Load Bank Design. Joshua Bardwell

Size: px
Start display at page:

Download "Load Bank Design. Joshua Bardwell"

Transcription

1 Load Bank Design Joshua Bardwell

2 Finding the right parts is hard. I ve found the stuff that works. Here's a list of gear that you can trust is worth the price, whether your price point is "as cheap as possible" or "money-is-no-object." Here's a comprehensive list of, "what should I buy," if you're just starting out and are totally overwhelmed.

3 What s a Load Bank? Definition: Develops an electrical load (most commonly resistive) Applies the load to a power source Converts or dissipates the power output (typically to heat) Uses: Generator test and run-in Braking of electrical motors Discharging Batteries!

4 Load Bank Considerations Discharge Rate How much current will flow through the load bank? High-end load banks use computers and electrical components to control current precisely Excess current may damage the power supply (battery) Watts Dissipated How hot will each part of the load bank get? The load bank must get rid of the energy somehow If it gets too hot, it will burn itself up West Mountain Radio Computerized Battery Analyzer ($3000+ for 2 kw)

5 Two Key Formulas I = V R P = V2 R The current (amps) flowing through a resistor is equal to the potential (volts) applied across the resistor, divided by the resistance (ohms) of the resistor. The power (watts) dissipated by a resistor is equal to the potential (volts) across the resistor, squared, divided by the resistance (ohms) of the resistor.

6 Ohm s Law Has Many Forms I = V R R = V I V = I R

7 Examples How much current will flow through a 0.5 ohm resistor when it is wired across the terminals of a 4S battery? I = 16.8 volts / 0.5 ohm I = 33.6 amps How much resistance is needed to get 3C of current out of a 1500 mah battery? 1500 mah = 1500 ma * 3 = 4.5 amps R = 16.8 volts / 4.5 amps R = 3.7 ohms How much resistance is needed to get 60 amps of current out of a 4S LiPo for test purposes? R = 16.8 volts / 60 amps R = 0.28 ohms How many watts are dissipated by a 0.25 ohm resistor applied across the terminals of a 4S battery? P = 16.8 volts * 16.8 volts / 0.25 ohms P = 1,128 watts!

8 Series Resistors Total resistance = sum of individual resistance values Explore this circuit at As resistors are added, total resistance goes up As resistors are added, total current goes down (more resistance = less current per Ohm s law) As resistors are added, total power dissipated goes down (because total current goes down) As resistors are added, power dissipated by each resistor goes down (because total current goes down)

9 Parallel Resistors Explore this circuit at Total resistance: 1 / Rt = 1/ R1 + 1 / R2 + 1/ R3 ) As resistors are added, total resistance goes down As resistors are added, total current goes up (less resistance = more current per Ohm s law) As resistors are added, total power dissipated goes up (because total current goes up) As resistors are added, power dissipated by each resistor stays the same (because total current goes up, but there are more resistors too)

10 General Guidelines If you want to dissipate MORE POWER, add resistors IN PARALLEL or use lower-value resistors If you are dissipating TOO MUCH POWER, add resistors IN SERIES or use higher-value resistors

11 Choosing Resistor Values 1. Decide how much current you want to flow 2. Based on the voltage you are working with, calculate the necessary resistance value 3. Calculate power dissipated by that resistor 1. Want to test 4S battery at 60 amps. 2. R = 16.8 volts / 60 amps = 0.28 ohms 3. P = 16.8 volts * 16.8 volts / 0.28 ohms = 1,008 watts

12 Excess Power? 1. Calculate resistance for the rated power dissipation of your resistor 100 watts = 16.8 volts * 16.8 volts / R 100 watts = 282 volts^2 / R R = 282 volts^2 / 100 watts R = 2.82 ohms 2. Calculate amps for that resistor value I = 16.8 volts / 2.82 ohms I = 6.0 amps At 16.8 volts, a 2.82 ohm resistor will produce 6.0 amps of current, dissipating 100 watts 3. Add resistors in parallel to bring total current flow up to the desired level If one resistor produces 6 amps of current, then we need 10 resistors in parallel to get 60 amps of current Resistors can easily be added or subtracted to produce more or less current Power through each individual resistor remains constant, so no additional calculation is needed Current simply scales up and down as resistors are added or subtracted

13 Choosing Resistors This type of resistor is typically rated from 100 to 200 watts. It needs to be mounted to a heat sink and have good air flow to achieve its full power rating. It usually costs around $10. But you also have to buy the heat sink. This type of resistor is also rated from 100 to 200 watts. It is designed to work without a heat sink. It still benefits from good air flow. It usually costs closer to $40.

