High Resolution Software Defined Radar System for Target Detection

Size: px
Start display at page:

Download "High Resolution Software Defined Radar System for Target Detection"

Transcription

1 High Resolution Software Defined Radar System for Target Detection Sandra Costanzo, Francesco Spadafora, Antonio Borgia, Oswaldo Hugo Moreno, Antonio Costanzo, and Giuseppe Di Massa DIMES University of Calabria Rende (CS), Italy Abstract. A high resolution Software Defined Radar system is implemented in this work by adopting the new generation Universal Software Radio Peripheral USRP NI2920, a software defined transceiver. The enhanced available bandwidth due to the Gigabit Ethernet interface is exploited to achieve the high range resolution features. At this purpose, a specific Labview application implementing the radar operations is developed. The realized SDRadar system is successfully validated by preliminary outdoor tests accurately retrieving the distance of a reference target. Keywords: Software Defined Radio, Radar, Slant Range Resolution. 1 Introduction The flexibility of software based systems and their easy adaptability make them useful for many different applications. The Software Defined Radar (SDRadar) system is a special type of versatile radar in which operations and components, typically realized by specific hardware (i.e., mixers, filters, modulators and demodulators), are implemented in terms of software modules [1]. To implement a SDRadar, some recent researches and studies [2], [3] were conducted through the use of FPGA and/or DSP. The Universal Software Radio Peripheral (USRP) transceiver can be used to develop Software Defined Radio applications like SDRadar, thus leading to obtain a low cost radar sensor. A first attempt to adopt USRP for radar applications was performed by the authors in [4], where a SDRadar system was implemented through the adoption of first generation USRP. Due to the bandwidth limitations imposed by the available USB connection, the solution presented in [4] gives a limited slant-range resolution equal to 75 m, so alternative solutions have been investigated to enhance the radar performance. Other excellent results have been conducted in [5], [6], [7], [8], where the characterization of the USRP N200 e N210 in radar field has been considered. In particular, National Instruments (NI) has recently manufactured a new generation of USRP for wireless communications teaching and research. It successfully combines the NI LabVIEW software and the USRP hardware to deliver an affordable and easy-to-use software-reconfigurable RF platform that works well Á. Rocha et al. (Eds.): Advances in Information Systems and Technologies, AISC 206, pp DOI: / _94 Springer-Verlag Berlin Heidelberg 2013

2 998 S. Costanzo et al. for communications, education, experimentation, research, and rapid prototyping [9]. In this paper, the potentiality of the NI new generation USRP is exploited to enhance the radar resolution of the first SDRadar prototype proposed in [4]. A specific LabVIEW code is developed to control the SDRadar system, with the implementation of a signal processing compression-based technique to achieve a strongly enhanced slant-range resolution equal to 6 m. In the following sections, a complete description of the hardware and the relative control algorithm is provided. Furthermore, experimental results obtained by outdoor tests are discussed to prove the enhanced radar resolution. 2 USRP NI2920 Hardware Description The first USRP motherboard was designed by Matt Ettus at the National Science Foundation in Nowadays, four versions are available, namely USRP, USRP2, USRP N200 and USRP N210. In the last year, the National Instruments has realized three new boards, namely USRP 2920, 2921, 2922, interfacing with the PC through Labview software. The USRP 292X main features are as follows: 2 channels ADC, 400MS/s; 2 channels, 100MS/s; 1 GIGABIT ETHERNET for PC interface; Xilinx Spartan-6; 25MHz of operating bandwidth. The block scheme is shown in Figure 1. Fig. 1. USRP 2920 block diagram

3 High Resolution Software Defined Radar System for Target Detection 999 Incoming signals attached to the standard SMA connector are mixed down from RF using a direct-conversion receiver (DCR) to baseband I/Q components, which are sampled by a 2-channel, 100 MS/s, 14-bit analog-to-digital converter (ADC). The digitized I/Q data follows parallel paths through a digital down-conversion (DDC) process that mixes, filters, and decimates the input 100 MS/s signal to a user-specified rate. The down-converted samples are passed to the host computer up to 20 MS/s over a standard Gigabit Ethernet connection. For transmission, baseband I/Q signal samples are synthesized by the host computer and fed to a USRP-292x up to 20 MS/s over Gigabit Ethernet. The USRP hardware interpolates the incoming signal to 100 MS/s using a digital up-conversion (DUC) process and then converts the signal to analog with a dual-channel, 16-bit digital-to-analog converter (DAC). The resulting analog signal is then mixed up to the specified RF frequency [9]. The main limitation of the SDRadar technology is due to the interface with the PC, that reduces the radar performance in terms of slant range resolution [10]. The first generation USRP, by Matt Ettus, uses a USB 2.0 interface to connect to the PC, thus imposing the adoption of the low USB band for data transmission, which leads to very low slant range resolutions. The behavior and the analysis of the first generation USRP in radar field was conducted by the authors in a recent work [4], where a SDRadar system was implemented with a slant range resolution equal to 75 m. However, radar applications typically require more refined precisions for target detection, so alternative solutions are investigated to enhance the system bandwidth and thus the SDRadar resolution. In particular, the adoption of the new USRP NI 2920 is considered in this work to exploit the associated Gigabit Ethernet interface in order to improve the SDRadar capabilities. 2.1 Signal Processing Algorithm In order to demonstrate the range resolution improvement using the USRP 2920, a signal processing technique, called Stretch Processor [10], is implemented in Labview code. This processing is a particular pulse compression technique which consists of four distinct steps. First, the radar returns are mixed with a replica (reference signal) of the transmitted waveform. This is followed by Low Pass Filtering (LPF) and coherent detection in order to avoid the high frequency response achieved at the output of the Mixer (see figure 2). Next, Analog to Digital (A/D) conversion is performed, and finally a bank of Narrow Band Filters (NBFs) is used to extract the tones proportional to the target range, since stretch processing effectively converts time delay into frequency. A block diagram for a stretch processing receiver [10] is illustrated in Figure 2. The transmitted signal is an Linear Frequency Modulated (LFM) waveform expressed by the following equation: 2, 0 (1)

