TBARC Programs Antenna Modeling with 4NEC2. By Randy Rogers AD7ZU 2010

Size: px
Start display at page:

Download "TBARC Programs Antenna Modeling with 4NEC2. By Randy Rogers AD7ZU 2010"

Transcription

1 TBARC Programs Antenna Modeling with 4NEC2 By Randy Rogers AD7ZU 2010

2 Getting Started 4NEC2 is a completely free windows based tool suite to aid in the design and optimization of antenna systems 4NEC2 is an exceptional value for amateur antenna system designers! Download and install 4NEC2 Default and the 4NEC2 3D extension from: Bookmark the page to access additional documentation and the 4NEC2 forum The NEC2 Forum contains vast information on antenna modeling with 4NEC2 2

3 4NEC2 3

4 4NEC2 4

5 4NEC2 Settings 1. 4NEC2 Main Window is used to configure default settings 2. Launch 4NEC2x (4NEC2x is the 3D extension) 3. Select the Settings pull down and select the following options: Default Editor: NEC editor (new) Input Power: 100 Char-Impedance: 52 Phi / Azim Unit: Azim / Elev Length Unit: Feet Radius Unit: In / AWG 5

6 Modeling Basics Think in 3 Dimensions! 4NEC2 Models use a 3 dimensional coordinate system to define antenna structures The example models use the following coordinate system: X Axis (horizontal) positive = 0 deg Y Axis (horizontal) positive = 90 deg Z Axis (vertical) positive = height above ground Y axis The driven element structure lies along the Y axis in this presentation. 6

7 4NEC2 Coordinate System 7

8 Segmentation The NEC2 engine computes currents in a series of small segments then then integrates each to compute the total response Accurate models require a small segment size 51 segments / half wavelength is sufficient (~.02 wavelength / segment) Use an odd number of segments in each element if possible Driven element models DO NOT contain feed point gaps The feed point gap is assumed infinitely small in NEC2 An insulator is required when constructing the real element. All modeled elements require at least 1 segment Even if the dimensions are smaller than.02 wavelength Example: folded dipole end wires 8

9 Sources, Loads and Grounds Sources and Loads are placed along the driven element(s) Sources provide excitation to compute currents in the modeled elements Sources and Loads are positioned by segment number The element material (copper, aluminum, etc.) and dimensions are modeled as Loads Best results are obtained using Sommerfeld Ground Models 4NEC2 Real Ground is the most accurate ground model Arizona soil is not sea water! Your backyard is not free space! 9

10 Symbols and Expressions 4NEC2 Optimizer requires Symbols and Expressions 1. Start with the known dimensions: Height = 52 Remember we are working in units of feet Length = 135 First guess we ll let the optimizer do the real work later 2. Next we need the X, Y, and Z coordinates for end 1: wire_1_z1 = Height wire_1_x1 = 0 Remember the element is along the Y axis wire_1_y1 = Length / 2 Half of the length in the positive Y axis 3. Now for end 2 of the wire: wire_1_z2 = Height Height: are both ends at the same height? wire_1_x2 = 0 The element is along the Y axis so x doesn t change wire_1_y2 = -1* Length / 2 Half of the length in the negative Y axis 4. Now we have a wire defined in 3 dimensions: 6 coordinates are required to define a line in 3 dimensional space 10

11 Now A Real Example You have just completed your Ft. Tuthill80 QRP Transceiver and now you need a suitable antenna The Ft Tuthill80 as built by WA4MNT Order yours here: 11

12 Modeling an 80m Dipole using 4NEC2 Steps to Model and Evaluate the 80m Dipole 1. Model the Structure Using 4NEC2 Editor (new) 2. Model Source, Load, and Ground Data 3. Check Geometry and Segmentation using 4NEC2 4. Evaluate Model performance 5. Optimize the Performance Using the 4NEC2 Optimizer 12

13 Build A Model Using 4NEC2 Editor (new) 1. Select EDIT on the 4NEC2 Main window then select Input (.nec) file 2. The 4NEC2 Edit Window should now be displayed Note: the 4NEC2 (new) editor runs in a separate window we are now using the 4NEC2 Edit Window NOT the Main Window 3. Initialize a New.NEC file for this project: Select File then New to begin editing a new model In the Scaling checkbox at the bottom of the 4NEC2 Editor screen select Feet Select File then Save As TBARC_80m.NEC to name the new project 13

14 Enter the Model Symbols and Expressions 1. Select the Symbols tab in the 4NEC2 Edit Window In our example we have arbitrarily selected 52 feet as the height above ground of the TBARC 80m dipole But! Accurate Models require accurate measurements! So MEASURE before modeling! in this case height matters 2. In the symbols and equations column enter: height = 52 Now lets experiment a bit and later compare the 4NEC2 results with the text book formula The formula for the length in feet of a ½ wave dipole in free space = 468 / frequency in Mhz We wish to optimize the performance of the antenna at the 80m QRP CW calling frequency Mhz Our estimate is 468 / = ft. 3. Select the cell just below the height entry and enter length = Enter symbols for each of the wire end coordinates: wire_1_x1 = 0 wire_1_x2 = 0 wire_1_y1 = length / 2 wire_1_y2 = -1 * length / 2 wire_1_z1 = height wire_1_z2 = height 5. Save the.nec file by selecting File then Save as TBARC_80m.NEC Hint: The 4NEC2 editor rows may be copied to and from an Excel spreadsheet 14

15 Model the Geometry 1. Select the Geometry tab in the 4NEC2 Edit Window We are now defining the 6 coordinates required to define a line in 3 dimensions. The dipole will be modeled as a single wire but constructed with a center insulator 2. Select the cell in the first row under Type a pull down will appear select Wire We are constructing the dipole of #14 wire. 3. Select the cell in the first row under Tag enter 1 4NEC2 references wires by tag number each wire requires a unique tag number 4. Select the cell in the first row under Segs enter 51 We are using 51 segments per ½ wave. 5. Select and enter the coordinates of the wire ends x1, y1, z1 and x2, y2, z2 in the geometry cells Now we must enter all the coordinate symbols for each of the wire end coordinates Cell Symbol X1 wire_1_x1 Y1 wire_1_y1 Z1 wire_1_z1 X2 wire_1_x2 Y2 wire_1_y2 Z2 wire_1_z2 6. Select Radius then enter #14 #14 is a predefined wire gauge symbol in 4NEC2 designating #14 wire 15