14 Alternative Load: Halogen Bulbs!

15 Halogen Bulb Considerations Bulbs produce a LOT of light consider buying aluminum flashing from the hardware store as a shield 12v bulbs typically work fine on 4S voltage, but blow out immediately on 4S HV packs or higher Buy 24v bulbs or wire two 12v bulbs in series if higher voltage is a concern Bulbs are not necessarily costeffective compared to power resistors Approximate amps are difficult to calculate because the resistance of the bulb is not constant At the rated voltage, you know you will dissipate approximately the rated wattage At other voltages must experiment to find out I get about 20 4S through 3x 24v bulbs in parallel, which equates to about 6 amps per 24v bulb or per two 12v bulbs in series

16 Wiring Recommendations 12 gauge wire is okay up to about 60 amps 8 gauge is okay up to about 120 amps Use heavier wire if at all possible! Fine-strand silicone wire is best. Get a big, chunky, knife switch for making/breaking connection If you try plugging in an XT60 or bullet with a 30+ amp load attached, you will probably arc the connector and burn it or even weld it together Solid-core copper is okay too if you aren t going to move anything very much. XT60 is good up to 60 amps or probably a little higher even Above 60 amps consider using bullet connectors and/or ring terminals instead of XT60 6mm bullets are okay up to 120 amps

How to Build Radiant Chargers

How to Build Radiant Chargers How to Build Radiant Chargers Copyright 2009, by H2OFuelKits, LLC 1. Introduction to Radiant Charging 2. Solid State Radiant Chargers Radiant battery chargers are those which use a flyback transformer

More information

The answer is R= 471 ohms. So we can use a 470 ohm or the next higher one, a 560 ohm.

The answer is R= 471 ohms. So we can use a 470 ohm or the next higher one, a 560 ohm. Introducing Resistors & LED s P a g e 1 Resistors are used to adjust the voltage and current in a circuit. The higher the resistance value, the more electrons it blocks. Thus, higher resistance will lower

More information

Chapter 12 Electric Circuits

Chapter 12 Electric Circuits Conceptual Physics/ PEP Name: Date: Chapter 12 Electric Circuits Section Review 12.1 1. List one way electric current is similar to water current and one way it is different. 2. Draw a circuit diagram

More information

4. An overheated resistor is usually a symptom of a problem rather than its cause.

4. An overheated resistor is usually a symptom of a problem rather than its cause. TRUE/FALSE 1. Voltage can exist only where there is a current path. Page: 1 2. An open circuit condition is one where R =. 3. One ampere equals 1 joule per second. 4. An overheated resistor is usually

More information

Regents Physics Mr. Mellon Based on Chapter 22 and 23

Regents Physics Mr. Mellon Based on Chapter 22 and 23 Name Regents Physics Mr. Mellon Based on Chapter 22 and 23 Essential Questions What is current? How is it measured? What are the relationships for Ohm s Law? What device measures current and how is it

More information

ENGR 1181 Lab 3: Circuits

ENGR 1181 Lab 3: Circuits ENGR 1181 Lab 3: Circuits - - Lab Procedure - Report Guidelines 2 Overview of Circuits Lab: The Circuits Lab introduces basic concepts of electric circuits such as series and parallel circuit, used in

More information

Electric Circuits Vocabulary

Electric Circuits Vocabulary Electric Circuits Vocabulary Term Electric Current Definition Electric Circuit Open Circuit Conductors Insulators Ohm s Law Current Voltage Resistance Electrical Power Series Circuit Parallel Circuit Page

More information

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws.