4 1000 S. Costanzo et al. where μ / is the LFM coefficient, B gives the bandwidth, is the chirp start frequency and is the chirp duration. The slant range resolution ΔR is given by: (2) On the basis of the above equation, the use of the USRP 2920 NI, giving a maximum available bandwidth B = 25 MHz, leads to have a slant range resolution equal to 6 m, which is significantly enhanced with respect to the value of 75 m achieved with the first generation USRP where B is equal to 2 MHz [9]. Fig. 2. Stretch processing block diagram 3 3 SDRadar System The idea is to implement a SDRadar system able to scan a complete area under analysis and to locate, through N different radar scannings in different horizontal positions, the surface topology. In Figure 3 is reported the system block diagram through which the USRP 2920 is used to transmit and receive data by two linear array antennas, that are rotated by a controlled motor. The system is interfaced by a Labview window running on a Single Board Computer (SBC) which processes all the transmitted and received data to determine the topology of the area under analysis. This interface is able to control the motion motor too. A Power Amplifier (AMP) and a Low Noise Amplifier (LNA) are connected to the transmitting (TX) and the receiving (RX) antenna to increase the power along both the transmission and the receiving paths.

5 High Resolution Software Defined Radar System for Target Detection 1001 Fig. 3. SDRadar block diagram 3.1 SDRadar Algorithm for Complete Horizontal Scanning The proposed SDRadar leads to scan, N times, different frames of the area under analysis (eg. Mountain, Landslide, Topography surfaces, Glaciers ) through a horizontal movement of the radar antenna controlled by a driver motor. Figure 4 shows the proposed algorithm, summarized in the following step: 1. Parameter Definition Footprint (antenna illuminating area) of each scan defined by the distance between the radar antenna and the analyzed area, the azimuth and the elevation antenna beam widths, the grazing angle and the operating frequency. The receiving window, that ensures the correct recognition of any type of topology of the surface under analysis, defined by R min and R max (minimum and maximum target range required). Total Area size: which gives the exact number N of radar scanning necessary to retrieve the total topology. 2. An N scan matrix, defined by the parameter of the previous step. This Matrix, made up by N rows, that correspond at N scan produced, and M columns, that depend of the receiving window. 3. A For loop is started for each N scan. The scans are obtained by the motor that rotate the antenna by an angle θ scan N times. For each n<n the Matrix is filled with the results from the Stretch Processor described in the previous section and retrieved from the USRP. 4. When the matrix is completed, a colors assignment is performed like in a radargram [11]. The colors are helpful for the remote view of the topology.

6 1002 S. Costanzo et al. Fig. 4. SDRadar algorithm 4 Outdoor SDRadar Tests Specific tests are performed on the USRP NI2920 in order to identify key features of the device in radar field. At this purpose, the USRP is connected to an host PC through Gigabit Ethernet and it is controlled by an own developed Labview application illustrated in Figure 5. Fig. 5. Labview SDRadar application window To demonstrate the enhanced Slant Range Resolution, an outdoor experimental setup is assessed (Fig. 6), with a broadband ridged horn antenna employed for the transmission and a broadband logarithmic antenna adopted for the reception. A metal plate, positioned at different distances in line of sight direction from the transmitting/receiving platform is assumed as target under test. This preliminary test is performed without motors so the algorithm test described in the previously section was considered for only one scan with θ scan equal to 0 degree. The real and software retrieved target positions are successfully compared in Table 1 for various target distances. The relative signal peaks, properly retrieved by the implemented Stretch Processor technique, are illustrated in Figure 7. As a further validation, the SDRadar map for a single scan is illustrated in Figure 8, where three different targets at m are displayed with different colors.

7 High Resolution Software Defined Radar System for Target Detection 1003 Table 1. Real and retrieved target positions with the USRP 2920 Real target position [m] Retrieved software position [m] Fig. 6. Software Defined Radar Test Fig. 7. Retrieved signal peaks for different target positions

8 1004 S. Costanzo et al N Radar Scanning Effective Distance [m] Fig. 8. SDRadar map for a single scanning 0 5 Conclusions A low cost, flexible, versatile and small dimensioned solution to create a high performance radar system has been proposed in this work. The USRP NI2920 has been adopted to realized a SDRadar system giving a 6 m Slant Range Resolution, significantly enhanced with respect to that achieved in the existing SDRadar solutions. A specific Labview application has been developed to implement the high resolution radar processing algorithm and outdoor experimental validations are performed to demonstrate the theoretical features. Acknowledgments. This work has been carried out under the framework of PON 01_01503 National Italian Project Landslides Early Warning, financed by the Italian Ministry of University and Research. References 1. Debatty, T.: Software Defined RADAR a state of the art. In: Second International Workshop on Cognitive Information Processing, Brussels, Belgium, pp (2010) 2. Zhang, H., Li, L., Wu, K.: 24ghz software-defined radar system for automotive applications. In: European Conference on Wireless Technologies, Munich, Germany, pp (2007) 3. Kauffman, K., Garmatyuk, D., Schuerger, J.: Multifunctional software-defined radar sensor and data communication system. IEEE Sensors Journal 11, (2011) 4. Aloi, G., Borgia, A., Costanzo, S., Di Massa, G., Loscrì, V., Natalizio, E., Pace, P., Spadafora, F.: Software Defined Radar: synchronization issues and practical implementation. In: COGART, International Conference on Cognitive Radio and Advanced Spectrum Management, Barcelona (2011) 5. Prathyusha, C., Sowmiya, S.N., Ramanathan, S., Soman, R., Amrita, K.P., Deepthi, V.V., Chinnam, M., Nandhini, J.: Implementation of a low cost synthetic aperture radar using software defined radio. In: International Conference on Computing Communication and Networking Technologies (ICCCNT), Karur, TamilNadu, India, pp. 1 7 (2010)

