, ' ,,.,EDITED BY THE RESEARCH LABORATORY OF N. V. PHILIPS' CI.OEILAMPENFABRIEKEN, EINDHOVEN, NETHERLANDS

Size: px
Start display at page:

Download ", ' ,,.,EDITED BY THE RESEARCH LABORATORY OF N. V. PHILIPS' CI.OEILAMPENFABRIEKEN, EINDHOVEN, NETHERLANDS"

Transcription

1 J -~-~--:-- --'-- ~~-~.~- -~~... - /. './ - _... ' I~. VOD: '5. NR i. FEBRUARY 1950 Researèh Reports.. EDITED BY THE RESEARCH LABORATORY OF N. V. PHILIPS' CI.OEILAMPENFABRIEKEN EINDHOVEN NETHERLANDS R 125 PhilipsRes. Rep. 5! A ;NOTE ON THE MAXIMUM FE~DBACK' OBTAINÁBLE IN AN AMPLIFIER' OF THE CATHODE-FEEDBACK' TYPE \ i ' ' ~ : \.. by J. te WINKEL ~'I The' total feedback on the last valve in a feedback amplifi~r is calculated for the case that the feedback voltage is derived from an ' impedanceinserted between the cathode of the Iast valve and earth (cathode feedback). This quantity is shown to have an upper limit which depends only on the frequency and on the ratio 'of the trans- 'conductance and input capacity of this last valve; the total feedback also appears to be invariably less than theproduct of the îndividual : feedback of the valve and the feedback around the main loop. Résumé \ On a calculé la contre-rëaction totài.e appliquëe au dernier tube d'un amplificateur à contre-rëaction dans Ie cas spêcial oü la tension. de contre-rëaction est dêrivêe d'une impëdançc insërëe entre la cathode du dernier tube 'et la terre (contre-rëaction par cathode).. On montre que cette quantité!lune limite supërieure déterminée par la frêquence et par le rapport entre la pente du dernier tube et sa _. capacitë de grille à cathode; on montre également que la contre- rëaction est toujours infërieure ' au produit de la' contre-réaction individuelle du tube et la contre-rêaction obtenue pour' le circuit principal. : Zusammen~assung I' 'I.~.... Man berechnet den Rückkopplungsfaktor fill die letzte Röhre eines rückgekoppelten Verstärkers fill den Fall dab die Rückkopplungs-. spannung abgenommen wird von einer Impedanz zwischen der Kathode der letzten Röhre und Erde (Kathodenrückkopplung)... Es wird gezeigt dab diese GröBe einen Grenzwert besitzt der nur ' abhängt von 'der lfrequenz und von -dem Verhältnis der Steilheit ' der letzten Röhre und deren Eingangskapazität; es wird gleichfalls gefunden dab der berechnete Rückkopplungsfaktor immer niedriger ist als der Produkt der Faktoren fill die letzte Röhre an sich und fill den Hauptrückkopplungskreis. '...~. I 'Lin~ amplifiers used. in carrier-telephone-communication systems : ~generally require a large amount of feedback firstly to reduce the harmonic. distortion caused by the output valve sufficiently to avoid mutualinter- fèrence of the channels amplified simultaneously and secondly to reduce. '

2 M. 2 J. te WINKEL. variations in the amplifier gain caused by changes in the various valves... A circuit diagram of a _conventional amplifier having one single feedback. loop is shown in fig. la. If the bandwidth required is large however a slightly modified circuit as shown in. fig. lb is to be preferred. This is known as the cathode-feedback circuit and other conditions being equal allows more feedback 1). In. a strict sense it is no longer a single-loop circuit because the first and last válves haveindividual feedback through' the impedance between their c~thodes and earth. In most cases as shown in fig. lb the individual feedback on the last valve is increased further since the requirements' in regard to output distortion are generally more severe than those for gain stability. ; I[ ]1 II[ Fig. 1. a: Single-loop feedback circuit; b. Cathode-feedback circuit. Circuit elements only necessary for d.c. supply are not shown. Unlimited application of feedback may cause the circuit to become unstable.bode has shown 2) that 'to achieve stability the feedback has to be limited. to a value that depends on the bandwidth the number of valves the safety margins and the so-called figur~ of merit of the valves i.e. the quantity e[c where s represents the transconductance and C the sum of input and output capacitances. The object of the pr~sent note is to point out that for the cathodefeedback circuit there is an additional Iimitafion of the total feedback on the last valve which largely offsets the advantages claimed for this type of circuit.. In order to demonstrate this the circuit diagram of fig. lb has been redrawn in fig. 2 showing only the last valve explicitly. All other valves v'. I