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws. Kirchhoff s laws Objectives Apply Kirchhoff s first and second laws. Calculate the current and voltage for resistor circuits connected in parallel. Calculate the current and voltage for resistor circuits

More information

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in Page 221»Exercise» Question 1: A piece of wire of resistance R is cut into five equal parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R', then the

More information

Electromagnetism Unit- Current Sub-Unit

Electromagnetism Unit- Current Sub-Unit 4.2.1 Electrical Current Definitions current unit: or requires: Example #3 A wire carries a current of 50 amperes. How much charge flows through the wire in 10 seconds? How many electrons pass through

More information

Ch. 18 and 19 Review Problems 2

Ch. 18 and 19 Review Problems 2 Ch. 18 and 19 Review Problems 2 NAME 1) A device that produces electricity by transforming chemical energy into electrical energy is called a A) generator. B) transformer. C) battery. D) none of the given

More information

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012 SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

More information

Chapters 34: Ohm s Law

Chapters 34: Ohm s Law Text: Chapter 34 Think and Explain: 1-3, 6-8, 10 Think and Solve: 1-6 Chapters 34: Ohm s Law Vocabulary: Ohm s Law, resistance, resistivity, superconductor, current, amps, volts, ohms, kw-h, AC, DC Equations:

More information

Q2. Figure 1 shows the oscilloscope trace an alternating current (a.c.) electricity supply produces.

Q2. Figure 1 shows the oscilloscope trace an alternating current (a.c.) electricity supply produces. SERIES AND PARALEL CIRCUITS Q1. A student set up the electrical circuit shown in the figure below. (a) The ammeter displays a reading of 0.10 A. Calculate the potential difference across the 45 Ω resistor.

More information

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms ELECTRC CRCUTS PREEW Conventional current is the flow of positive charges though a closed circuit. The current through a resistance and the voltage which produces it are related by Ohm s law. Power is

More information

Series and Parallel DC Circuits

Series and Parallel DC Circuits Series and Parallel DC Circuits asic Circuits n electric circuit is closed loop of conductive material (metal wire) that connects several circuit elements together (batteries, resistors, capacitors, etc.)

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 20 Electric Circuits 1 20.1 Electromotive Force and Current In an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges

More information

Resistance and Ohm s Law

Resistance and Ohm s Law Resistance and Ohm s Law Textbook pages 290 301 Section 8.3 Summary Before You Read Do you think electrons can move through all conducting substances equally well? Give your reasons why or why not on the

More information

ELECTRIC Circuits Test

ELECTRIC Circuits Test ELECTRIC Circuits Test Name: /50 Multiple Choice (1 mark each) ( 13 marks) 1. Circle the best answer for each of the multiple choice questions below: Quantity measured Units used 1 -- potential difference

More information

Example 25 1: A total charge of 25 C passes through a wire every 5 seconds. What is the current in this wire?

Example 25 1: A total charge of 25 C passes through a wire every 5 seconds. What is the current in this wire? 1 PHYS:100 LECTUE 5 ELECTICITY AND MAGNETISM (3) This lecture is devoted entirely to the very practical topic of electric circuits. This discussion will include concepts that everyone should be aware of,

More information

Electronic Simulation Software for Teaching and Learning

Electronic Simulation Software for Teaching and Learning Electronic Simulation Software for Teaching and Learning Electronic Simulation Software: 1. Ohms Law (a) Example 1 Zoom 200% (i) Run the simulation to verify the calculations provided. (ii) Stop the simulation

More information

Some Review PSC 4011 : Electricity

Some Review PSC 4011 : Electricity Some Review PSC 4011 : Electricity 1. A) Aluminum E) Plastic B) Copper F) Porcelain C) Germanium G) Silicon D) Nichrome H) Silver Of the above materials, name all those that could be used in each of the

More information

Resistance and Ohm s Law R V I. 1 ohm = 1 volt ampere

Resistance and Ohm s Law R V I. 1 ohm = 1 volt ampere Resistance and Ohm s Law If you maintain an electric potential difference, or voltage V, across any conductor, an electric current occurs. In general, the magnitude of the current depends on the potential

More information

Electricity. AQA Physics topic 2

Electricity. AQA Physics topic 2 Electricity AQA Physics topic 2 Identify circuit components from their symbols. Draw and interpret simple circuit diagrams. Construct a simple electrical circuit. State that resistance restricts the size

More information

Some Review PSC 4011 : Electricity

Some Review PSC 4011 : Electricity Some Review PSC 4011 : Electricity 1. A) Aluminum E) Plastic B) Copper F) Porcelain C) Germanium G) Silicon D) Nichrome H) Silver Of the above materials, name all those that could be used in each of the

More information

Lab #1 Help Document. This lab will be completed in room 335 CTB. You will need to partner up for this lab in groups of two.