9 High Resolution Software Defined Radar System for Target Detection Manuel, F., Martin, B., Christian, S., Lars, R., Jondral Friedrich, K.: An SDR-based Experimental Setup for OFDM-based RadaR. In: 7th Karlsruhe Workshop on Software Radio Karlsruhe, Germany (March 2012) 7. Marcus, M., Martin, B., Manuel, F., Jondral Friedrich, K.: A USRP-based Testbed for OFDM-based Radar and Communication Systems. In: 22nd Virginia Tech Symposium on Wireless Communications, Blacksburg (June 2012) 8. Fernandes, V.: Implementation of a RADAR System using MATLAB and the USRP, CSUN ScholarWorks (2012) 9. NI USRP-2920, NI USRP-2921, National Instruments Data-sheet, Mahafza, B.R., Elsherbeni, A.Z.: Simulations for Radar Systems Design. Chapman & Hall /CRC (1999) 11. Skolnik, M.: Radar handbook, 3rd edn., pp Mc Graw Hill, San Francisco (2008)

G. Di Massa, S. Costanzo, F. Spadafora, A Raffo, A. Costanzo, L. Morrone, A. Borgia,

G. Di Massa, S. Costanzo, F. Spadafora, A Raffo, A. Costanzo, L. Morrone, A. Borgia, Research Project INTEGRATED SYSTEMS FOR HYDROGEOLOGICAL RISK MONITORING, EARLY WARNING AND MITIGATION ALONG THE MAIN LIFELINES RADAR SYSTEMS FOR LANDSLIDES EARLY WARNING G. Di Massa, S. Costanzo, F. Spadafora,

More information

Faculty of Information Engineering & Technology. The Communications Department. Course: Advanced Communication Lab [COMM 1005] Lab 6.

Faculty of Information Engineering & Technology. The Communications Department. Course: Advanced Communication Lab [COMM 1005] Lab 6. Faculty of Information Engineering & Technology The Communications Department Course: Advanced Communication Lab [COMM 1005] Lab 6.0 NI USRP 1 TABLE OF CONTENTS 2 Summary... 2 3 Background:... 3 Software

More information

Spectral Monitoring/ SigInt

Spectral Monitoring/ SigInt RF Test & Measurement Spectral Monitoring/ SigInt Radio Prototyping Horizontal Technologies LabVIEW RIO for RF (FPGA-based processing) PXI Platform (Chassis, controllers, baseband modules) RF hardware

More information

From Antenna to Bits:

From Antenna to Bits: From Antenna to Bits: Wireless System Design with MATLAB and Simulink Cynthia Cudicini Application Engineering Manager MathWorks cynthia.cudicini@mathworks.fr 1 Innovations in the World of Wireless Everything

More information

IMPLEMENTATION OF DOPPLER RADAR WITH OFDM WAVEFORM ON SDR PLATFORM

IMPLEMENTATION OF DOPPLER RADAR WITH OFDM WAVEFORM ON SDR PLATFORM IMPLEMENTATION OF DOPPLER RADAR WITH OFDM WAVEFORM ON SDR PLATFORM Irfan R. Pramudita, Puji Handayani, Devy Kuswidiastuti and Gamantyo Hendrantoro Department of Electrical Engineering, Institut Teknologi

More information

Fractional Fourier Transform Based Co-Radar Waveform: Experimental Validation

Fractional Fourier Transform Based Co-Radar Waveform: Experimental Validation Fractional Fourier Transform Based Co-Radar Waveform: Experimental Validation D. Gaglione 1, C. Clemente 1, A. R. Persico 1, C. V. Ilioudis 1, I. K. Proudler 2, J. J. Soraghan 1 1 University of Strathclyde

More information

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand Advanced PXI Technologies Signal Recording, FPGA s, and Synchronization Outline Introduction to the PXI Architecture

More information

Software Radio, GNU Radio, and the USRP Product Family

Software Radio, GNU Radio, and the USRP Product Family Software Radio, GNU Radio, and the USRP Product Family Open Hardware for Software Radio Matt Ettus, matt@ettus.com Software Radio Simple, general-purpose hardware Do as much as possible in software Everyone's

More information

ELEC RADAR FRONT-END SUMMARY

ELEC RADAR FRONT-END SUMMARY ELEC Radar Front-End is designed for FMCW (including CW) radar application. The output frequency of each RX provides range, speed, and amplitude information to DSP. It will detect target azimuth angle

More information

Research and Implementation of 2x2 MIMO-OFDM System with BLAST Using USRP-RIO

Research and Implementation of 2x2 MIMO-OFDM System with BLAST Using USRP-RIO Research and Implementation of 2x2 MIMO-OFDM System with BLAST Using USRP-RIO Jingyi Zhao, Yanhui Lu, Ning Wang *, and Shouyi Yang School of Information Engineering, Zheng Zhou University, China * Corresponding

More information

A LOW-COST SOFTWARE-DEFINED TELEMETRY RECEIVER

A LOW-COST SOFTWARE-DEFINED TELEMETRY RECEIVER A LOW-COST SOFTWARE-DEFINED TELEMETRY RECEIVER Michael Don U.S. Army Research Laboratory Aberdeen Proving Grounds, MD ABSTRACT The Army Research Laboratories has developed a PCM/FM telemetry receiver using

More information

RF and Microwave Test and Design Roadshow Cape Town & Midrand

RF and Microwave Test and Design Roadshow Cape Town & Midrand RF and Microwave Test and Design Roadshow Cape Town & Midrand Advanced PXI Technologies Signal Recording, FPGA s, and Synchronization Philip Ehlers Outline Introduction to the PXI Architecture PXI Data

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012 Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator F. Winterstein, G. Sessler, M. Montagna, M. Mendijur, G. Dauron, PM. Besso International Radar Symposium 2012 Warsaw,

More information

DURIP Distributed SDR testbed for Collaborative Research. Wednesday, November 19, 14

DURIP Distributed SDR testbed for Collaborative Research. Wednesday, November 19, 14 DURIP Distributed SDR testbed for Collaborative Research Distributed Software Defined Radar Testbed Collaborative research resource based on software defined radar (SDR) platforms that can adaptively modify

