-scanning in a phased-array antenna system Waveleng-controlled hologram-waveguide modules for continuous beam-scanning in a phased-array antenna system Zhong Shi, Yongqiang Jiang, Brie Howley, Yihong Chen, Ray T. Chen Microelectronics Research

More information

BEAM SHAPING OPTICS TO IMPROVE HOLOGRAPHIC AND INTERFEROMETRIC NANOMANUFACTURING TECHNIQUES Paper N405 ABSTRACT

BEAM SHAPING OPTICS TO IMPROVE HOLOGRAPHIC AND INTERFEROMETRIC NANOMANUFACTURING TECHNIQUES Paper N405 ABSTRACT BEAM SHAPING OPTICS TO IMPROVE HOLOGRAPHIC AND INTERFEROMETRIC NANOMANUFACTURING TECHNIQUES Paper N5 Alexander Laskin, Vadim Laskin AdlOptica GmbH, Rudower Chaussee 9, 89 Berlin, Germany ABSTRACT Abstract

More information

Swiss Photonics Workshop on SLM

Swiss Photonics Workshop on SLM Swiss Photonics Workshop on SLM Grating Light Valve Technology & Applications Ecole Polytechnique Fédérale de Lausanne October 2017 Outline GLV Technology Direct Write Applications Emerging Applications

More information

Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul

Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul Using a highly linear fiber optic transceiver with IIP3 > 35 dbm, operating at noise level of -160dB/Hz, we demonstrate 71 km RF

More information

DoubleTalk Carrier-in-Carrier

DoubleTalk Carrier-in-Carrier DoubleTalk Carrier-in-Carrier Bandwidth Compression Providing Significant Improvements in Satellite Bandwidth Utilization September 27, 24 24 Comtech EF Data Corporation DoubleTalk Carrier-in-Carrier Rev

More information

MODIFIED MILLIMETER-WAVE WILKINSON POWER DIVIDER FOR ANTENNA FEEDING NETWORKS

MODIFIED MILLIMETER-WAVE WILKINSON POWER DIVIDER FOR ANTENNA FEEDING NETWORKS Progress In Electromagnetics Research Letters, Vol. 17, 11 18, 2010 MODIFIED MILLIMETER-WAVE WILKINSON POWER DIVIDER FOR ANTENNA FEEDING NETWORKS F. D. L. Peters, D. Hammou, S. O. Tatu, and T. A. Denidni

More information

Holographic 3D imaging methods and applications

Holographic 3D imaging methods and applications Journal of Physics: Conference Series Holographic 3D imaging methods and applications To cite this article: J Svoboda et al 2013 J. Phys.: Conf. Ser. 415 012051 View the article online for updates and

More information

High-power All-Fiber components: The missing link for high power fiber lasers

High-power All-Fiber components: The missing link for high power fiber lasers High- All-Fiber components: The missing link for high lasers François Gonthier, Lilian Martineau, Nawfel Azami, Mathieu Faucher, François Séguin, Damien Stryckman, Alain Villeneuve ITF Optical Technologies

More information

A high-resolution fringe printer for studying synthetic holograms

A high-resolution fringe printer for studying synthetic holograms Publication : SPIE Proc. Practical Holography XX: Materials and Applications, SPIE#6136, San Jose, 347 354(2006). 1 A high-resolution fringe printer for studying synthetic holograms K. Matsushima a, S.

More information

Laser micro-machining of high density optical structures on large substrates

Laser micro-machining of high density optical structures on large substrates Laser micro-machining of high density optical structures on large substrates Karl L. Boehlen*, Ines B. Stassen Boehlen Exitech Ltd, Oxford Industrial Park, Yarnton, Oxford, OX5 1QU, United Kingdom ABSTRACT

More information

Micro-Optic Solar Concentration and Next-Generation Prototypes

Micro-Optic Solar Concentration and Next-Generation Prototypes Micro-Optic Solar Concentration and Next-Generation Prototypes Jason H. Karp, Eric J. Tremblay and Joseph E. Ford Photonics Systems Integration Lab University of California San Diego Jacobs School of Engineering