16 Model Sources and Loads 1. Select the Source / Load tab in the 4NEC2 Edit Window 2. Verify both Show Source and Show Loads are checked if not check both entries 3. In the Source(s) section select Type then select Voltage-src 4. In the Source(s) section select Tag then enter 1 5. In the Source(s) section select Seg then enter 50% 6. In the Source(s) section select Real then enter 1 7. In the Loads(s) section select the first cell then select wire conductor 8. In the Loads(s) section select Tag-nr then enter 1 9. In the Loads(s) section select First-seg then enter In the Loads(s) section select Last-seg then enter In the Loads(s) section select Cond(S) then select Copper 12. Save the TBARC_80m.NEC file 16

17 Model Frequency and Ground 1. Select the Freq./Ground tab in the 4NEC2 Edit Window 2. Enter in the Frequency cell 3. Select Real Ground in the Environment pull down 4. Select Rocky, steep hills in the Main ground unless you have a flat irrigated yard 5. Save the TBARC_80M.NEC input file 6. Then close the 4nec2 Editor We are at last finished editing model input data! 17

18 Geometry and Segmentation Check 4NEC2 Geometry and Segmentation checking can identify many common modeling errors 1. Checking Geometry and Segmentation Select Window from the 4NEC2 Main Window then select Geometry The Geometry Window should be displayed Verify the model displayed in the Geometry window looks like what you intended 2. Check the Geometry Select Validate in the Geometry Window then select Run Geometry Check 3. Check the Segmentation Select Validate in the Geometry Window then select Run Segment Checks 4. If there are errors then Go Back to the Geometry Editor and make corrections! 18

19 Evaluate Model performance Calculate the NEC Output Data Lets see the far field pattern in the horizontal (X Y) plane: Select Calculate from the 4NEC2 Main Window then select NEC output-data The Generate dialog is now displayed Select Far Field pattern Select Hor to calculate the horizontal plane data Set the resol to 5 degrees and The to 0 degrees Select Generate The Pattern window should now be displayed The Horizontal Pattern is displayed by selecting Show then selecting Next pattern until the Hor-gain [dbi] is displayed in the pattern window It is helpful to display the structure in the pattern window to see the pattern in relation to the antenna. To display the structure: 19

20 TBARC 80m Dipole Horizontal Pattern As expected The figure 8 pattern broadside to the dipole structure 20

21 TBARC 80m Dipole Vertical Pattern Vertical Pattern The vertical pattern is calculated by selecting Ver on the generate dialog then generating the NEC output data Most of the energy is radiated at an angle higher than 45 degrees due to the relatively low height. This is ok for the near vertical propagation on 80m 21

22 Bandwidth and SWR Calculate the SWR over the full 80m band Remember we specified the length using the text book formula SWR and Reflected Coef. The resonant point is at 3.60 Mhz the design frequency is 3.56 The feed point impedance is 73.6 j28.7 (its too short!) The SWR is 1.77 at the design frequency. The 2:1 SWR bandwidth is Approx 130Khz This is close but we can do better 22

23 Optimizing the Performance Lets Use the 4NEC2 Optimizer to improve the performance at 3.56 Mhz Select Calculate then Start Optimizer from the 4NEC2 Main Window The 4NEC2 Optimizer Window should now be displayed We wish to optimize the antenna length to resonance at 3.56 Mhz -- In the variables window select length Note that the length variable is now in the selected window At resonance the reactance either capacitive or inductive will be minimum -- We also wish to minimize the SWR and reflected coefficient Click in the SWR box to set the optimization weighting to 100 for SWR Click in the X-in box to set the optimization weighting to 100 for X-in (input reactance) Set the Frequency to 3.56 Mhz Select Start to start the optimizer, note the optimizer outputs as it attempts to find the optimal length value minimizing BOTH the SWR and input reactance When the optimizer is finished select Update NEC file this updates the NEC input file with new values We can then run the calculations again to compare with the first attempt using the text book formula 23

24 The Results SWR = :1 bandwidth ~ 120khz Impedance 76.6 j1.19 The text book formula is close but this looks better! 24

25 What s Wrong with the TBARC 80m Dipole? A Dipole is a Balanced Antenna, Coax is NOT a balanced Line The usable bandwidth is limited to 130 Khz How can we fix it? Add a Balun to balance the line at the feedpoint We need a weather proof toroidal balun Or a lot of coax hanging to make a quarter wave section Or a lot of ferrite beads to choke off the common mode currents The usable bandwidth is limited to 130 Khz Hmmmm not much we can do about that! 25

26 The TBARC 80m Folded Dipole A Better Idea? Characteristic Impedance is 280 ohms 2:1 SWR bandwidth is ~ 300 Khz 2x that of a single wire dipole Feed with 280 ohm #18 window line which has far lower loss than even the best coax Impedance matching inside out of the weather using either a balanced line antenna tuner or a 4:1 balun 26

27 3.5 Mhz to 3.8 Mhz SWR 80m Folded Dipole 27

28 Useful Hints 4NEC2 Models are only models Model accuracy is very good, however other factors can affect your results: Nearby Utility Lines Nearby Rain Gutters Accurate Measurements Measure to establish all model reference points Wire Stretch Use quality copper clad low stretch wire Check the specifications to determine the stretch 4NEC2 models assume uninsulated conductors Wire insulation reduces the velocity factor resulting in an element being cut too long Avoid using conductive supports Half wave driven elements have the highest RF voltages at the ends of the element that couple into supporting conductive structures Low stretch dacron rope or cord works much better Measure SWR and adjust AFTER building the model for the best results A good approach is to initially cut 5% long, then trim 28