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

Supplemental Slides: MIMO Testbed Development at the MPRG Lab

Supplemental Slides: MIMO Testbed Development at the MPRG Lab Supplemental Slides: MIMO Testbed Development at the MPRG Lab Raqibul Mostafa Jeffrey H. Reed Slide 1 Overview Space Time Coding (STC) Overview Virginia Tech Space Time Adaptive Radio (VT-STAR) description:

More information

Developing a Generic Software-Defined Radar Transmitter using GNU Radio

Developing a Generic Software-Defined Radar Transmitter using GNU Radio Developing a Generic Software-Defined Radar Transmitter using GNU Radio A thesis submitted in partial fulfilment of the requirements for the degree of Master of Sciences (Defence Signal Information Processing)

More information

A GENERAL SYSTEM DESIGN & IMPLEMENTATION OF SOFTWARE DEFINED RADIO SYSTEM

A GENERAL SYSTEM DESIGN & IMPLEMENTATION OF SOFTWARE DEFINED RADIO SYSTEM A GENERAL SYSTEM DESIGN & IMPLEMENTATION OF SOFTWARE DEFINED RADIO SYSTEM 1 J. H.VARDE, 2 N.B.GOHIL, 3 J.H.SHAH 1 Electronics & Communication Department, Gujarat Technological University, Ahmadabad, India

More information

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Test & Measurement Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Modern radar systems serve a broad range of commercial, civil, scientific and military applications.

More information

A Rapid Graphical Programming Approach to SDR Design and Prototyping with LabVIEW and the USRP

A Rapid Graphical Programming Approach to SDR Design and Prototyping with LabVIEW and the USRP A Rapid Graphical Programming Approach to SDR Design and Prototyping with LabVIEW and the USRP Filip Langenaken Academic Program Manager Benelux & Nordic National Instruments NI-USRP: a Platform for SDR

More information

Prototyping Next-Generation Communication Systems with Software-Defined Radio

Prototyping Next-Generation Communication Systems with Software-Defined Radio Prototyping Next-Generation Communication Systems with Software-Defined Radio Dr. Brian Wee RF & Communications Systems Engineer 1 Agenda 5G System Challenges Why Do We Need SDR? Software Defined Radio

More information

What is New in Wireless System Design

What is New in Wireless System Design What is New in Wireless System Design Houman Zarrinkoub, PhD. houmanz@mathworks.com 2015 The MathWorks, Inc. 1 Agenda Landscape of Wireless Design Our Wireless Initiatives Antenna-to-Bit simulation Smart

More information

Ettus Research USRP. Tom Tsou 3rd OpenAirInterface Workshop April 28, 2017

Ettus Research USRP. Tom Tsou 3rd OpenAirInterface Workshop April 28, 2017 Ettus Research USRP Tom Tsou tom.tsou@ettus.com 3rd OpenAirInterface Workshop April 28, 2017 Agenda Company Overview USRP Software Ecosystem Product Line B-Series (Bus) N-Series (Network) X-Series (High

More information

NI USRP Lab: DQPSK Transceiver Design

NI USRP Lab: DQPSK Transceiver Design NI USRP Lab: DQPSK Transceiver Design 1 Introduction 1.1 Aims This Lab aims for you to: understand the USRP hardware and capabilities; build a DQPSK receiver using LabVIEW and the USRP. By the end of this

More information

Experimental Characterization of a Large Aperture Array Localization Technique using an SDR Testbench

Experimental Characterization of a Large Aperture Array Localization Technique using an SDR Testbench Experimental Characterization of a Large Aperture Array Localization Technique using an SDR Testbench M. Willerton, D. Yates, V. Goverdovsky and C. Papavassiliou Imperial College London, UK. 30 th November

More information

Software Radio Network Testbed

Software Radio Network Testbed Software Radio Network Testbed Senior design student: Ziheng Gu Advisor: Prof. Liuqing Yang PhD Advisor: Xilin Cheng 1 Overview Problem and solution What is GNU radio and USRP Project goal Current progress

More information

High Resolution Radar Sensing via Compressive Illumination

High Resolution Radar Sensing via Compressive Illumination High Resolution Radar Sensing via Compressive Illumination Emre Ertin Lee Potter, Randy Moses, Phil Schniter, Christian Austin, Jason Parker The Ohio State University New Frontiers in Imaging and Sensing

More information

C700 A New Domain in Radio System Design & Verification

C700 A New Domain in Radio System Design & Verification C700 A New Domain in Radio System Design & Verification C700 A New Domain in Radio System Design & Verification A modular SDR (Software-Defined Radio) development and verification platform that allows

More information

Using SDR for Cost-Effective DTV Applications

Using SDR for Cost-Effective DTV Applications Int'l Conf. Wireless Networks ICWN'16 109 Using SDR for Cost-Effective DTV Applications J. Kwak, Y. Park, and H. Kim Dept. of Computer Science and Engineering, Korea University, Seoul, Korea {jwuser01,

More information

Signal Processing and Display of LFMCW Radar on a Chip

Signal Processing and Display of LFMCW Radar on a Chip Signal Processing and Display of LFMCW Radar on a Chip Abstract The tremendous progress in embedded systems helped in the design and implementation of complex compact equipment. This progress may help

More information

TU Dresden uses National Instruments Platform for 5G Research

TU Dresden uses National Instruments Platform for 5G Research TU Dresden uses National Instruments Platform for 5G Research Wireless consumers insatiable demand for bandwidth has spurred unprecedented levels of investment from public and private sectors to explore

More information

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR David G. Long, Bryan Jarrett, David V. Arnold, Jorge Cano ABSTRACT Synthetic Aperture Radar (SAR) systems are typically very complex and expensive.