3 .. AMPLIFIER OF THE CATHODE-FEEDBACK TYPE are included in the network N which feeds a current i through the impedance Z (usually a capacitance) between 'grid and cathode of the last valve and also through the feedback impedance R. If the valve.is assumed to be a penthode. with transconductance s the output' current is then io=isz. The voltage acrossr which is fed back to the input is equal to.. l+sz (L + LO) R = LoR. sz. 3. I + Fig. 2. Essential parts of the cathode-feedback circuit. Further let the input and output voltages be ei and eo the output load. Ro and the amplification fa~tor Without' any feedback around the main loop p. Then from which the amplification with feedback p' can be derived: f1= R 1+sZ l+f1-'---. 'Ro sz The feedback on the last valve could be calculated by opening the feedback loop at the grid of this valve. However it is more convenient to.calculate instead the quantity S defined by ds to which Bode has given the' name sensitivity. This procedure is also

4 j '.. '4 J te WINKEL ' r '. J' more justifie( theoretically because the sensitivity give: 'directly the ratio in which the output distortion is reduced. For the circuit analysed here however feedback and sensitivity are equalê} Putting I'. R 1+sZ /3=--- s -z t ' one can write Logarithmic differe~tiation' gives S~milary Further pp 1 p = p/3 ~ dp' = 1 '(dp + d(3)_ dfj. p' 1+ p/3 p /3 ' B dfj 1 ds 'P=-l+sZ-;': df.i 1 ds ' -= -'.. P 1+ SZk s 'I for /-~includes the amplification of the last valve which is proportional tos/(l + 8' 1 ) Zk being the impedance determining the individual feedback on fhis 'valve. ' ' ':' ' Thus Generally Z ~'Zk; therefore the reciprocal of the first term 'of.this expression shows the feedback on the last valve which would normally he expected i.e. the product of the feedback around the main loop and the' individual feedback on the valve. The significance of the second term... of the expression however is not ~appar~nt at first sight. The derivation IP.ven shows that it results from the differentiation of fj: which contains the factor (1 + sz)/sz; this factor represents the ratio of the current. through the feedback impedance R and that through the output load Ro;- The main conclusion to' be drawn froin the expression for l/s isnów that its seco~d term will li~it' the sensitivity for the last valvè to the ' value 1 + s Z which limit could' 'only be reached if it we~e possible to increase the feedback around the main JooP indefinitely. '. ' It is seen that this limit depends only on die last valve ÎJ;l the circuit. In general Z will represent the grid-cathode capacitance of the valve but i~ should be possible to increase this impedance in certain'. frequency. ' I \'

5 . -'i.- '..~ '...: 'J'_. 5. '~r~gionsat ~he'e:l):penseof ~the~s by adding othe~ ~ircûit elém~n~s parallel. to th~ capacity In any case the general level of the maximum feedback' 'obtainable on the lást valve will depend only on the ratio of its trans- : con:ductance and input capacity which quantity is closely related to. the figure of merit 'previously referred to In practical 'cases where the feedback required on the last valve is : large the additional limitation discussed above may he severe. For in- I stance for a transconduct'ance of 8 ma/v and an input capacity of 12 pf the limiting val~e at ~ frequency of 3 Mc/sec will amount to 11+ s ZI =.35'4 or 31 db and the actual feedback realized will be still less depending on the fe~dback obtainable around the main loop. The.feedbaèk on the other valv~s will not of course be affected and the i~crease III feedback all?w_edby the cathode-fe~dba~k circuit is fully ~ffective. ' Eindhoven September 1949 \ REFERENCES 1) H. W. Bode Network analysis and feedback amplifier design Van Nostrand.New York 1945 p ~ 2) Bode loc. cit. Chapter XVII. 3) For a full discussion on the relation between feedback and sensitivity see Bode: loc. cit. Chapters IV-VI.. \ I /.

MEASUREMENTS ON NOISY FOURPOLES AT MICROWAVE FREQUENCIES

MEASUREMENTS ON NOISY FOURPOLES AT MICROWAVE FREQUENCIES R 323 Philips Res. Rep. 12, 324-332, 1957 MEASUREMENTS ON NOISY FOURPOLES AT MICROWAVE FREQUENCIES by M. T. VLAARDINGERBROEK, K. S. KNOL and P. A. H. HART Summary A new method of measuring the characteristic

More information

R 233 Philips Res. Rep. 8, , 1953

R 233 Philips Res. Rep. 8, , 1953 R 233 Philips Res. Rep. 8, 471-475, 1953 MEASUREMENTS OF PHASE ANGLES by A. van WEEL 621.317.373: 621.396.615 Summary Phase angles are measured from the frequency variation of an oscillating circuit, caused

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

Pole, zero and Bode plot

Pole, zero and Bode plot Pole, zero and Bode plot EC04 305 Lecture notes YESAREKEY December 12, 2007 Authored by: Ramesh.K Pole, zero and Bode plot EC04 305 Lecture notes A rational transfer function H (S) can be expressed as

More information

The Groups are invited to answer the following questions under their national laws.