29 Useful Links and References The QST 4 part series on basic antennal modeling by L. B. Cebik, W4RNL (SK) nec_part1.pdf nec_part2.pdf nec_part3.pdf nec_part4.pdf EZNEC by W7EL Nittany Scientific Nec Win 4NEC2 Example Models The 4NEC2 software includes many antenna example models which may be adapted or used directly. The ARRL Antenna Book has extensive information on modeling using NEC based software 29

30 Thank You! 30

The Fabulous Dipole. Ham Radio s Most Versatile Antenna

The Fabulous Dipole. Ham Radio s Most Versatile Antenna The Fabulous Dipole Ham Radio s Most Versatile Antenna 1 What is a Dipole? Gets its name from its two halves One leg on each side of center Each leg is the same length It s a balanced antenna The voltages

More information

ANTENNA DESIGN FOR FREE USING MMANA-GAL SOFTWARE

ANTENNA DESIGN FOR FREE USING MMANA-GAL SOFTWARE ANTENNA DESIGN FOR FREE USING MMANA-GAL SOFTWARE 1. AVAILABLE ANTENNA DESIGN SOFTWARE EZNEC and 4nec2 are based upon the Numerical Electromagnetics Code, or NEC, which is a popular antenna modelling system

More information

EZNEC Primer. Introduction:

EZNEC Primer. Introduction: EZNEC Primer Introduction: This document was written to cover the very basic functions of EZNEC. It's primarily geared to the use of EZNEC demo programs, specifically the Version 5 demo. While more elaborate

More information

Experiment 1 Half-wave dipole

Experiment 1 Half-wave dipole Experiment 1 Half-wave dipole In this work we will simulate a half-wave antenna in free space, comparing the results obtained via the simulation with the theoretical ones. We will analyze the variations

More information

Basic Wire Antennas. Part II: Loops and Verticals

Basic Wire Antennas. Part II: Loops and Verticals Basic Wire Antennas Part II: Loops and Verticals A loop antenna is composed of a single loop of wire, greater than a half wavelength long. The loop does not have to be any particular shape. RF power can

More information

Beams and Directional Antennas

Beams and Directional Antennas Beams and Directional Antennas The Horizontal Dipole Our discussion in this chapter is about the more conventional horizontal dipole and the simplified theory behind dipole based designs. For clarity,

More information

Feed Line Currents for Neophytes.

Feed Line Currents for Neophytes. Feed Line Currents for Neophytes. This paper discusses the sources of feed line currents and the methods used to control them. During the course of this paper two sources of feed line currents are discussed:

More information

Antenna? What s That? Chet Thayer WA3I

Antenna? What s That? Chet Thayer WA3I Antenna? What s That? Chet Thayer WA3I Space: The Final Frontier Empty Space (-Time) Four dimensional region that holds everything Is Permeable : It requires energy to set up a magnetic field within it.

More information

L. B. Cebik, W4RNL. 1. You want to get on 160 meters for the first time (or perhaps, for the first time in a long time).

L. B. Cebik, W4RNL. 1. You want to get on 160 meters for the first time (or perhaps, for the first time in a long time). L. B. Cebik, W4RNL The following notes rest on a small set of assumptions. 1. You want to get on 160 meters for the first time (or perhaps, for the first time in a long time). 2. You want to set up the

More information

Amateur Radio (G3TXQ) - Folded dipoles

Amateur Radio (G3TXQ) - Folded dipoles A. Introduction Amateur Radio (G3TXQ) - Folded dipoles A recent interest in "bent" half-wave dipoles led me to look into the theory of the classic Folded Dipole (FD) in some depth. Dipoles bent into a

More information

Antenna Design for FM-02

Antenna Design for FM-02 Antenna Design for FM-02 I recently received my FM-02 FM transmitter which I purchased from WLC. I researched the forum on what antennas where being used by the DIY community and found a nice write-up

More information

An Introduction to Antenna Analysis and Modeling Part 1: The Basics

An Introduction to Antenna Analysis and Modeling Part 1: The Basics An Introduction to Antenna Analysis and Modeling Part 1: The Basics Najm J. Choueiry, AB1ZA. 01.04.2019 In this introduction to antenna analysis and modeling, I will focus on two well-known software packacges,

More information

Portable Vertical Antenna for 75m & 40m

Portable Vertical Antenna for 75m & 40m Portable Vertical Antenna for 75m & 40m BOXBORO August 2012 Jacques VE2AZX Web: ve2azx.net 1 Objectives 1- Portable Antenna for 75m et 40m 2- Low radiation angle for DX 3- Efficient 4- Easy to install.

More information

A Beginner s Guide to Modeling With NEC

A Beginner s Guide to Modeling With NEC By L. B. Cebik, W4RNL A Beginner s Guide to Modeling With NEC Part 3 Sources, grounds and sweeps Once we progress beyond the construction of models and the interpretation of plot patterns, our next set

More information

Simulation of Wire Antennas using 4NEC2

Simulation of Wire Antennas using 4NEC2 Simulation of Wire Antennas using 4NEC2 A Tutorial for Beginners Version 1.0 Author: Gunthard Kraus, Oberstudienrat Email: mail@gunthard-kraus.de Homepage : www.gunthard-kraus.de Consultant: Hardy Lau,

More information

Choosing Your First HF Antenna

Choosing Your First HF Antenna The American Radio Relay League Choosing Your First HF Antenna Greater Fairfield Amateur Radio Assn May 1, 2017 Joel R. Hallas, W1ZR Contributing Editor, QST ARRL Copyright 2017, Joel Hallas, all rights

More information

Chapter 6 Antenna Basics. Dipoles, Ground-planes, and Wires Directional Antennas Feed Lines

Chapter 6 Antenna Basics. Dipoles, Ground-planes, and Wires Directional Antennas Feed Lines Chapter 6 Antenna Basics Dipoles, Ground-planes, and Wires Directional Antennas Feed Lines Some General Rules Bigger is better. (Most of the time) Higher is better. (Most of the time) Lower SWR is better.