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Tabrez Khan Application Engineering Group 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies 5G development

More information

Tunable Wideband & Ultra-Wideband Multi- Antenna Transceivers with Integrated Recording, Playback & Processing

Tunable Wideband & Ultra-Wideband Multi- Antenna Transceivers with Integrated Recording, Playback & Processing 2016 Multi-Antenna Transceiver Systems Tunable Wideband & Ultra-Wideband Multi- Antenna Transceivers with Integrated Recording, Playback & Processing --- For ES, DF, COMS & EA 1 Multi-Antenna Systems D-TA

More information

Summer of LabVIEW. The Sunny Side of System Design. 30th June - 18th July. spain.ni.com/foro-aeroespacio-defensa

Summer of LabVIEW. The Sunny Side of System Design. 30th June - 18th July. spain.ni.com/foro-aeroespacio-defensa Summer of LabVIEW The Sunny Side of System Design 30th June - 18th July 1 Italy.ni.com National Instruments USRP RDS platform for passive radar systems development Mª Pilar Jarabo Amores Universidad de

More information

DESIGN OF A MEASUREMENT PLATFORM FOR COMMUNICATIONS SYSTEMS

DESIGN OF A MEASUREMENT PLATFORM FOR COMMUNICATIONS SYSTEMS DESIGN OF A MEASUREMENT PLATFORM FOR COMMUNICATIONS SYSTEMS P. Th. Savvopoulos. PhD., A. Apostolopoulos 2, L. Dimitrov 3 Department of Electrical and Computer Engineering, University of Patras, 265 Patras,

More information

Frequency Agile Radial-Shaped Varactor-Loaded Reflectarray Cell

Frequency Agile Radial-Shaped Varactor-Loaded Reflectarray Cell RADIOENGINEERING, VOL. 25, NO. 2, JUNE 2016 253 Frequency Agile Radial-Shaped Varactor-Loaded Reflectarray Cell Francesca VENNERI, Sandra COSTANZO, Giuseppe DI MASSA, Antonio BORGIA, Antonio RAFFO DIMES,

More information

Cognitive Radio Platform Technology

Cognitive Radio Platform Technology Cognitive Radio Platform Technology Ivan Seskar Rutgers, The State University of New Jersey www.winlab.rutgers.edu seskar (at) winlab (dot) rutgers (dot) edu Complexity/Performance Tradeoffs Efficient

More information

Simulation of Analog Modulation and Demodulation Techniques in Virtual Instrumentation and Remote Lab

Simulation of Analog Modulation and Demodulation Techniques in Virtual Instrumentation and Remote Lab Simulation of Analog Modulation and Demodulation Techniques in Virtual Instrumentation and Remote Lab https://doi.org/10.3991/ijoe.v13i10.7575 Nehru Kandasamy!! ", Nagarjuna Telagam, V.R Seshagiri Rao

More information

RADAR Simplified. Wideband & Ultra-wideband radar solutions for HF, VHF, UHF & SHF bands

RADAR Simplified. Wideband & Ultra-wideband radar solutions for HF, VHF, UHF & SHF bands RADAR Simplified Wideband & Ultra-wideband radar solutions for HF, VHF, UHF & SHF bands 10 GIGABIT SENSOR PROCESSING FAST, SCALABLE & SYNCHRONIZED D-TA Systems has created sensor processing solutions that

More information

Bridge RF Design and Test Applications with NI SDR Platforms

Bridge RF Design and Test Applications with NI SDR Platforms Bridge RF Design and Test Applications with NI SDR Platforms Jason Strydom Application Engineer National Instruments - Midrand The National Instruments Vision To do for test and measurement what the spreadsheet

More information

EXPERIMENTAL CHARACTERIZATION OF A LARGE APERTURE ARRAY LOCALIZATION TECHNIQUE USING AN SDR TESTBENCH

EXPERIMENTAL CHARACTERIZATION OF A LARGE APERTURE ARRAY LOCALIZATION TECHNIQUE USING AN SDR TESTBENCH EXPERIMENTAL CHARACTERIZATION OF A LARGE APERTURE ARRAY LOCALIZATION TECHNIQUE USING AN SDR TESTBENCH Marc Willerton, David Yates, Valentin Goverdovsky and Christos Papavassiliou Department of Electrical

More information

A GENERIC ARCHITECTURE FOR SMART MULTI-STANDARD SOFTWARE DEFINED RADIO SYSTEMS

A GENERIC ARCHITECTURE FOR SMART MULTI-STANDARD SOFTWARE DEFINED RADIO SYSTEMS A GENERIC ARCHITECTURE FOR SMART MULTI-STANDARD SOFTWARE DEFINED RADIO SYSTEMS S.A. Bassam, M.M. Ebrahimi, A. Kwan, M. Helaoui, M.P. Aflaki, O. Hammi, M. Fattouche, and F.M. Ghannouchi iradio Laboratory,

More information

Mitigation of Nonlinear Spurious Products using Least Mean-Square (LMS)

Mitigation of Nonlinear Spurious Products using Least Mean-Square (LMS) Mitigation of Nonlinear Spurious Products using Least Mean-Square (LMS) Nicholas Peccarelli & Caleb Fulton Advanced Radar Research Center University of Oklahoma Norman, Oklahoma, USA, 73019 Email: peccarelli@ou.edu,

More information

Overview. Measurement of Ultra-Wideband Wireless Channels

Overview. Measurement of Ultra-Wideband Wireless Channels Measurement of Ultra-Wideband Wireless Channels Wasim Malik, Ben Allen, David Edwards, UK Introduction History of UWB Modern UWB Antenna Measurements Candidate UWB elements Radiation patterns Propagation

More information

DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM

DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM A. Patyuchenko, M. Younis, G. Krieger German Aerospace Center (DLR), Microwaves and Radar Institute, Muenchner Strasse

More information

2. The design and realization of the developed system

2. The design and realization of the developed system th European Conference on Non-Destructive Testing (ECNDT 24), October 6-, 24, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=663 The System and Method of Ultrasonic Testing Based

More information

Software radio. Software program. What is software? 09/05/15 Slide 2

Software radio. Software program. What is software? 09/05/15 Slide 2 Software radio Software radio Software program What is software? 09/05/15 Slide 2 Software radio Software program What is software? Machine readable instructions that direct processor to do specific operations

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

Effects to develop a high-performance millimeter-wave radar with RF CMOS technology

Effects to develop a high-performance millimeter-wave radar with RF CMOS technology Effects to develop a high-performance millimeter-wave radar with RF CMOS technology Yasuyoshi OKITA Kiyokazu SUGAI Kazuaki HAMADA Yoji OHASHI Tetsuo SEKI High Resolution Angle-widening Abstract We are