The Groups are invited to answer the following questions under their national laws. Question Q233 National Group: ESTONIA Title: Grace period for patents Contributors: Prof. Ants KUKRUS, Raul KARTUS Reporter within Working Committee: Raul KARTUS Date: 8 April 2013 Questions The Groups

More information

A 100MHz CMOS wideband IF amplifier

A 100MHz CMOS wideband IF amplifier A 100MHz CMOS wideband IF amplifier Sjöland, Henrik; Mattisson, Sven Published in: IEEE Journal of Solid-State Circuits DOI: 10.1109/4.663569 1998 Link to publication Citation for published version (APA):

More information

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec INTEGRATED CIRCUITS 1988 Dec DAC products are designed to convert a digital code to an analog signal. Since a common source of digital signals is the data bus of a microprocessor, DAC circuits that are

More information

2 5 1 A Va c u u m T u b e

2 5 1 A Va c u u m T u b e 251A 2 5 1 A Va c u u m T u b e P L A T E L E A D INSULATORS W SPRING CONNECTOR - P L A T E L E A D -FILAMENT LEADS CONNECTOR GRID LEAD Classification The 251A Vacuum Tube is a three element, air-cooled,

More information

(51) Int Cl.: G06K 19/07 ( )

(51) Int Cl.: G06K 19/07 ( ) (19) (11) EP 1 724 706 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 27.02.2008 Bulletin 2008/09 (1) Int Cl.: G06K 19/07 (2006.01) (21) Application

More information

Philips Research Reports EDITED BY THE RESEARCH LABORATORY OF N.V. PHILIPS' GLOEILAMPENFABRIEKEN, EINDHOVEN, NETHERLANDS

Philips Research Reports EDITED BY THE RESEARCH LABORATORY OF N.V. PHILIPS' GLOEILAMPENFABRIEKEN, EINDHOVEN, NETHERLANDS , : VOL. 11 No. 3 JUNE 1956 Philips Research Reports EDITED BY THE RESEARCH LABORATORY OF N.V. PHILIPS' GLOEILAMPENFABRIEKEN, EINDHOVEN, NETHERLANDS R 292 Philips Res. Rep. 11, 161-171, 1956 A GENERAL-PURPOSE

More information

Designing Your Own Amplifier, Part 1: Voltage Amplifier Stages

Designing Your Own Amplifier, Part 1: Voltage Amplifier Stages Audio Classroom Designing Your Own Amplifier, Part 1: Voltage Amplifier Stages This article appeared originally in Audiocraft, March 1956. 1956 by Audiocom, Inc. BY NORMAN H. CROWHURST How, do you go about

More information

New Techniques for Testing Power Factor Correction Circuits

New Techniques for Testing Power Factor Correction Circuits Keywords Venable, frequency response analyzer, impedance, injection transformer, oscillator, feedback loop, Bode Plot, power supply design, power factor correction circuits, current mode control, gain

More information

Code: 9A Answer any FIVE questions All questions carry equal marks *****

Code: 9A Answer any FIVE questions All questions carry equal marks ***** II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS (Common to EIE, E. Con. E & ECE) Time: 3 hours Max Marks: 70 Answer any FIVE questions All

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo Colantonio A.A. 2056 Operational amplifiers (op amps) Operational amplifiers (op amps) are among

More information

PhiIips Technical Review DEALING WITH TECHNICAL PROBLEMS RELATING TO THE PRODUCTS, PROCESSES AND INVESTIGATIONS OF N. V. PHILIPS' GLOEILAMPENFABRIEKEN

PhiIips Technical Review DEALING WITH TECHNICAL PROBLEMS RELATING TO THE PRODUCTS, PROCESSES AND INVESTIGATIONS OF N. V. PHILIPS' GLOEILAMPENFABRIEKEN VOL. 2 No.10 OCTOBER 1937 PhiIips Technical Review DEALING WITH TECHNICAL PROBLEMS RELATING TO THE PRODUCTS, PROCESSES AND INVESTIGATIONS OF N. V. PHILIPS' GLOEILAMPENFABRIEKEN EDITED BY THE RESEARCH LABORATORY

More information

Transmitter Tetrode TH 347

Transmitter Tetrode TH 347 Coaxial metal-ceramic tetrode, forced-air-cooled, for frequencies up to 1000 MHz. The tube is especially suitable for TV transmitters and TV translators, band IV/V. Dimensions in mm Approx. weight 2,3