Lab #1 Help Document. This lab will be completed in room 335 CTB. You will need to partner up for this lab in groups of two. Lab #1 Help Document This help document will be structured as a walk-through of the lab. We will include instructions about how to write the report throughout this help document. This lab will be completed

More information

Voltage, Current and Resistance

Voltage, Current and Resistance Voltage, Current and Resistance Foundations in Engineering WV Curriculum, 2002 Foundations in Engineering Content Standards and Objectives 2436.8.3 Explain the relationship between current, voltage, and

More information

Electric Current & DC Circuits

Electric Current & DC Circuits Electric Current & DC Circuits PSI AP Physics B Name Multiple-Choice 1. The length of an aluminum wire is quadrupled and the radius is doubled. By which factor does the resistance change? (A) 2 (B) 4 (C)

More information

Electrical Theory. Power Principles and Phase Angle. PJM State & Member Training Dept. PJM /22/2018

Electrical Theory. Power Principles and Phase Angle. PJM State & Member Training Dept. PJM /22/2018 Electrical Theory Power Principles and Phase Angle PJM State & Member Training Dept. PJM 2018 Objectives At the end of this presentation the learner will be able to: Identify the characteristics of Sine

More information

South Pasadena A.P. Physics Chapter Electric Current & DC Circuits Date / / Period Electricity Practice Test

South Pasadena A.P. Physics Chapter Electric Current & DC Circuits Date / / Period Electricity Practice Test South Pasadena A.P. Physics Name Chapter 18-19 Electric Current & DC Circuits Date / / Period 1 2 3 4 Electricity Practice Test Electric Current I = Q/t 1. A charge of 30 Coulombs passes through a 24-ohm

More information

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t Chapters 34 & 35: Electric Circuits NAME: Text: Chapter 34 Chapter 35 Think and Explain: 1-3, 6-8, 10 Think and Explain: 1-10 Think and Solve: 1-6 Think and Solve: 1-4 Vocabulary: Ohm s Law, resistance,

More information

Electric Circuits Review

Electric Circuits Review Electric Circuits Review 3.1 Electric Circuits Be able to: o define current o solve problems for current, charge, and time o relate conventional current direction to the electron flow in a conductor o

More information

Blue Point Engineering

Blue Point Engineering DMX Data Analyzer Board nstruction Overview DMX Analyzer - Tester PC Board Design your own enclosure with an analyzer / tester display or add to your existing equipment or system. The DMX Analyzer is a

More information

8) Name three more types of circuits that we will not study in this class.

8) Name three more types of circuits that we will not study in this class. Name Concepts:( power ) 1) What is power? 2) What are the three equations for electrical power? 3) What are two units for power? 4) What does the power company sell its customers? 5) What is the unit sold

More information

Any path along which electrons can flow is a circuit A Battery and a Bulb

Any path along which electrons can flow is a circuit A Battery and a Bulb Any path along which electrons can flow is a circuit. Mechanical things seem to be easier to figure out for most people than electrical things. Maybe this is because most people have had experience playing

More information

Chapter 13. Electric Circuits

Chapter 13. Electric Circuits Chapter 13 Electric Circuits Lower Potential Battery (EMF - E) - + Higher Potential Bulb (Resistor) Wires (No Change in Potential) EMF (Voltage Source) _ + Resistor Working Circuits For a circuit to work,

More information

NIRMA UNIVERSITY INSTITUTE OF TECHNOLOGY ELECTRICAL ENGINEERING DEPARTMENT EE101: Elements of Electrical Engineering DC CIRCUIT

NIRMA UNIVERSITY INSTITUTE OF TECHNOLOGY ELECTRICAL ENGINEERING DEPARTMENT EE101: Elements of Electrical Engineering DC CIRCUIT NIRMA UNIVERSITY INSTITUTE OF TECHNOLOGY ELECTRICAL ENGINEERING DEPARTMENT EE101: Elements of Electrical Engineering DC CIRCUIT Learning Objective: Resistance, Effect of temperature on resistance, temperature

More information

CURRENT, POTENTIAL DIFFERENCE AND RESISTANCE PART I

CURRENT, POTENTIAL DIFFERENCE AND RESISTANCE PART I CURRENT, POTENTIAL DIFFERENCE AND RESISTANCE PART I Q1. An electrical circuit is shown in the figure below. (a) The current in the circuit is direct current. What is meant by direct current? Tick one box.