More information

Estimation of BER from Error Vector Magnitude for Optical Coherent Systems

Estimation of BER from Error Vector Magnitude for Optical Coherent Systems hv photonics Article Estimation of BER from Error Vector Magnitude for Optical Coherent Systems Irshaad Fatadin National Physical Laboratory, Teddington, Middlesex TW11 0LW, UK; irshaad.fatadin@npl.co.uk;

More information

Compressive Optical MONTAGE Photography

Compressive Optical MONTAGE Photography Invited Paper Compressive Optical MONTAGE Photography David J. Brady a, Michael Feldman b, Nikos Pitsianis a, J. P. Guo a, Andrew Portnoy a, Michael Fiddy c a Fitzpatrick Center, Box 90291, Pratt School

More information

IIL Imaging Model, Grating-Based Analysis and Optimization

IIL Imaging Model, Grating-Based Analysis and Optimization UNM MURI REVIEW 2002 IIL Imaging Model, Grating-Based Analysis and Optimization Balu Santhanam Dept. of EECE, University of New Mexico Email: bsanthan@eece.unm.edu Overview of Activities Optimization for

More information

Automatic optical measurement of high density fiber connector

Automatic optical measurement of high density fiber connector Key Engineering Materials Online: 2014-08-11 ISSN: 1662-9795, Vol. 625, pp 305-309 doi:10.4028/www.scientific.net/kem.625.305 2015 Trans Tech Publications, Switzerland Automatic optical measurement of

More information

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Design and Analysis of Resonant Leaky-mode Broadband Reflectors 846 PIERS Proceedings, Cambridge, USA, July 6, 8 Design and Analysis of Resonant Leaky-mode Broadband Reflectors M. Shokooh-Saremi and R. Magnusson Department of Electrical and Computer Engineering, University

More information

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved. Effect of Fading Correlation on the Performance of Spatial Multiplexed MIMO systems with circular antennas M. A. Mangoud Department of Electrical and Electronics Engineering, University of Bahrain P. O.

More information

Isolator-Free 840-nm Broadband SLEDs for High-Resolution OCT

Isolator-Free 840-nm Broadband SLEDs for High-Resolution OCT Isolator-Free 840-nm Broadband SLEDs for High-Resolution OCT M. Duelk *, V. Laino, P. Navaretti, R. Rezzonico, C. Armistead, C. Vélez EXALOS AG, Wagistrasse 21, CH-8952 Schlieren, Switzerland ABSTRACT

More information

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser V.I.Baraulya, S.M.Kobtsev, S.V.Kukarin, V.B.Sorokin Novosibirsk State University Pirogova 2, Novosibirsk, 630090, Russia ABSTRACT

More information

Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems

Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems María-P. Bernal, Geoffrey W. Burr, Hans Coufal, and Manuel Quintanilla We investigate the effects

More information

7 CHAPTER 7: REFRACTIVE INDEX MEASUREMENTS WITH COMMON PATH PHASE SENSITIVE FDOCT SETUP

7 CHAPTER 7: REFRACTIVE INDEX MEASUREMENTS WITH COMMON PATH PHASE SENSITIVE FDOCT SETUP 7 CHAPTER 7: REFRACTIVE INDEX MEASUREMENTS WITH COMMON PATH PHASE SENSITIVE FDOCT SETUP Abstract: In this chapter we describe the use of a common path phase sensitive FDOCT set up. The phase measurements

More information

VeraPath Optical Encoder Technology

VeraPath Optical Encoder Technology TECHNICAL NOTES: OPTICAL TECHNOLOGIES VeraPath Optical Encoder Technology TN-1002 REV 160602 The Challenge MicroE s PurePrecision technology has enabled designers of precision motion control systems in

More information

Accuracy Estimation of Microwave Holography from Planar Near-Field Measurements

Accuracy Estimation of Microwave Holography from Planar Near-Field Measurements Accuracy Estimation of Microwave Holography from Planar Near-Field Measurements Christopher A. Rose Microwave Instrumentation Technologies River Green Parkway, Suite Duluth, GA 9 Abstract Microwave holography

More information

Full Color Holographic Optical Element Fabrication for Waveguide-type Head Mounted Display Using Photopolymer