More information

DMI COLLEGE OF ENGINEERING

DMI COLLEGE OF ENGINEERING DMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING EC8453 - LINEAR INTEGRATED CIRCUITS Question Bank (II-ECE) UNIT I BASICS OF OPERATIONAL AMPLIFIERS PART A 1.Mention the

More information

USER MANUAL. DC - 5MHz High Voltage Amplifier WMA V to +100V output. DC to -3dB large signal bandwidth. 1300V/µs slew rate typical

USER MANUAL. DC - 5MHz High Voltage Amplifier WMA V to +100V output. DC to -3dB large signal bandwidth. 1300V/µs slew rate typical DC - 5MHz High Voltage Amplifier WMA-320 www.falco-systems.com USER MANUAL -0V to +0V output DC to 5MHz @ -3dB large signal bandwidth 1300V/µs slew rate typical ±300mA Output current limit Stable with

More information

Research and design of PFC control based on DSP

Research and design of PFC control based on DSP Acta Technica 61, No. 4B/2016, 153 164 c 2017 Institute of Thermomechanics CAS, v.v.i. Research and design of PFC control based on DSP Ma Yuli 1, Ma Yushan 1 Abstract. A realization scheme of single-phase

More information

Voice-Frequency Telegraph Modem HY101-SWT

Voice-Frequency Telegraph Modem HY101-SWT Voice-Frequency Telegraph Modem HY101-SWT Revision: August 2014 V 1.6 08/14 1 HYTEC Gerätebau GmbH 2007 / HYTEC Gerätebau GmbH All rights reserved No part of this document may be reproduced or used except

More information

(51) Int Cl.: H02M 1/32 ( ) H05K 5/02 ( ) H02M 5/45 ( ) H02M 5/458 ( ) H02M 7/00 ( )

(51) Int Cl.: H02M 1/32 ( ) H05K 5/02 ( ) H02M 5/45 ( ) H02M 5/458 ( ) H02M 7/00 ( ) (19) TEPZZ_99 _9B_T (11) EP 1 993 19 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 16.03.2016 Bulletin 2016/11 (21) Application number: 081862.9

More information

Why a push-pull amplifier?

Why a push-pull amplifier? Unison Research P70 Fully balanced dual mono valves Amplifier in Push- Pull topology Why a push-pull amplifier? A push-pull topology amplifier is characterised by a power stage in which active devices

More information

Operational Amplifier BME 360 Lecture Notes Ying Sun

Operational Amplifier BME 360 Lecture Notes Ying Sun Operational Amplifier BME 360 Lecture Notes Ying Sun Characteristics of Op-Amp An operational amplifier (op-amp) is an analog integrated circuit that consists of several stages of transistor amplification

More information

USER. manual. Falco Systems WMA-100. High Voltage Amplifier DC - 500kHz

USER. manual. Falco Systems WMA-100. High Voltage Amplifier DC - 500kHz USER manual Falco Systems WMA-100 High Voltage Amplifier DC - 500kHz Falco Systems WMA-100, High Voltage Amplifier DC - 500kHz High voltage: 20x amplification up to +175V and -175V output voltage with

More information

Core Technology Group Application Note 2 AN-2

Core Technology Group Application Note 2 AN-2 Measuring power supply control loop stability. John F. Iannuzzi Introduction There is an increasing demand for high performance power systems. They are found in applications ranging from high power, high

More information

TEPZZ 9 449B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION. (51) Int Cl.:

TEPZZ 9 449B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION. (51) Int Cl.: (19) TEPZZ 9 449B_T (11) EP 2 293 449 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent:.07.13 Bulletin 13/28 (21) Application number: 0984478.7 (22)

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT I FEEDBACK AMPLIFIERS PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT I FEEDBACK AMPLIFIERS PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT I FEEDBACK AMPLIFIERS PART A (2 Marks) 1. Name the types of feedback amplifiers. (AUC MAY 13, DEC06) Voltage Series feedback amplifier Voltage

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information

LM148/LM248/LM348 Quad 741 Op Amps

LM148/LM248/LM348 Quad 741 Op Amps Quad 741 Op Amps General Description The LM148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to

More information

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load ECE4902 C2012 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc. Feedback 1 Figure 8.1 General structure of the feedback amplifier. This is a signal-flow diagram, and the quantities x represent either voltage or current signals. 2 Figure E8.1 3 Figure 8.2 Illustrating

More information

USER MANUAL. Ultra-Low Noise High Voltage Amplifier WMA V to +150V output. 300µV rms output noise. 2mV output offset voltage

USER MANUAL. Ultra-Low Noise High Voltage Amplifier WMA V to +150V output. 300µV rms output noise. 2mV output offset voltage Ultra-Low Noise High Voltage Amplifier WMA-28 280 www.falco falco-systems systems.com USER MANUAL -150V to +150V output 300µV rms output noise 2mV output offset voltage ±300mA Output current limit DC to