More information

Exercise 3: Ohm s Law Circuit Voltage

Exercise 3: Ohm s Law Circuit Voltage Ohm s Law DC Fundamentals Exercise 3: Ohm s Law Circuit Voltage EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine voltage by using Ohm s law. You will verify your

More information

So you just want to light up an LED. What resistor should you use?

So you just want to light up an LED. What resistor should you use? Resistors for LEDs Basics: Picking Resistors for LEDs evilmadscientist.com/2012/resistors-for-leds/ Lenore EdmanAugust 29, 2012 So you just want to light up an LED. What resistor should you use? Maybe

More information

TRIMLIGHT SELECT WIRING INSTRUCTION MANUAL

TRIMLIGHT SELECT WIRING INSTRUCTION MANUAL TRIMLIGHT SELECT WIRING INSTRUCTION MANUAL Single Strand System (Entire system will be 1 color at a time) Double Strand System (Entire system will can have 2 colors at a time) When placing diode wires,

More information

Basic Electronics for Model Railroaders By Gene Jameson NMRA Convention, Kansas City MO., August 5 12, 2018

Basic Electronics for Model Railroaders By Gene Jameson NMRA Convention, Kansas City MO., August 5 12, 2018 Basic Electronics for Model Railroaders By Gene Jameson NMRA Convention, Kansas City MO., August 5 12, 2018 Please turn off your cell phones. If it rings I will ask you to leave the room and I will NOT

More information

ELECTRIC CIRCUITS. 1. Which one of the following situations results in a conventional electric current that flows westward?

ELECTRIC CIRCUITS. 1. Which one of the following situations results in a conventional electric current that flows westward? chapter ELECTRIC CIRCUITS www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 20.1 Electromotive Force and Current Section 20.2 Ohm s Law 1. Which one of the following

More information

An important note about your Charged Up Exploration Kit.

An important note about your Charged Up Exploration Kit. ChargedUp Hands On Exploration Kit First An important note about your. DO NOT ASSUME that you will see something at the tournament because it was in this kit. This supplemental study material IS NOT part

More information

Circuitry II. Name: Date: Section C D F. Mr. Alex Rawson Physics

Circuitry II. Name: Date: Section C D F. Mr. Alex Rawson Physics Name: Date: Section C D F Circuitry II Mr. Alex Rawson Physics 1. Three resistors of 100, 140, and 80 are placed in a series circuit. a. Find the equivalent resistance. (Your answer should be between 0

More information

ELEXBO. Electrical - Experimentation Box

ELEXBO. Electrical - Experimentation Box ELEXBO Electrical - Experimentation Box 1 Table of contents 2 Introduction...3 Basics...3 The current......4 The voltage...6 The resistance....9 Measuring resistance...10 Summary of the electrical values...11

More information

Experiment P-24 Circuits and Series Resistance

Experiment P-24 Circuits and Series Resistance 1 Experiment P-24 Circuits and Series Resistance Objectives To study the relationship between the voltage applied to a given resistor and the intensity of the current running through it. Modules and Sensors

More information

2 Which arrangement of identical resistors would draw the most current when connected to the same potential difference?

2 Which arrangement of identical resistors would draw the most current when connected to the same potential difference? Show all necessary workings for multiple choice. Current Electricity Assignment 2 Name: 1 A circuit consists of a battery and three resistors. The resistors are of unequal value and are connected in parallel.

More information

Unit 7 Parallel Circuits

Unit 7 Parallel Circuits Unit 7 Parallel Circuits Objectives: Unit 7 Parallel Circuits Discuss the characteristics of parallel circuits. State the three rules for solving electrical values of resistance for parallel circuits.