Full Color Holographic Optical Element Fabrication for Waveguide-type Head Mounted Display Using Photopolymer Journal of the Optical Society of Korea Vol. 17, No. 3, June 2013, pp. 242-248 DOI: http://dx.doi.org/10.3807/josk.2013.17.3.242 Full Color Holographic Optical Element Fabrication for Waveguide-type Head

More information

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 Active Modelocking of a Helium-Neon Laser The generation of short optical pulses is important for a wide variety of applications, from time-resolved

More information

High-Precision Positioning Mechanism Development at the Advanced Photon Source

High-Precision Positioning Mechanism Development at the Advanced Photon Source High-Precision Positioning Mechanism Development at the Advanced Photon Source D. Shu, T. S. Toellner, E. E. Alp, J. Maser, D. Mancini, B. Lai, I. McNulty, A. Joachimiak, P. Lee, W-K. Lee, Z. Cai, S-H.

More information

Using TCM Techniques to Decrease BER Without Bandwidth Compromise. Using TCM Techniques to Decrease BER Without Bandwidth Compromise. nutaq.

Using TCM Techniques to Decrease BER Without Bandwidth Compromise. Using TCM Techniques to Decrease BER Without Bandwidth Compromise. nutaq. Using TCM Techniques to Decrease BER Without Bandwidth Compromise 1 Using Trellis Coded Modulation Techniques to Decrease Bit Error Rate Without Bandwidth Compromise Written by Jean-Benoit Larouche INTRODUCTION

More information

A process for, and optical performance of, a low cost Wire Grid Polarizer

A process for, and optical performance of, a low cost Wire Grid Polarizer 1.0 Introduction A process for, and optical performance of, a low cost Wire Grid Polarizer M.P.C.Watts, M. Little, E. Egan, A. Hochbaum, Chad Jones, S. Stephansen Agoura Technology Low angle shadowed deposition

More information

PhD Thesis. Balázs Gombköt. New possibilities of comparative displacement measurement in coherent optical metrology

PhD Thesis. Balázs Gombköt. New possibilities of comparative displacement measurement in coherent optical metrology PhD Thesis Balázs Gombköt New possibilities of comparative displacement measurement in coherent optical metrology Consultant: Dr. Zoltán Füzessy Professor emeritus Consultant: János Kornis Lecturer BUTE

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Technical overview drawing of the Roadrunner goniometer. The goniometer consists of three main components: an inline sample-viewing microscope, a high-precision scanning unit for

More information

Security Based Variable Holographic Data Encryption using Spatial Light Modulator

Security Based Variable Holographic Data Encryption using Spatial Light Modulator Security Based Variable Holographic Data Encryption using Spatial Light Modulator Aswathy.J.R 1, Sajan Ambadiyil 2, Helen Mascreen 3 1 PG Scholar, Optoelectronics and Communication Systems, ECE Department,

More information

TL2 Technology Developer User Guide

TL2 Technology Developer User Guide TL2 Technology Developer User Guide The Waveguide available for sale now is the TL2 and all references in this section are for this optic. Handling and care The TL2 Waveguide is a precision instrument

More information

Multi-aperture camera module with 720presolution

Multi-aperture camera module with 720presolution Multi-aperture camera module with 720presolution using microoptics A. Brückner, A. Oberdörster, J. Dunkel, A. Reimann, F. Wippermann, A. Bräuer Fraunhofer Institute for Applied Optics and Precision Engineering

More information

Investigation of the Near-field Distribution at Novel Nanometric Aperture Laser

Investigation of the Near-field Distribution at Novel Nanometric Aperture Laser Investigation of the Near-field Distribution at Novel Nanometric Aperture Laser Tiejun Xu, Jia Wang, Liqun Sun, Jiying Xu, Qian Tian Presented at the th International Conference on Electronic Materials

More information

Design Description Document

Design Description Document UNIVERSITY OF ROCHESTER Design Description Document Flat Output Backlit Strobe Dare Bodington, Changchen Chen, Nick Cirucci Customer: Engineers: Advisor committee: Sydor Instruments Dare Bodington, Changchen

More information