More information

(51) Int Cl.: B42D 25/00 ( )

(51) Int Cl.: B42D 25/00 ( ) (19) TEPZZ_8868 B_T (11) EP 1 886 83 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 12.08.201 Bulletin 201/33 (1) Int Cl.: B42D 2/00 (2014.01) (21)

More information

Glossary of VCO terms

Glossary of VCO terms Glossary of VCO terms VOLTAGE CONTROLLED OSCILLATOR (VCO): This is an oscillator designed so the output frequency can be changed by applying a voltage to its control port or tuning port. FREQUENCY TUNING

More information

LF411 Low Offset, Low Drift JFET Input Operational Amplifier

LF411 Low Offset, Low Drift JFET Input Operational Amplifier Low Offset, Low Drift JFET Input Operational Amplifier General Description These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

SECTION NEUTRALIZATION BELOW VHF NEUTRALIZATION

SECTION NEUTRALIZATION BELOW VHF NEUTRALIZATION SECTION 5 NEUTRALIZATION A completely neutralized amplifier must fulfill two conditions. The first is that the interelectrode capacitance between the input and output circuits be cancelled. The second

More information

Experiment 1: Amplifier Characterization Spring 2019

Experiment 1: Amplifier Characterization Spring 2019 Experiment 1: Amplifier Characterization Spring 2019 Objective: The objective of this experiment is to develop methods for characterizing key properties of operational amplifiers Note: We will be using

More information

USER MANUAL. DC 13kHz High Voltage Amplifier WMA V to +175V output. Stable with all capacitive loads, generates no overshoot

USER MANUAL. DC 13kHz High Voltage Amplifier WMA V to +175V output. Stable with all capacitive loads, generates no overshoot DC 13kHz High Voltage Amplifier WMA-02 www.falco falco-systems systems.com USER MANUAL -175V to +175V output DC to 13kHz at -3dB full power bandwidth single power supply 24V 30V DC, battery power possible

More information

Negative-Feedback Tone Control

Negative-Feedback Tone Control Negative-Feedback Tone Control Independent Variation of Bass and Treble Without Switches By P. J. BAXANDALL B.Sc.(Eng.) T he circuit to be described is the outcome of a prolonged investigation of tone-control

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

C H A P T E R 02. Operational Amplifiers

C H A P T E R 02. Operational Amplifiers C H A P T E R 02 Operational Amplifiers The Op-amp Figure 2.1 Circuit symbol for the op amp. Figure 2.2 The op amp shown connected to dc power supplies. The Ideal Op-amp 1. Infinite input impedance 2.

More information

Contents. 1. Essential Electronics 1. Preface Acknowledgements

Contents. 1. Essential Electronics 1. Preface Acknowledgements Contents Preface Acknowledgements ix xi 1. Essential Electronics 1 1.1: Current 2 1.2: Voltage 5 1.3: Power 6 1.4: Signals and Averages 7 1.4.1: Mean Average 7 1.4.2: Rectified Average 8 1.4.3: RMS Average

More information

(51) Int Cl.: B24D 11/00 ( )

(51) Int Cl.: B24D 11/00 ( ) (19) Europäisches Patentamt European Patent Office Office européen des brevets (11) EP 1 22 386 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 01.03.06

More information

EE 501 Lab 10 Output Amplifier Due: December 10th, 2015

EE 501 Lab 10 Output Amplifier Due: December 10th, 2015 EE 501 Lab 10 Output Amplifier Due: December 10th, 2015 Objective: Get familiar with output amplifier. Design an output amplifier driving small resistor load. Design an output amplifier driving large capacitive

More information

Practical Testing Techniques For Modern Control Loops

Practical Testing Techniques For Modern Control Loops VENABLE TECHNICAL PAPER # 16 Practical Testing Techniques For Modern Control Loops Abstract: New power supply designs are becoming harder to measure for gain margin and phase margin. This measurement is

More information

Bode Plots. Hamid Roozbahani

Bode Plots. Hamid Roozbahani Bode Plots Hamid Roozbahani A Bode plot is a graph of the transfer function of a linear, time-invariant system versus frequency, plotted with a logfrequency axis, to show the system's frequency response.