More information

A Relatively Simple160/80 No Tune/No Switch Dual CW Band Trap Antenna Using the Spiderbeam Mast

A Relatively Simple160/80 No Tune/No Switch Dual CW Band Trap Antenna Using the Spiderbeam Mast A Relatively Simple160/80 No Tune/No Switch Dual CW Band Trap Antenna Using the Spiderbeam Mast This project originated with my request to the Contesting Top Band forum for thoughts on a transportable

More information

A Stub Matched Lazy H for 17 M

A Stub Matched Lazy H for 17 M A Stub Matched Lazy H for 17 M Introduction The author has experimented with various configurations of the classic Lazy H antenna and a version optimised for operation on the 17 M band is shown in Figure

More information

Page 1The VersaTee Vertical 60m, 80m Modular Antenna System Tutorial Manual

Page 1The VersaTee Vertical 60m, 80m Modular Antenna System Tutorial Manual Page 1The VersaTee Vertical 60m, 80m Modular Antenna System Tutorial Manual by: Lou Rummel, KE4UYP Page 1 In the world of low band antennas this antenna design is unique in many different ways. 1. It is

More information

A short, off-center fed dipole for 40 m and 20 m by Daniel Marks, KW4TI

A short, off-center fed dipole for 40 m and 20 m by Daniel Marks, KW4TI A short, off-center fed dipole for 40 m and 20 m by Daniel Marks, KW4TI Version 2017-Nov-7 Abstract: This antenna is a 20 to 25 foot long (6.0 m to 7.6 m) off-center fed dipole antenna for the 20 m and

More information

Least understood topics by most HAMs RF Safety Ground Antennas Matching & Feed Lines

Least understood topics by most HAMs RF Safety Ground Antennas Matching & Feed Lines Least understood topics by most HAMs RF Safety Ground Antennas Matching & Feed Lines Remember this question from the General License Exam? G0A03 (D) How can you determine that your station complies with

More information

The first thing to realize is that there are two types of baluns: Current Baluns and Voltage Baluns.

The first thing to realize is that there are two types of baluns: Current Baluns and Voltage Baluns. Choosing the Correct Balun By Tom, W8JI General Info on Baluns Balun is an acronym for BALanced to UNbalanced, which describes certain circuit behavior in a transmission line, source or load. Most communications

More information

The Three L-Antennas Wide Equal - Tall

The Three L-Antennas Wide Equal - Tall Wide Equal - Tall Dick Reid, KK4OBI A space saving antenna in the form of an upright L has been around the amateur radio world for a long time. References are found back to a QST article in the 60 s (Reference

More information

Antennas 101 Don t Be a 0.97 db Weakling! Ward Silver NØAX

Antennas 101 Don t Be a 0.97 db Weakling! Ward Silver NØAX Antennas 101 Don t Be a 0.97 db Weakling! Ward Silver NØAX Overview Antennas 101 2 Overview Basic Antennas: Ground Plane / Dipole How Gain and Nulls are Formed How Phased Arrays Work How Yagis Work (simplified)

More information

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency Antennas Simple Antennas Isotropic radiator is the simplest antenna mathematically Radiates all the power supplied to it, equally in all directions Theoretical only, can t be built Useful as a reference:

More information

Last year I described several Low Band RX antennas that would enable you to hear DX stations on 160, 80 and 40M. This will show you how to build

Last year I described several Low Band RX antennas that would enable you to hear DX stations on 160, 80 and 40M. This will show you how to build Last year I described several Low Band RX antennas that would enable you to hear DX stations on 160, 80 and 40M. This will show you how to build transmit antennas that will help you break the pileups!

More information

TWO METER HOMEMADE SLIM JIM ANTENNA

TWO METER HOMEMADE SLIM JIM ANTENNA Gordon Gibby July 15, 2016 TWO METER HOMEMADE SLIM JIM ANTENNA WIRE: Start with a piece of solid #14 AWG household wire approximately 3 yards and 9 inches long (117 ) (It is easier to be a couple inches

More information

Fundamentals of Antennas. Prof. Ely Levine

Fundamentals of Antennas. Prof. Ely Levine Fundamentals of Antennas Prof. Ely Levine levineel@zahav.net.il 1 Chapter 3 Wire Antennas 2 Types of Antennas 3 Isotropic Antenna Isotropic radiator is the simplest antenna mathematically Radiates all

More information

Tuned Loop Antenna 20 through 10 meters

Tuned Loop Antenna 20 through 10 meters Tuned Loop Antenna 20 through 10 meters - Revised: 2015-11-06 At K0MPH, a tuned loop antenna is used on the 20, 15 and 10 meter bands. I was inspired by George Badger, February 2008 QST - The W6TC DX Loop,

More information

Maximize power transfer Reduce feed line loss (if match is at the antenna) Make transmitters happy!

Maximize power transfer Reduce feed line loss (if match is at the antenna) Make transmitters happy! Ward Silver - NØAX Impedance = ratio of voltage to current Mechanical analogies Mechanical impedance = ratio of torque to rate of rotation Vehicle transmission is an impedance converter Transfers power

More information

A short antenna optimization tutorial using MMANA-GAL

A short antenna optimization tutorial using MMANA-GAL A short antenna optimization tutorial using MMANA-GAL Home MMANA Quick Start part1 part2 part3 part4 Al Couper NH7O These pages will present a short guide to antenna optimization using MMANA-GAL. This

More information

Coming next: Wireless antennas for beginners

Coming next: Wireless antennas for beginners Coming next: Wireless antennas for beginners In other rooms: Logbook of the World (Sussex Suite) SO2R contest operation (Stable Suite) Wires for your wireless: Simple wire antennas for beginners dominic

More information

RX Directional Antennas. Detuning of TX Antennas.