More information

Spread Spectrum-Digital Beam Forming Radar with Single RF Channel for Automotive Application

Spread Spectrum-Digital Beam Forming Radar with Single RF Channel for Automotive Application Spread Spectrum-Digital Beam Forming Radar with Single RF Channel for Automotive Application Soumyasree Bera, Samarendra Nath Sur Department of Electronics and Communication Engineering, Sikkim Manipal

More information

A Courseware about Microwave Antenna Pattern

A Courseware about Microwave Antenna Pattern Forum for Electromagnetic Research Methods and Application Technologies (FERMAT) A Courseware about Microwave Antenna Pattern Shih-Cheng Lin, Chi-Wen Hsieh*, Yi-Ting Tzeng, Lin-Chuen Hsu, and Chih-Yu Cheng

More information

Nutaq OFDM Reference

Nutaq OFDM Reference Nutaq OFDM Reference Design FPGA-based, SISO/MIMO OFDM PHY Transceiver PRODUCT SHEET QUEBEC I MONTREAL I NEW YORK I nutaq.com Nutaq OFDM Reference Design SISO/2x2 MIMO Implementation Simulation/Implementation

More information

Multi Band Passive Forward Scatter Radar

Multi Band Passive Forward Scatter Radar Multi Band Passive Forward Scatter Radar S. Hristov, A. De Luca, M. Gashinova, A. Stove, M. Cherniakov EESE, University of Birmingham Birmingham, B15 2TT, UK m.cherniakov@bham.ac.uk Outline Multi-Band

More information

SOQPSK Software Defined Radio

SOQPSK Software Defined Radio SOQPSK Software Defined Radio Item Type text; Proceedings Authors Nash, Christopher; Hogstrom, Christopher Publisher International Foundation for Telemetering Journal International Telemetering Conference

More information

MASTER THESIS PROJECT PROPOSALS: SIGNAL PROCESSING FOR WIRELESS AND SATELLITE COMMUNICATIONS

MASTER THESIS PROJECT PROPOSALS: SIGNAL PROCESSING FOR WIRELESS AND SATELLITE COMMUNICATIONS MASTER THESIS PROJECT PROPOSALS: SIGNAL PROCESSING FOR WIRELESS AND SATELLITE COMMUNICATIONS Prof. Claudio Sacchi Academic year 2017-2018 General rules The listed thesis projects are specifically available

More information

Hardware Architecture of Software Defined Radio (SDR)

Hardware Architecture of Software Defined Radio (SDR) Hardware Architecture of Software Defined Radio (SDR) Tassadaq Hussain Assistant Professor: Riphah International University Research Collaborations: Microsoft Barcelona Supercomputing Center University

More information

Senior Design and Graduate Projects Using Software Defined Radio (SDR)

Senior Design and Graduate Projects Using Software Defined Radio (SDR) Senior Design and Graduate Projects Using Software Defined Radio (SDR) 1 PROF. SHARLENE KATZ PROF. JAMES FLYNN PROF. DAVID SCHWARTZ Overview What is a Communications System? Traditional hardware radio

More information

GENERIC SDR PLATFORM USED FOR MULTI- CARRIER AIDED LOCALIZATION

GENERIC SDR PLATFORM USED FOR MULTI- CARRIER AIDED LOCALIZATION Copyright Notice c 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works

More information

VLSI Implementation of Digital Down Converter (DDC)

VLSI Implementation of Digital Down Converter (DDC) Volume-7, Issue-1, January-February 2017 International Journal of Engineering and Management Research Page Number: 218-222 VLSI Implementation of Digital Down Converter (DDC) Shaik Afrojanasima 1, K Vijaya

More information

Experimental study on Wide Band FM Receiver using GNURadio and RTL-SDR

Experimental study on Wide Band FM Receiver using GNURadio and RTL-SDR Experimental study on Wide Band FM Receiver using GNURadio and RTL-SDR Khyati Vachhani Assistant Professor, Electrical Dept. Nirma University, Ahmedabad, India Email: khyati.vachhani@nirmauni.ac.in Rao

More information

RF, HIL and Radar Test

RF, HIL and Radar Test RF, HIL and Radar Test Abhay Samant Marketing Manager India, Russia and Arabia RF Hardware In The Loop Complex Radio Environment Components of RF HIL Communication Modems Channel Simulation GPS Simulation

More information

Software Defined Radios

Software Defined Radios Software Defined Radios What Is the SDR Radio? An SDR in general is a radio that has: Primary Functionality [modulation and demodulation, filtering, etc.] defined in software. DSP algorithms implemented

More information

SpectraTronix C700. Modular Test & Development Platform. Ideal Solution for Cognitive Radio, DSP, Wireless Communications & Massive MIMO Applications

SpectraTronix C700. Modular Test & Development Platform. Ideal Solution for Cognitive Radio, DSP, Wireless Communications & Massive MIMO Applications SpectraTronix C700 Modular Test & Development Platform Ideal Solution for Cognitive Radio, DSP, Wireless Communications & Massive MIMO Applications Design, Test, Verify & Prototype All with the same tool

More information

ni.com Mounzer saleh Applications engineer Tel:

ni.com Mounzer saleh Applications engineer   Tel: Mounzer saleh Applications engineer Email: mounzer.saleh@ Tel: +961 1 33 28 28 An Introduction to Software Defined Radio With LabVIEW and NI USRP Hands-on Course Objectives Exercise 1 Acquire an RF signal

More information

The Future of Software Radio

The Future of Software Radio The Future of Software Radio Virginia Tech VIRGINIA POLYTECHNIC INSTITUTE 1 8 7 2 AND STATE UNIVERSITY Dr. Jeffrey H. Reed Mobile and Portable Radio Research Group (MPRG) Virginia Tech Blacksburg, VA reedjh@vt.edu

More information

Specifications and Interfaces

Specifications and Interfaces Specifications and Interfaces Crimson TNG is a wide band, high gain, direct conversion quadrature transceiver and signal processing platform. Using analogue and digital conversion, it is capable of processing