More information

RP 5/3/13. HLC. BTEC. Assessment Center Number Student:

RP 5/3/13. HLC. BTEC. Assessment Center Number Student: Course: BTEC L3 Extended Diploma in Engineering / Diploma in Electrical / Electronic Engineering Student: Unit/s: 57: Principles and Applications of Analogue Electronics Outcome/s: 2, 3 Analogue Devices

More information

ETIN25 Analogue IC Design. Laboratory Manual Lab 2

ETIN25 Analogue IC Design. Laboratory Manual Lab 2 Department of Electrical and Information Technology LTH ETIN25 Analogue IC Design Laboratory Manual Lab 2 Jonas Lindstrand Martin Liliebladh Markus Törmänen September 2011 Laboratory 2: Design and Simulation

More information

Contents. 1. Fundamentals of Amplification The Small-Signal Pentode 40. Acknowledgements. Some Useful Formulae

Contents. 1. Fundamentals of Amplification The Small-Signal Pentode 40. Acknowledgements. Some Useful Formulae Contents Preface Acknowledgements Some Useful Formulae vii ix x 1. Fundamentals of Amplification 1 1.1: Basic Theory of Valves 2 1.2: Valve Diodes 2 1.3: Triodes 4 1.4: Anode Resistance, r a 6 1.5: Amplification

More information

Solid State Devices & Circuits. 18. Advanced Techniques

Solid State Devices & Circuits. 18. Advanced Techniques ECE 442 Solid State Devices & Circuits 18. Advanced Techniques Jose E. Schutt-Aine Electrical l&c Computer Engineering i University of Illinois jschutt@emlab.uiuc.edu 1 Darlington Configuration - Popular

More information

PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

More information

Hessel s Anna amplifier. Model and results of simulations

Hessel s Anna amplifier. Model and results of simulations Pierre Touzelet Page n 1 Hessel s Anna amplifier Model and results of simulations Pierre Touzelet Page n 2 Document change record Date Issue n Pages affected Comments Status 17/5/14 1 All First release

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT EE247 Term Project Eddie Ng Mounir Bohsali Professor

More information

NE/SA5234 Matched quad high-performance low-voltage operational amplifier

NE/SA5234 Matched quad high-performance low-voltage operational amplifier INTEGRATED CIRCUITS Supersedes data of 2001 Aug 03 File under Integrated Circuits, IC11 Handbook 2002 Feb 22 DESCRIPTION The is a matched, low voltage, high performance quad operational amplifier. Among

More information

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier LF353 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier

LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed

More information

(51) Int Cl.: B32B 27/32 ( ) B65D 65/40 ( )

(51) Int Cl.: B32B 27/32 ( ) B65D 65/40 ( ) (19) Europäisches Patentamt European Patent Office Office européen des brevets (11) EP 1 483 116 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 04.01.06

More information

PLATE CHARACTERISTICS

PLATE CHARACTERISTICS PLATE CHARACTERISTICS In these calculations it is important to work with points equidistant on each side of Q to reduce to a minimum errors due to curvature. The plate characteristics of a pentode for

More information

Analog Electronic Circuits Code: EE-305-F

Analog Electronic Circuits Code: EE-305-F Analog Electronic Circuits Code: EE-305-F 1 INTRODUCTION Usually Called Op Amps Section -C Operational Amplifier An amplifier is a device that accepts a varying input signal and produces a similar output

More information

THE LINEARIZATION TECHNIQUE FOR MULTICHANNEL WIRELESS SYSTEMS WITH THE INJECTION OF THE SECOND HARMONICS

THE LINEARIZATION TECHNIQUE FOR MULTICHANNEL WIRELESS SYSTEMS WITH THE INJECTION OF THE SECOND HARMONICS THE LINEARIZATION TECHNIQUE FOR MULTICHANNEL WIRELESS SYSTEMS WITH THE INJECTION OF THE SECOND HARMONICS N. Males-Ilic#, B. Milovanovic*, D. Budimir# #Wireless Communications Research Group, Department

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

StreetSounds STS-170-MMST Mobile Master. User Guide

StreetSounds STS-170-MMST Mobile Master. User Guide StreetSounds STS-170-MMST Mobile Master User Guide V1.4 June 3, 2018 1 CONTENTS 1 Introduction... 3 1.1 Mobi Front Panel... 3 1.2 Mobi Rear Panel... 4 1.3 Operating the Mobi... 4 2 FCC Statements... 6

More information

Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology

Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology Swetha Velicheti, Y. Sandhyarani, P.Praveen kumar, B.Umamaheshrao Assistant Professor, Dept. of ECE, SSCE, Srikakulam, A.P.,

More information

ECEN 474/704 Lab 7: Operational Transconductance Amplifiers

ECEN 474/704 Lab 7: Operational Transconductance Amplifiers ECEN 474/704 Lab 7: Operational Transconductance Amplifiers Objective Design, simulate and layout an operational transconductance amplifier. Introduction The operational transconductance amplifier (OTA)