More information

Building your own packs

Building your own packs Building your own packs last updated 12/20/2002 Prebuilt battery packs can get expensive if you fly enough. One cost effective way is to purchase individual cells and build your own. Can you save some

More information

Chapter 20. Circuits. q I = t. (a) (b) (c) Energy Charge

Chapter 20. Circuits. q I = t. (a) (b) (c) Energy Charge Chapter 0 n an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges move. Circuits Within a battery, a chemical reaction occurs

More information

Using the EVM: PFC Design Tips and Techniques

Using the EVM: PFC Design Tips and Techniques PFC Design Tips and Techniques Features: Bare die attach with epoxy Gold wire bondable Integral precision resistors Reduced size and weight High temperature operation Solder ready surfaces for flip chips

More information

Exam Practice Problems (3 Point Questions)

Exam Practice Problems (3 Point Questions) Exam Practice Problems (3 Point Questions) Below are practice problems for the three point questions found on the exam. These questions come from past exams as well additional questions created by faculty.

More information

YAL. 12 Electricity. Assignments in Science Class X (Term I) IMPORTANT NOTES

YAL. 12 Electricity. Assignments in Science Class X (Term I) IMPORTANT NOTES Assignments in Science Class X (Term I) 12 Electricity IMPORTANT NOTES 1. There are two kinds of electric charges i.e., positive and negative. The opposite charges attract each other and the similar charges

More information

What is the Kicker F.I.T. input circuit and why is it better?

What is the Kicker F.I.T. input circuit and why is it better? What is the Kicker F.I.T. input circuit and why is it better? F.I.T. input: Kicker uses a special circuit for the audio input to our amplifiers called Failsafe Integration Technology or (F.I.T.) for short.

More information

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Electric Circuits)

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Electric Circuits) PHYSICS 3204 PUBLIC EXAM QUESTIONS (Electric Circuits) NAME: August 2009------------------------------------------------------------------------------------------------------------------ 26. What is the

More information

Prof. Hala J. El Khozondar Spring 2016

Prof. Hala J. El Khozondar Spring 2016 Technical English Unit 43 professional english Current, voltage and resistance Prof. Hala J. El Khozondar Spring 2016 Content A. Electric current B. Voltage and resistance C. Electrical power 2 A. Electric

More information

PHYSICS ELECTRICITY ASSIGNMENT 1

PHYSICS ELECTRICITY ASSIGNMENT 1 PHYSICS ELECTRICITY ASSIGNMENT 1 1. What does an electric circuit mean? 2. Define the unit of electric current. 3. Calculate the number of electrons in 1 coulomb of charge. 4. Name a device used to maintain

More information

+ 24V 3.3K - 1.5M. figure 01

+ 24V 3.3K - 1.5M. figure 01 ELECTRICITY ASSESSMENT 35 questions Revised: 08 Jul 2013 1. Which of the wire sizes listed below results in the least voltage drop in a circuit carrying 10 amps: a. 16 AWG b. 14 AWG c. 18 AWG d. 250 kcmil

More information

*3 Dollar Battery Charger* By: gogetumnow 29 July 2004

*3 Dollar Battery Charger* By: gogetumnow 29 July 2004 *3 Dollar Battery Charger* By: gogetumnow 29 July 2004 This is a very simple circuit that can be used to charge lead acid or gel-cell type batteries from your typical 120v AC wall circuit. It is very simple

More information

Electric Circuits. Have you checked out current events today?

Electric Circuits. Have you checked out current events today? Electric Circuits Have you checked out current events today? Circuit Symbolism We can simplify this circuit by using symbols All circuits have an energy source and a load, with wires completing the loop

More information

Unit 6 ~ Learning Guide Name:

Unit 6 ~ Learning Guide Name: Unit 6 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

Q3.: When switch S is open, the ammeter in the circuit shown in Fig 2 reads 2.0 A. When S is closed, the ammeter reading: (Ans: increases)

Q3.: When switch S is open, the ammeter in the circuit shown in Fig 2 reads 2.0 A. When S is closed, the ammeter reading: (Ans: increases) Old Exams-Chapter 27 T081 Q1. Fig 1 shows two resistors 3.0 Ω and 1.5 Ω connected in parallel and the combination is connected in series to a 4.0 Ω resistor and a 10 V emf device. The potential difference

More information

PH213 Chapter 26 solutions

PH213 Chapter 26 solutions PH213 Chapter 26 solutions 26.6. IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel combination is the same as the current through the 45.0-Ω resistor.