RX Directional Antennas. Detuning of TX Antennas. 1. Models Impact of Resonant TX antennas on the Radiation Pattern of RX Directional Antennas. Detuning of TX Antennas. Chavdar Levkov, lz1aq@abv.bg, www.lz1aq.signacor.com 2-element small loops and 2-element

More information

4/29/2012. General Class Element 3 Course Presentation. Ant Antennas as. Subelement G9. 4 Exam Questions, 4 Groups

4/29/2012. General Class Element 3 Course Presentation. Ant Antennas as. Subelement G9. 4 Exam Questions, 4 Groups General Class Element 3 Course Presentation ti ELEMENT 3 SUB ELEMENTS General Licensing Class Subelement G9 Antennas and Feedlines 4 Exam Questions, 4 Groups G1 Commission s Rules G2 Operating Procedures

More information

Intermediate Course (5) Antennas and Feeders

Intermediate Course (5) Antennas and Feeders Intermediate Course (5) Antennas and Feeders 1 System Transmitter 50 Ohms Output Standing Wave Ratio Meter Antenna Matching Unit Feeder Antenna Receiver 2 Feeders Feeder types: Coaxial, Twin Conductors

More information

Antennas and Stuff. John Kernkamp WB4YJT

Antennas and Stuff. John Kernkamp WB4YJT Antennas and Stuff John Kernkamp WB4YJT John Kraus W8JK June 28, 1910 - July 18, 2004 Invented the helical antenna, the corner reflector, and the W8JK End-Fire array. In 1950 designed and built the Big

More information

TABLE OF CONTENTS. 2.2 Monopoles Characteristics of a l/4 Monopole Folded Monopoles. 2.3 Bibliography. Antenna Fundamentals 1-1

TABLE OF CONTENTS. 2.2 Monopoles Characteristics of a l/4 Monopole Folded Monopoles. 2.3 Bibliography. Antenna Fundamentals 1-1 TABLE OF CONTENTS 2.1 Dipoles 2.1.1 Radiation Patterns 2.1.2 Effects of Conductor Diameter 2.1.3 Feed Point Impedance 2.1.4 Effect of Frequency on Radiation Pattern 2.1.5 Folded Dipoles 2.1.6 Vertical

More information

Amateur Extra Manual Chapter 9.4 Transmission Lines

Amateur Extra Manual Chapter 9.4 Transmission Lines 9.4 TRANSMISSION LINES (page 9-31) WAVELENGTH IN A FEED LINE (page 9-31) VELOCITY OF PROPAGATION (page 9-32) Speed of Wave in a Transmission Line VF = Velocity Factor = Speed of Light in a Vacuum Question

More information

W8WWV - The 80 Meter Inverted Vee (Original)

W8WWV - The 80 Meter Inverted Vee (Original) W8WWV - The 80 Meter Inverted Vee (Original) Greg Ordy Introduction Why the Vee? Design Formulae The Implementation Interaction with the Yagi On Top Broadbanding the Vee o Fat, Fan, and Cage Dipoles o

More information

The New and Improved Carolina Windom Antenna and ½ Wave End Fed 20 Meter Vertical and Sloping Wire Antennas. EZNEC analysis by Pete Rimmel, N8PR

The New and Improved Carolina Windom Antenna and ½ Wave End Fed 20 Meter Vertical and Sloping Wire Antennas. EZNEC analysis by Pete Rimmel, N8PR The New and Improved Carolina Windom Antenna and ½ Wave End Fed 20 Meter Vertical and Sloping Wire Antennas EZNEC analysis by Pete Rimmel, N8PR Keeps RF off the Coax below this point / (part of)/ That

More information

MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS

MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS Introduction...2 Powering The MFJ-219/219N...3 Battery Installation...3 Operation Of The MFJ-219/219N...4 SWR and the MFJ-219/219N...4 Measuring

More information

Weekend Antennas No. 5 The "Compact Quad" Multiband Antenna

Weekend Antennas No. 5 The Compact Quad Multiband Antenna Weekend Antennas No. 5 The "Compact Quad" Multiband Antenna When I relocated to Johannesburg I needed a new multiband HF antenna. Since I was staying in a rented house a tower was out of the question,

More information

Notes on Modeling Short Inductively Loaded Antennas

Notes on Modeling Short Inductively Loaded Antennas Notes on Modeling Short Inductively Loaded Antennas Lumped Load Models v. Distributed Coils There has been much discussion in the rec.radio.amateur.antenna (r.r.a.a.) newsgroup about whether or not modeling

More information

Development of a noval Switched Beam Antenna for Communications

Development of a noval Switched Beam Antenna for Communications Master Thesis Presentation Development of a noval Switched Beam Antenna for Communications By Ashraf Abuelhaija Supervised by Prof. Dr.-Ing. Klaus Solbach Institute of Microwave and RF Technology Department

More information

ARNSW Balun Day. Balun construction

ARNSW Balun Day. Balun construction ARNSW Balun Day Balun construction Typical Baluns All built from locally available components. Balun uses Most baluns are used to match the 50Ω output of a transceiver to an antenna. A centre fed dipole

More information

Jacques Audet VE2AZX. Nov VE2AZX 1

Jacques Audet VE2AZX. Nov VE2AZX 1 Jacques Audet VE2AZX VE2AZX@amsat.org Nov. 2006 VE2AZX 1 - REASONS FOR USING A BALUN - TYPES OF BALUNS - CHECK YOUR BALUN WITH AN SWR ANALYZER - MEASURING THE IMPEDANCE OF A NUMBER OF FERRITES - IMPEDANCE

More information

CHAPTER 8 ANTENNAS 1

CHAPTER 8 ANTENNAS 1 CHAPTER 8 ANTENNAS 1 2 Antennas A good antenna works A bad antenna is a waste of time & money Antenna systems can be very inexpensive and simple They can also be very expensive 3 Antenna Considerations

More information

9el 144MHZ LFA YAGI ASSEMBLY & INSTALLATION MANUAL

9el 144MHZ LFA YAGI ASSEMBLY & INSTALLATION MANUAL 1 9el 144MHZ LFA YAGI ASSEMBLY & INSTALLATION MANUAL 2 WARNING EXTREME CAUTION SHOULD BE TAKEN WHEN CONSTRUCTING AND ERECTING ANTENNA SYSTEMS NEAR POWER AND TELEPHONE LINES. SERIOUS INJURY OR DEATH CAN

More information

Cray Valley Radio Society. Real Life Wire Antennas

Cray Valley Radio Society. Real Life Wire Antennas Cray Valley Radio Society Real Life Wire Antennas 1 The basic dipole The size of an antenna is determined by the wavelength of operation In free space: ~3x10 8 m/s Frequency x Wavelength = Speed of Light,

More information

I recently came across a No-Counterpoise antenna described by designed by Peter Millis M3KXZ and based on an original design by K9ESE.