More information

CIRCUITS FOR DIFFERENCE AMPLIFIERS, 11

CIRCUITS FOR DIFFERENCE AMPLIFIERS, 11 1961/62, No. 6 173 CIRCUITS FOR DIFFERENCE AMPLIFIERS, 11 by G. KLEIN *) and J. J. ZAALBERG van ZELST *). 621.375:621.317.725.083.6 Part 11 of this article qeals with some of the problems that arise in

More information

The Hartley Oscillator

The Hartley Oscillator The Hartley Oscillator One of the main disadvantages of the basic LC Oscillator circuit we looked at in the previous tutorial is that they have no means of controlling the amplitude of the oscillations

More information

Electronic Troubleshooting. Chapter 5 Multistage Amplifiers

Electronic Troubleshooting. Chapter 5 Multistage Amplifiers Electronic Troubleshooting Chapter 5 Multistage Amplifiers Overview When more amplification is required than can be supplied by a single stage amp A second stage is added Or more stages are added Aspects

More information

LF444 Quad Low Power JFET Input Operational Amplifier

LF444 Quad Low Power JFET Input Operational Amplifier LF444 Quad Low Power JFET Input Operational Amplifier General Description The LF444 quad low power operational amplifier provides many of the same AC characteristics as the industry standard LM148 while

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-2012 SCHEME OF VALUATION

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-2012 SCHEME OF VALUATION GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-0 SCHEME OF VALUATION Subject Code: 0 Subject: Qn. PART - A 0. Which is the largest of three

More information

LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

More information

(51) Int Cl.: G06K 7/10 ( )

(51) Int Cl.: G06K 7/10 ( ) (19) TEPZZ Z4Z9ZB_T (11) EP 3 0 90 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 14.02.18 Bulletin 18/07 (1) Int Cl.: G06K 7/ (06.01) (21) Application

More information

(51) Int Cl.: H02P 25/06 ( ) F04B 35/04 ( ) F04B 49/06 ( )

(51) Int Cl.: H02P 25/06 ( ) F04B 35/04 ( ) F04B 49/06 ( ) (19) TEPZZ Z_6669B_T (11) EP 2 016 669 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent:.03.17 Bulletin 17/11 (21) Application number: 0774604.9 (22)

More information

Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR)

Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR) Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR) Mr. A. S. Patil Mr. S. K. Patil Department of Electrical Engg. Department of Electrical Engg. I. C. R. E. Gargoti I. C. R. E. Gargoti

More information

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN 1.Introduction: CMOS Transimpedance Amplifier Avalanche photodiodes (APDs) are highly sensitive,

More information

FEEDBACK AMPLIFIER. Learning Objectives. A feedback amplifier is one in which a fraction of the amplifier output is fed back to the input circuit

FEEDBACK AMPLIFIER. Learning Objectives. A feedback amplifier is one in which a fraction of the amplifier output is fed back to the input circuit C H P T E R6 Learning Objectives es Feedback mplifiers Principle of Feedback mplifiers dvantages of Negative Feedback Gain Stability Decreased Distortion Feedback Over Several Stages Increased Bandwidth

More information

For the purpose of this problem sheet use the model given in the lecture notes.

For the purpose of this problem sheet use the model given in the lecture notes. Analogue Electronics Questions Todd Huffman & Tony Weidberg, MT 2018 (updated 30/10/18). For the purpose of this problem sheet use the model given in the lecture notes. The current gain is defined by a

More information

Sylvain Guillaumet Composer, Interpreter, Teacher

Sylvain Guillaumet Composer, Interpreter, Teacher Sylvain Guilumet Composer, Interpreter, Teacher rance, Châteauroux About the artist Musician, composer and author, he multipes the musical experiences, both in the interpretation of the writing Today,

More information

AVAILABLE OPTIONS CERAMIC DIP (J) 6 mv ua747cd ua747cn. 5 mv ua747mj ua747mw ua747mfk

AVAILABLE OPTIONS CERAMIC DIP (J) 6 mv ua747cd ua747cn. 5 mv ua747mj ua747mw ua747mfk SLOS9A D97, FEBRUARY 97 REVISED OCTOBER 99 No Frequency Compensation Required Low Power Consumption Short-Circuit Protection Offset-Voltage Null Capability Wide Common-Mode and Differential Voltage Ranges

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications About the Tutorial Linear Integrated Circuits are solid state analog devices that can operate over a continuous range of input signals. Theoretically, they are characterized by an infinite number of operating

More information

l O l D V a c u u m T u b e

l O l D V a c u u m T u b e 101D l O l D V a c u u m T u b e Qassification The No. lold Vacuum Tube is a three-element filamentary type tube for use where small amounts of output power are required. Base and Socket The No. lold Vacuum

More information

Multimode 2.4 GHz Front-End with Tunable g m -C Filter. Group 4: Nick Collins Trevor Hunter Joe Parent EECS 522 Winter 2010

Multimode 2.4 GHz Front-End with Tunable g m -C Filter. Group 4: Nick Collins Trevor Hunter Joe Parent EECS 522 Winter 2010 Multimode 2.4 GHz Front-End with Tunable g m -C Filter Group 4: Nick Collins Trevor Hunter Joe Parent EECS 522 Winter 2010 Overview Introduction Complete System LNA Mixer Gm-C filter Conclusion Introduction

More information

II/IV B. TECH. DEGREE EXAMINATIONS, NOVEMBER Second Semester EC/EE ELECTRONIC CIRCUIT ANALYSIS. Time : Three Hours Max.