More information

A SOFTWARE RE-CONFIGURABLE ARCHITECTURE FOR 3G AND WIRELESS SYSTEMS

A SOFTWARE RE-CONFIGURABLE ARCHITECTURE FOR 3G AND WIRELESS SYSTEMS A SOFTWARE RE-CONFIGURABLE ARCHITECTURE FOR 3G AND WIRELESS SYSTEMS E. Sereni 1, G. Baruffa 1, F. Frescura 1, P. Antognoni 2 1 DIEI - University of Perugia, Perugia, ITALY 2 Digilab2000 - Foligno (PG)

More information

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand ni.com Design and test of RADAR systems Agenda Radar Overview Tools Overview VSS LabVIEW PXI Design and Simulation

More information

Bringing Wireless Communications Classes into the Modern Day

Bringing Wireless Communications Classes into the Modern Day 1 Bringing Wireless Communications Classes into the Modern Day Engaging students by using real world hardware. Michel Nassar Academic Field Sales Engineer National Instruments Systems are Everywhere Tesla

More information

Design and Implementation of an Integrated Radar and Communication System for Smart Vehicle

Design and Implementation of an Integrated Radar and Communication System for Smart Vehicle Design and Implementation of an Integrated Radar and Communication System for Smart Vehicle D. Mondal, R. Bera, M. Mitra Abstract This paper addresses the development efforts towards realization of Smart

More information

Waveform Generation and Testing with Software-Defined Radios (SDR) and RF instruments

Waveform Generation and Testing with Software-Defined Radios (SDR) and RF instruments Waveform Generation and Testing with Software-Defined Radios (SDR) and RF instruments Houman Zarrinkoub, PhD. Product Manager Signal Processing & Communications houmanz@mathworks.com 2015 The MathWorks,

More information

Cognitive Radar Experiments At The Ohio State University. Graeme E. Smith The OSU ElectroScience Lab

Cognitive Radar Experiments At The Ohio State University. Graeme E. Smith The OSU ElectroScience Lab Cognitive Radar Experiments At The Ohio State University Graeme E. Smith The OSU ElectroScience Lab All Radar Systems Are Cognitive Consider an air traffic control radar The turn-and-burn sensor is not

More information

A HYBRID DSP AND FPGA SYSTEM FOR SOFTWARE DEFINED RADIO APPLICATIONS

A HYBRID DSP AND FPGA SYSTEM FOR SOFTWARE DEFINED RADIO APPLICATIONS A HYBRID DSP AND FPGA SYSTEM FOR SOFTWARE DEFINED RADIO APPLICATIONS Vladimir Podosinov (Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, US; v_podosinov@vt.edu);

More information

UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER

UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER Dr. Cheng Lu, Chief Communications System Engineer John Roach, Vice President, Network Products Division Dr. George Sasvari,

More information

Introduction of USRP and Demos. by Dong Han & Rui Zhu

Introduction of USRP and Demos. by Dong Han & Rui Zhu Introduction of USRP and Demos by Dong Han & Rui Zhu Introduction USRP(Universal Software Radio Peripheral ): A computer-hosted software radio, which is commonly used by research labs, universities. Motherboard

More information

CHARACTERIZATION OF PHASE SHIFTERS ON A KU-BAND PHASED ARRAY ANTENNA ESA/ESTEC, NOORDWIJK, THE NETHERLANDS 3-5 OCTOBER 2012

CHARACTERIZATION OF PHASE SHIFTERS ON A KU-BAND PHASED ARRAY ANTENNA ESA/ESTEC, NOORDWIJK, THE NETHERLANDS 3-5 OCTOBER 2012 CHARACTERIZATION OF PHASE SHIFTERS ON A KU-BAND PHASED ARRAY ANTENNA ESA/ESTEC, NOORDWIJK, THE NETHERLANDS 3-5 OCTOBER 2012 J. Arendt (1), R. Wansch (1), H. Frühauf (1) (1) Fraunhofer IIS, Am Wolfsmantel

More information

NI Technical Symposium ni.com

NI Technical Symposium ni.com NI Technical Symposium 2016 1 Build 5G Systems Today Avichal Kulshrestha 2 How We Consume Data is Changing 3 Where We Are Today Explosion of wireless data and connected devices Last year s mobile data

More information

Comprehensive Ultrasound Research Platform

Comprehensive Ultrasound Research Platform Comprehensive Ultrasound Research Platform Functional Requirements List and Performance Specifications Emma Muir Sam Muir Jacob Sandlund David Smith Advisor: Dr. José Sánchez Date: November 9, 2010 Introduction

More information

High Speed & High Frequency based Digital Up/Down Converter for WCDMA System

High Speed & High Frequency based Digital Up/Down Converter for WCDMA System High Speed & High Frequency based Digital Up/Down Converter for WCDMA System Arun Raj S.R Department of Electronics & Communication Engineering University B.D.T College of Engineering Davangere-Karnataka,

More information

FLEXIBLE RADIO FREQUENCY HARDWARE FOR A SOFTWARE DEFINABLE CHANNEL EMULATOR

FLEXIBLE RADIO FREQUENCY HARDWARE FOR A SOFTWARE DEFINABLE CHANNEL EMULATOR FLEXIBLE RADIO FREQUENCY HARDWARE FOR A SOFTWARE DEFINABLE CHANNEL EMULATOR Robert Langwieser 1, Michael Fischer 1, Arpad L. Scholtz 1, Markus Rupp 1, Gerhard Humer 2 1 Vienna University of Technology,

More information

Software Defined Radio: Enabling technologies and Applications

Software Defined Radio: Enabling technologies and Applications Mengduo Ma Cpr E 583 September 30, 2011 Software Defined Radio: Enabling technologies and Applications A Mini-Literature Survey Abstract The survey paper identifies the enabling technologies and research

More information

Developing and Prototyping Next-Generation Communications Systems

Developing and Prototyping Next-Generation Communications Systems Developing and Prototyping Next-Generation Communications Systems Dr. Amod Anandkumar Team Lead Signal Processing and Communications Application Engineering Group 2015 The MathWorks, Inc. 1 Proliferation