I recently came across a No-Counterpoise antenna described by designed by Peter Millis M3KXZ and based on an original design by K9ESE. M3KXZ 'no counterpoise' antenna I recently came across a No-Counterpoise antenna described by designed by Peter Millis M3KXZ and based on an original design by K9ESE. Details of the antenna can be found

More information

ANTENNAS. I will mostly be talking about transmission. Keep in mind though, whatever is said about transmission is true of reception.

ANTENNAS. I will mostly be talking about transmission. Keep in mind though, whatever is said about transmission is true of reception. Reading 37 Ron Bertrand VK2DQ http://www.radioelectronicschool.com ANTENNAS The purpose of an antenna is to receive and/or transmit electromagnetic radiation. When the antenna is not connected directly

More information

One I had narrowed the options down, I installed some wire and started testing.

One I had narrowed the options down, I installed some wire and started testing. Loft & Attic antennas for restricted spaces - M. Ehrenfried G8JNJ I ve recently been looking at designs for an efficient antenna that would fit in a loft. I hoped to find something that would work on with

More information

Wire Antennas For Limited Space

Wire Antennas For Limited Space Wire Antennas For Limited Space Jim Brown K9YC Santa Cruz, CA http://audiosystemsgroup.com Our Objectives Good Antennas Good efficiency Good predictable patterns Minimal noise pickup and RFI Inexpensive

More information

Antenna. NO5V Rick Bono

Antenna. NO5V Rick Bono Portable End Fed Half Wave Antenna NO5V Rick Bono October 15, 2016 Overview Develop a Portable End Fed Half Wave Antenna Portable and easy to deploy Multiband capability Resonant Antenna No Tuner Needed!

More information

A Triangle for the Short Vertical

A Triangle for the Short Vertical 1 von 11 03.03.2015 12:37 A Triangle for the Short Vertical Operator L. B. Cebik, W4RNL Last month, I described a triangle array of three full-size vertical dipoles for 40 meters (with 30 meters as a bonus).

More information

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA 5.1 INTRODUCTION This chapter deals with the design of L-band printed dipole antenna (operating frequency of 1060 MHz). A study is carried out to obtain 40 % impedance

More information

MFJ-941E Versa Tuner II GENERAL INFORMATION:

MFJ-941E Versa Tuner II GENERAL INFORMATION: GENERAL INFORMATION: MFJ VERSA TUNER II The MFJ-941E is designed to match virtually any transmitter to any antenna, including dipoles, inverted-vees, verticals, mobile whips, beams, random wires, and others

More information

How Much Coaxial Cable? A Case Study. L. B. Cebik, W4RNL

How Much Coaxial Cable? A Case Study. L. B. Cebik, W4RNL How Much Coaxial Cable? A Case Study L. B. Cebik, W4RNL Newcomers to amateur radio sometimes encounter wire antenna advertisements that recommend the use of long runs of coaxial cable from the antenna

More information

1) Transmission Line Transformer a. First appeared on the scene in 1944 in a paper by George Guanella as a transmission line transformer, the 1:1

1) Transmission Line Transformer a. First appeared on the scene in 1944 in a paper by George Guanella as a transmission line transformer, the 1:1 1) Transmission Line Transformer a. First appeared on the scene in 1944 in a paper by George Guanella as a transmission line transformer, the 1:1 Guanella Balun is the basic building Balun building block.

More information

General License Class Chapter 6 - Antennas. Bob KA9BHD Eric K9VIC

General License Class Chapter 6 - Antennas. Bob KA9BHD Eric K9VIC General License Class Chapter 6 - Antennas Bob KA9BHD Eric K9VIC Learning Objectives Teach you enough to get all the antenna questions right during the VE Session Learn a few things from you about antennas

More information

6M HALO VERSON II + OPTIONAL 2M GROUND PLANE

6M HALO VERSON II + OPTIONAL 2M GROUND PLANE The halo is an omnidirectional, horizontally polarized antenna with about the same gain as a dipole but without the low elevation nulls off the ends (+5.5 to +3.5dBi variation for the Halo vs. +7.9 to

More information

High Performance 40 Meters Vertical Without Radials

High Performance 40 Meters Vertical Without Radials High Performance 40 Meters Vertical Without Radials This shortened easy-to-build vertical, with no-radials, is made from surplus military camouflage poles. It has gain and wave angle comparable to a full-sized

More information

G7FEK LIMITED SPACE ANTENNA

G7FEK LIMITED SPACE ANTENNA 80, 40, 30, 17, 15, 12 m see tet for 20 & 10m operation For 20m operation add red wire 16.5ft ( 5.1m) 24 ft (7.4m) Copyright 2009 G7FEK During the 1980s Mike, G7FEK, described a limited space antenna suitable

More information

4 Antennas as an essential part of any radio station

4 Antennas as an essential part of any radio station 4 Antennas as an essential part of any radio station 4.1 Choosing an antenna Communicators quickly learn two antenna truths: Any antenna is better than no antenna. Time, effort and money invested in the

More information

Technician Licensing Class T9

Technician Licensing Class T9 Technician Licensing Class T9 Amateur Radio Course Monroe EMS Building Monroe, Utah January 11/18, 2014 January 22, 2014 Testing Session Valid dates: July 1, 2010 June 30, 2014 Amateur Radio Technician

More information

Chapter 5.0 Antennas Section 5.1 Theory & Principles

Chapter 5.0 Antennas Section 5.1 Theory & Principles Chapter 5.0 Antennas Section 5.1 Theory & Principles G3C11 (B) p.135 Which of the following antenna types will be most effective for skip communications on 40-meters during the day? A. A vertical antenna