More information

Basic Circuitry and X ray Production. Lynn C. Sadler, MSRS, R.T.(R)(QM) President, WCEC, Inc.

Basic Circuitry and X ray Production. Lynn C. Sadler, MSRS, R.T.(R)(QM) President, WCEC, Inc. Basic Circuitry and X ray Production Lynn C. Sadler, MSRS, R.T.(R)(QM) President, WCEC, Inc. X Ray Production What are X Rays? Where do they come from? What are some characteristics of x radiation? How

More information

Introduction to Engineering ENGR Electrical Engineering. Dr. Coates

Introduction to Engineering ENGR Electrical Engineering. Dr. Coates Introduction to Engineering ENG 1100 - Electrical Engineering Dr. Coates Branches of Electrical Engineering Circuits/Microelectronics Communications Computer Hardware and Software, Digital Logic, Microprocessor

More information

// Parts of a Multimeter

// Parts of a Multimeter Using a Multimeter // Parts of a Multimeter Often you will have to use a multimeter for troubleshooting a circuit, testing components, materials or the occasional worksheet. This section will cover how

More information

BASIC ELECTRONICS DC CIRCUIT ANALYSIS. December 2011

BASIC ELECTRONICS DC CIRCUIT ANALYSIS. December 2011 AM 5-201 BASIC ELECTRONICS DC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for public release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

More information

Series and Parallel Circuits Basics 1

Series and Parallel Circuits Basics 1 1 Name: Symbols for diagrams Directions: 1. Log on to your computer 2. Go to the following website: http://phet.colorado.edu/en/simulation/-construction-kit-dc Click the button that says Play with sims

More information

The equation which links current, potential difference and resistance is:

The equation which links current, potential difference and resistance is: Q1.An electrical circuit is shown in the figure below. (a) The current in the circuit is direct current. What is meant by direct current? Tick one box. Current that continuously changes direction. Current

More information

Series Circuit. Addison Danny Chris Luis

Series Circuit. Addison Danny Chris Luis Series Circuit Addison Danny Chris Luis Series A circuit is in series whenever the current (flow of charge) is in sequence An example of this could be a person holding a screwdriver. The charge from the

More information

Electricity Practice Test 1

Electricity Practice Test 1 Electricity Practice Test 1 Name: ate: 1. This diagram represents a closed circuit with three light bulbs and a 10-volt battery. 3. This diagram represents a circuit with three 20-ohm light bulbs. The

More information

DC Circuits -- Conceptual Questions. 1.) What is the difference between voltage and current?

DC Circuits -- Conceptual Questions. 1.) What is the difference between voltage and current? DC Circuits DC Circuits -- Conceptual Questions 1.) What is the difference between voltage and current? 2.) A 12 ohm resistor has 2 amps of current passing through it. How much work does the resistor do

More information

SECTION 2 Basic Electric Circuits. UNIT 6 Series Circuits

SECTION 2 Basic Electric Circuits. UNIT 6 Series Circuits SECTION 2 Basic Electric Circuits UNIT 6 Series Circuits OUTLINE 6-1 Series Circuits 6-2 Voltage Drops in a Series Circuit 6-3 Resistance in a Series Circuit 6-4 Calculating Series Circuit Values 6-5 Solving

More information

Chapter 23 Electric Current (cont.)

Chapter 23 Electric Current (cont.) Chapter 23 Electric Current (cont.) Direct current and alternating current Electric power Electric circuits 1 Direct Current and Alternating Current Pulsating dc Time Time graphs of dc. Electric current

More information

GCX GRADE CROSSING EXPANDER

GCX GRADE CROSSING EXPANDER GCX GRADE CROSSING EXPANDER By The Solution W. S. Ataras Engineering, Inc. PO Box 25 West Terre Haute, IN 47885 Rev. B, 3/31/2003 Copyright 1998, 2003 W. S. Ataras Engineering, Inc. All Rights Reserved

More information

5. The Different Types of Resistors

5. The Different Types of Resistors 5. The Different Types of Resistors Resistors ( R ), are the most fundamental and commonly used of all the electronic components, to the point where they are almost taken for granted. There are many different