II/IV B. TECH. DEGREE EXAMINATIONS, NOVEMBER Second Semester EC/EE ELECTRONIC CIRCUIT ANALYSIS. Time : Three Hours Max. Total No. of Questions : 9] [Total No. of Pages : 02 B.Tech. II/ IV YEAR DEGREE EXAMINATION, APRIL/MAY - 2014 (Second Semester) EC/EE/EI Electronic Circuit Analysis Time : 03 Hours Maximum Marks : 70 Q1)

More information

TEPZZ_94787 B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

TEPZZ_94787 B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION (19) TEPZZ_94787 B_T (11) EP 1 947 872 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 16.04.14 Bulletin 14/16 (1) Int Cl.: H04W 24/02 (09.01) (21)

More information

Other useful blocks. Differentiator i = CdV/dt. = -RCdV/dt or /v in. Summing amplifier weighted sum of inputs (consider currents)

Other useful blocks. Differentiator i = CdV/dt. = -RCdV/dt or /v in. Summing amplifier weighted sum of inputs (consider currents) Other useful blocks Differentiator i = CdV/dt = RCdV/dt or /v in = jωrc C R + Summing amplifier weighted sum of inputs (consider currents) v 1 R 1 v 2 v 3 R 3 + R f Differential amplifier = ( /R 1 )(v

More information

EE 3305 Lab I Revised July 18, 2003

EE 3305 Lab I Revised July 18, 2003 Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

More information

BUCK Converter Control Cookbook

BUCK Converter Control Cookbook BUCK Converter Control Cookbook Zach Zhang, Alpha & Omega Semiconductor, Inc. A Buck converter consists of the power stage and feedback control circuit. The power stage includes power switch and output

More information

GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Electronics and Communication Engineering COURSE PLAN

GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Electronics and Communication Engineering COURSE PLAN Appendix - C GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Electronics and Communication Engineering Academic Year: 2016-17 Semester: EVEN COURSE PLAN Semester: VI Subject Code& Name: 10EC63

More information

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. ECEN 622(ESS) Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar Sanchez-Sinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant

More information

Legal Technology & Innovation. Manuel Meyer, Hariolf Wenzler Journées de formation continue FSA, 31 août 2018

Legal Technology & Innovation. Manuel Meyer, Hariolf Wenzler Journées de formation continue FSA, 31 août 2018 Legal Technology & Innovation Manuel Meyer, Hariolf Wenzler Journées de formation continue FSA, 31 août 2018 La legal tech, une question âprement débattue.. Une nouvelle ère réservée exclusivement à UBER?

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

Testing and Stabilizing Feedback Loops in Today s Power Supplies

Testing and Stabilizing Feedback Loops in Today s Power Supplies Keywords Venable, frequency response analyzer, impedance, injection transformer, oscillator, feedback loop, Bode Plot, power supply design, open loop transfer function, voltage loop gain, error amplifier,

More information

Filament Thoriated tungsten. Filament voltage...14 volts Nominal filament current... 6 amperes Average thermionic emission...

Filament Thoriated tungsten. Filament voltage...14 volts Nominal filament current... 6 amperes Average thermionic emission... Classification Filamentary Air-cooled Triode. Application May be used as an audio-frequency amplifier or modulator; or as a radiofrequency oscillator or amplifier. Dimensions Large four-pin bayonet base

More information

Low Voltage Power Supply Current Source

Low Voltage Power Supply Current Source ECE 607(Edgar Sanchez-Sinencio) Low Voltage Power Supply Current Source A M S C Simple implementation of a current source in many applications including a tail current yields a low output impedance. Cascode

More information

ETI , Good luck! Written Exam Integrated Radio Electronics. Lund University Dept. of Electroscience

ETI , Good luck! Written Exam Integrated Radio Electronics. Lund University Dept. of Electroscience und University Dept. of Electroscience EI170 Written Exam Integrated adio Electronics 2010-03-10, 08.00-13.00 he exam consists of 5 problems which can give a maximum of 6 points each. he total maximum

More information