More information

Experimental Determination of Ground System Performance for HF Verticals Part 2 Excessive Loss in Sparse Radial Screens

Experimental Determination of Ground System Performance for HF Verticals Part 2 Excessive Loss in Sparse Radial Screens Rudy Severns, N6LF PO Box 589, Cottage Grove, OR 97424; n6lf@arrl.net Experimental Determination of Ground System Performance for HF Verticals Part 2 Excessive Loss in Sparse Radial Screens These experimental

More information

TABLE OF CONTENTS. 8.1 Overview A Short History of Antenna Modeling

TABLE OF CONTENTS. 8.1 Overview A Short History of Antenna Modeling TABLE OF CONTENTS 8.1 Overview 8.1.1 A Short History of Antenna Modeling 8.2 The Basics of Antenna Modeling 8.2.1 Program Outputs 8.2.2 Program Inputs: Wire Geometry 8.2.3 The Modeling Environment 8.2.4

More information

Table of Contents. MFJ-1778 G5RV Multiband Antenna

Table of Contents. MFJ-1778 G5RV Multiband Antenna Table of Contents MFJ-1778 G5RV Multiband Antenna Introduction... 1 Theory Of Operation... 1 80 meter band:... 1 40 meter band:... 1 30 meter band:... 2 20 meter band:... 2 17 meter band:... 2 15 meter

More information

1.5 kw Automatic Remote Controlled Antenna Tuner for Verticals and other Unbalanced Antennas

1.5 kw Automatic Remote Controlled Antenna Tuner for Verticals and other Unbalanced Antennas 1.5 kw Automatic Remote Controlled Antenna Tuner for Verticals and other Unbalanced Antennas Mod. AT- 615U Short Form Manual 10/2010 Dipl.Ing. Klaus Bemmerer RF Communication Electronics Niendorf-Middeldor

More information

Traveling Wave Antennas

Traveling Wave Antennas Traveling Wave Antennas Antennas with open-ended wires where the current must go to zero (dipoles, monopoles, etc.) can be characterized as standing wave antennas or resonant antennas. The current on these

More information

NVIS, Another Look. Tom Sanders, W6QJI Ed Bruette, N7NVP

NVIS, Another Look. Tom Sanders, W6QJI Ed Bruette, N7NVP NVIS, Another Look Tom Sanders, W6QJI Ed Bruette, N7NVP Regional Communications N.V.I.S. Near Vertical Incidence Skywave What is NVIS? Near Vertical Incident Skywave Cloud Warmer Propagation Theory NVIS

More information

ANTENNAS Wires, Verticals and Arrays

ANTENNAS Wires, Verticals and Arrays ANTENNAS Wires, Verticals and Arrays Presented by Pete Rimmel N8PR 2 1 Tonight we are going to talk about antennas. Anything that will conduct electricity can be made to radiate RF can be called an antenna.

More information

The DBJ-1: A VHF-UHF Dual-Band J-Pole

The DBJ-1: A VHF-UHF Dual-Band J-Pole By Edison Fong, WB6IQN The DBJ-1: A VHF-UHF Dual-Band J-Pole Searching for an inexpensive, high-performance dual-band base antenna for VHF and UHF? Build a simple antenna that uses a single feed line for

More information

ANTENNA BASICS FOR BEGINNERS

ANTENNA BASICS FOR BEGINNERS ANTENNA BASICS FOR BEGINNERS PART 2 -DIPOLES DIPOLES -General MULTIBAND DIPOLES RF CHOKES 1 DIPOLES Several different variations of the dipole are also used, such as the folded dipole, short dipole, cage

More information

J-Poles. Mythbusting J-Pole Antennas

J-Poles. Mythbusting J-Pole Antennas Mythbusting J-Pole Antennas For an antenna to work correctly, it must do two things well 1) Accept power from the feed line impedance match, SWR (ideally) 1:1 2) Radiate power in a pattern that is useful

More information

A 40+ db Gain Antenna Made from Paper

A 40+ db Gain Antenna Made from Paper A 40+ db Gain Antenna Made from Paper *Flying Antenna/QSO A New Antenna Theory *An Inexpensive SWTL *An All-Band Antenna Q&A *Construction Article Available John Kraus, W8JK John Kraus, W8JK 2 Sonoma County,

More information

Elevation and Pseudo-Brewster Angle Formation of Ground- Mounted Vertical Antennas

Elevation and Pseudo-Brewster Angle Formation of Ground- Mounted Vertical Antennas Robert J. Zavrel, Jr., W7SX PO Box 9, Elmira, OR 97437; w7sx@arrl.net Elevation and Pseudo-Brewster Angle Formation of Ground- Mounted Vertical Antennas The formation of the elevation pattern of ground

More information

# -antenna (hash) 4 direction switchable array

# -antenna (hash) 4 direction switchable array # -antenna (hash) 4 direction switchable array Feasibility study Paper on CCF & OHDXF cruise 4.1.2012 Pekka Ketonen 4.2.2012 OH1TV 1 4 direction, instant switching 4.2.2012 OH1TV 2 Features Instant direction

More information

MFJ-249B HF/VHF SWR ANALYZER

MFJ-249B HF/VHF SWR ANALYZER TABLE OF CONTENTS MFJ-249B... 2 Introduction... 2 Powering The MFJ-249B... 3 Battery Installation... 3 Alkaline Batteries... 3 NiCd Batteries... 4 Power Saving Mode... 4 Operation Of The MFJ-249B...5 SWR

More information

RF Ground, Counterpoises, and Elevated Radials. Graham King G3XSD

RF Ground, Counterpoises, and Elevated Radials. Graham King G3XSD RF Ground, Counterpoises, and Elevated Radials Graham King G3XSD Ground is ground,right? Not really! There is a notion of 'ground' as the 'big zero', a charge reservoir that is so huge that no matter how

More information

4/25/2012. Supplement T9. 2 Exam Questions, 2 Groups. Amateur Radio Technician Class T9A: T9A: T9A: T9A:

4/25/2012. Supplement T9. 2 Exam Questions, 2 Groups. Amateur Radio Technician Class T9A: T9A: T9A: T9A: Amateur Radio Technician Class Element 2 Course Presentation ti ELEMENT 2 SUB-ELEMENTS Technician Licensing Class Supplement T9 Antennas, Feedlines 2 Exam Questions, 2 Groups T1 - FCC Rules, descriptions

More information

The Long Wire Loop: an Omnidirectional, Multiband, Low Angle Radiator. By Steve Cerwin, WA5FRF

The Long Wire Loop: an Omnidirectional, Multiband, Low Angle Radiator. By Steve Cerwin, WA5FRF The Long Wire Loop: an Omnidirectional, Multiband, Low Angle Radiator By Steve Cerwin, WA5FRF Introduction: Something Old and Something New As the name implies, long wire loop is a marriage of the venerable

More information

Investigation of Board-Mounted Omni- Directional Antennas for WLAN- Applications

Investigation of Board-Mounted Omni- Directional Antennas for WLAN- Applications Investigation of Board-Mounted Omni- Directional Antennas for WLAN- Applications Luis Quineche ISE Master Student EEE: Communications Engineering Index Description of Problem Thesis Task Background Theory

More information

Antenna Fundamentals

Antenna Fundamentals HTEL 104 Antenna Fundamentals The antenna is the essential link between free space and the transmitter or receiver. As such, it plays an essential part in determining the characteristics of the complete

More information

Newcomers And Elmers Net: Wire Antennas Robert AK3Q

Newcomers And Elmers Net: Wire Antennas Robert AK3Q Newcomers And Elmers Net: Wire Antennas 02-07-16 Robert AK3Q Wire antennas represent one of the greatest values in the radio hobby world. For less than the cost of a good meal out on the town you can buy

More information

ANTENNA THEORY WAVE PROPAGATION HF ANTENNAS

ANTENNA THEORY WAVE PROPAGATION HF ANTENNAS ANTENNA THEORY WAVE PROPAGATION & HF ANTENNAS FREQUENCY SPECTRUM INFORMATION Frequency range American designator below 300 Hz..ELF (extremely Low Frequency) 300-3000 Hz..ILF (Intermediate Low Frequency)

More information

General Class License Theory III. Dick Grote K6PBF

General Class License Theory III. Dick Grote K6PBF General Class License Theory III Dick Grote K6PBF K6pbfdick@gmail.com 1 Introduction In this session we will learn about: Feed Lines Antennas Safety As in the other theory classes, we will try to present

More information

Transmission Lines As Impedance Transformers

Transmission Lines As Impedance Transformers Transmission Lines As Impedance Transformers Bill Leonard N0CU 285 TechConnect Radio Club 2017 TechFest Topics Review impedance basics Review Smith chart basics Demonstrate how antenna analyzers display

More information

Install as much wire/tubing as possible Electrically short antennas Minimize matching losses Good ground for verticals Maximizes antenna efficiency

Install as much wire/tubing as possible Electrically short antennas Minimize matching losses Good ground for verticals Maximizes antenna efficiency Jim Wolf KR9U Install as much wire/tubing as possible Electrically short antennas Minimize matching losses Good ground for verticals Maximizes antenna efficiency Far-away ground conditions determine low

More information

Design of a Delta Loop September 26, 2016

Design of a Delta Loop September 26, 2016 Design of a Delta Loop September 26, 2016 by K0ZR Introduction Why a Delta loop? A Delta loop can be made to radiate a horizontal or vertically polarized signal. In most cases one chooses the vertical

More information

Monoconical RF Antenna

Monoconical RF Antenna Page 1 of 8 RF and Microwave Models : Monoconical RF Antenna Monoconical RF Antenna Introduction Conical antennas are useful for many applications due to their broadband characteristics and relative simplicity.

More information

A Folding 5-Element Yagi for 144 MHz

A Folding 5-Element Yagi for 144 MHz A Folding 5-Element Yagi for 144 MHz Steve Kavanagh, VE3SMA, April 2017 1. Introduction I have found antennas which fold up quickly to take less space in the car to be useful in VHF/UHF portable operating.

More information

Adjust Antenna Tuners Antenna Measurements Capacitor Measurement Measure Feed Point Impedance Measure Ground Loss Inductor Measurement

Adjust Antenna Tuners Antenna Measurements Capacitor Measurement Measure Feed Point Impedance Measure Ground Loss Inductor Measurement The Micro908 antenna analyzer is an extremely useful instrument to have around the ham shack or homebrewer s workbench. This section describes the basic uses, as well as some advanced techniques for which

More information

Ground-Mounted Verticals. Dispelling the Myths and Misconceptions

Ground-Mounted Verticals. Dispelling the Myths and Misconceptions Dispelling the Myths and Misconceptions Let s start with a quiz on vertical antennas and radials. Answers will be there to discover, as we proceed through the presentation. To be most effective, a ground-mounted

More information

SWL Receiving Antenna Experiments

SWL Receiving Antenna Experiments SWL Receiving Antenna Experiments Introduction I have a lot to learn about SWL antennas. What follows are some brief experiments I performed in late October 2005. I have been experimenting with a half

More information

Emergency Antennas. Presented by Ham Hilliard W4GMM

Emergency Antennas. Presented by Ham Hilliard W4GMM Emergency Antennas Presented by Ham Hilliard W4GMM Dipole antenna Vertical antenna Random wire antenna Dipole antenna The half wave dipole antenna consists of a conductive wire or rod that is half the

More information

Chapter 9 Antennas and Feedlines

Chapter 9 Antennas and Feedlines Chapter 9 Antennas and Feedlines Basics of Antennas Antenna Radiation Patterns. Graphical representation of spatial distribution of energy around an antenna. 3D = Full representation. 2D = Slice through

More information

L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS

L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS Jeyasingh Nithianandam Electrical and Computer Engineering Department Morgan State University, 500 Perring Parkway, Baltimore, Maryland 5 ABSTRACT

More information