More information

SAMPLING FREQUENCY SELECTION SCHEME FOR A MULTIPLE SIGNAL RECEIVER USING UNDERSAMPLING

SAMPLING FREQUENCY SELECTION SCHEME FOR A MULTIPLE SIGNAL RECEIVER USING UNDERSAMPLING SAMPLING FREQUENCY SELECTION SCHEME FOR A MULTIPLE SIGNAL RECEIVER USING UNDERSAMPLING Yoshio Kunisawa (KDDI R&D Laboratories, yokosuka, kanagawa, JAPAN; kuni@kddilabs.jp) ABSTRACT A multi-mode terminal

More information

SCA COMPATIBLE SOFTWARE DEFINED WIDEBAND RECEIVER FOR REAL TIME ENERGY DETECTION AND MODULATION RECOGNITION

SCA COMPATIBLE SOFTWARE DEFINED WIDEBAND RECEIVER FOR REAL TIME ENERGY DETECTION AND MODULATION RECOGNITION SCA COMPATIBLE SOFTWARE DEFINED WIDEBAND RECEIVER FOR REAL TIME ENERGY DETECTION AND MODULATION RECOGNITION Peter Andreadis, Martin Phisel, Robin Addison CRC, Ottawa, Canada (peter.andreadis@crc.ca ) Luca

More information

Advances in RF and Microwave Measurement Technology

Advances in RF and Microwave Measurement Technology 1 Advances in RF and Microwave Measurement Technology Farris Alhorr Business Development Manager RF & Wireless Communication Farris.alhorr@ New Demands in Modern RF and Microwave Test In semiconductor

More information

PoC #1 On-chip frequency generation

PoC #1 On-chip frequency generation 1 PoC #1 On-chip frequency generation This PoC covers the full on-chip frequency generation system including transport of signals to receiving blocks. 5G frequency bands around 30 GHz as well as 60 GHz

More information

DTP4700 Next Generation Software Defined Radio Platform

DTP4700 Next Generation Software Defined Radio Platform DTP4700 Next Generation Software Defined Radio Platform Spectra DTP4700 is a wideband, high-performance baseband and RF Software Defined Radio (SDR) development and test platform. Spectra DTP4700 supports

More information

Enabling Future Wireless Technology Research through Flexible & Modular Platforms

Enabling Future Wireless Technology Research through Flexible & Modular Platforms Enabling Future Wireless Technology Research through Flexible & Modular Platforms Richard Silley Business Development Manager RF & Communications Evolution of Wireless Communications How can we increase

More information

9 Best Practices for Optimizing Your Signal Generator Part 2 Making Better Measurements

9 Best Practices for Optimizing Your Signal Generator Part 2 Making Better Measurements 9 Best Practices for Optimizing Your Signal Generator Part 2 Making Better Measurements In consumer wireless, military communications, or radar, you face an ongoing bandwidth crunch in a spectrum that

More information

Software Defined Radio in Ham Radio Dennis Silage K3DS TS EPA Section ARRL

Software Defined Radio in Ham Radio Dennis Silage K3DS TS EPA Section ARRL Software Defined Radio in Ham Radio Dennis Silage K3DS silage@arrl.net TS EPA Section ARRL TUARC K3TU SDR in HR The crystal radio was once a simple introduction to radio electronics and Amateur Radio.

More information

Simulation of FMCW Radar Systems Based on Software Defined Radio

Simulation of FMCW Radar Systems Based on Software Defined Radio Simulation of FMCW Radar Systems Based on Software Defined Radio Carlos López-Martínez CARLOS.LOPEZ@TSC.UPC.EDU Universitat Politècnica de Catalunya UPC, Signal Theory and Comms. Dept., Jordi Girona 1-3,

More information

EITN90 Radar and Remote Sensing Lab 2

EITN90 Radar and Remote Sensing Lab 2 EITN90 Radar and Remote Sensing Lab 2 February 8, 2018 1 Learning outcomes This lab demonstrates the basic operation of a frequency modulated continuous wave (FMCW) radar, capable of range and velocity

More information

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Tobias Rommel, German Aerospace Centre (DLR), tobias.rommel@dlr.de, Germany Gerhard Krieger, German Aerospace Centre (DLR),

More information

Implementing Software Defined Radio a 16 QAM System using the USRP2 Board

Implementing Software Defined Radio a 16 QAM System using the USRP2 Board Implementing Software Defined Radio a 16 QAM System using the USRP2 Board Functional Requirements List and Performance Specifications Patrick Ellis & Scott Jaris Dr. In Soo Ahn & Dr. Yufeng Lu December

More information

Digital Signal Processing (DSP) Algorithms for CW/FMCW Portable Radar

Digital Signal Processing (DSP) Algorithms for CW/FMCW Portable Radar Digital Signal Processing (DSP) Algorithms for CW/FMCW Portable Radar Muhammad Zeeshan Mumtaz, Ali Hanif, Ali Javed Hashmi National University of Sciences and Technology (NUST), Islamabad, Pakistan Abstract

More information

WHITE PAPER. Hybrid Beamforming for Massive MIMO Phased Array Systems

WHITE PAPER. Hybrid Beamforming for Massive MIMO Phased Array Systems WHITE PAPER Hybrid Beamforming for Massive MIMO Phased Array Systems Introduction This paper demonstrates how you can use MATLAB and Simulink features and toolboxes to: 1. Design and synthesize complex

More information

Complete Software Defined RFID System Using GNU Radio

Complete Software Defined RFID System Using GNU Radio Complete Defined RFID System Using GNU Radio Aurélien Briand, Bruno B. Albert, and Edmar C. Gurjão, Member, IEEE, Abstract In this paper we describe a complete Radio Frequency Identification (RFID) system,

More information

Wideband Spread Spectrum Modulation System for Ubiquitous Communication Services

Wideband Spread Spectrum Modulation System for Ubiquitous Communication Services Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 75 Wideband Spread Spectrum Modulation System for Ubiquitous Communication

More information