More information

CURRENT ELECTRICITY. 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour Ans: c

CURRENT ELECTRICITY. 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour Ans: c CURRENT ELECTRICITY 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour 2. Electric pressure is also called (a) resistance (b) power (c) voltage (d) energy 3. The substances which

More information

Lab #1: Electrical Measurements I Resistance

Lab #1: Electrical Measurements I Resistance Lab #: Electrical Measurements I esistance Goal: Learn to measure basic electrical quantities; study the effect of measurement apparatus on the quantities being measured by investigating the internal resistances

More information

The following symbols are used in electric circuits:

The following symbols are used in electric circuits: Circuit Electricity The following symbols are used in electric circuits: Four devices are commonly used in the laboratory to study Ohm s law: the battery, the voltmeter, the ammeter and a resistance. The

More information

About Electricity. Power

About Electricity. Power About Electricity and Power Harry H. Porter III, Ph.D. January 16, 2008 This document is on the web at www.cs.pdx.edu/~harry/musings/aboutelectricity.pdf and www.cs.pdx.edu/~harry/musings/aboutelectricity.htm

More information

Resistance and Ohm s law

Resistance and Ohm s law Resistance and Ohm s law Objectives Characterize materials as conductors or insulators based on their electrical properties. State and apply Ohm s law to calculate current, voltage or resistance in an

More information

Willis High School Physics Workbook Unit 8 Electricity and Circuits. This workbook belongs to. Mr. Raven's Version

Willis High School Physics Workbook Unit 8 Electricity and Circuits. This workbook belongs to. Mr. Raven's Version Willis High School Physics Workbook Unit 8 Electricity and Circuits This workbook belongs to Period Mr. Raven's Version Electricity and Circuits Pacing Guide DAY DATE TEXTBOOK PREREADING HOMEWORK F 2/1

More information

Typical Wiring Connection Diagram 625DC1 RECEIVER 12VDC GROUND FROM REGULATED SOURCE 12VDC GROUND (BLACK WIRE)

Typical Wiring Connection Diagram 625DC1 RECEIVER 12VDC GROUND FROM REGULATED SOURCE 12VDC GROUND (BLACK WIRE) 625DC READ CAREFULLY BEFORE AND WHILE INSTALLING 625DC1 Typical use is for a SINGLE MOTOR SALT SPREADER WITH VIBRATOR CONTROL. NOTE TRANSMITTER HAS BEEN PROGRAMMED TO THE RECEIVER SEE PAGE 4 FOR PROGRAMING

More information

National Physics. Electricity and Energy Homework. Section 2 Electrical Power

National Physics. Electricity and Energy Homework. Section 2 Electrical Power National Physics Electricity and Energy Homework Section 2 Electrical Power Homework 1 : Energy Changes and Power 1. Appliances convert electrical energy into other forms of energy. State the useful energy

More information

Okay, now it s time to talk about Book Condition. This is a really important part of the method and being able to profit the most, okay? And a lot of

Okay, now it s time to talk about Book Condition. This is a really important part of the method and being able to profit the most, okay? And a lot of Okay, now it s time to talk about Book Condition. This is a really important part of the method and being able to profit the most, okay? And a lot of people we have seen are not utilizing this kind of-

More information

II. Experimental Procedure

II. Experimental Procedure Ph 122 July 27, 2006 Ohm's Law http://www.physics.sfsu.edu/~manuals/ph122/ I. Theory In this lab we will make detailed measurements on one resistor to see if it obeys Ohm's law. We will also verify the

More information

AC/DC ELECTRICAL SYSTEMS

AC/DC ELECTRICAL SYSTEMS AC/DC ELECTRICAL SYSTEMS LEARNING ACTIVITY PACKET CIRCUIT ANALYSIS BB227-BC03UEN LEARNING ACTIVITY PACKET 3 CIRCUIT ANALYSIS INTRODUCTION The previous LAP discussed how current, resistance, and voltage

More information

charge time Electric Current and Circuits Current HEAT will flow if there is a difference in temperature

charge time Electric Current and Circuits Current HEAT will flow if there is a difference in temperature Electric Current and Circuits Electrons will flow if there is a difference in electric pressure. Electric pressure is called Potential, and is measured in Volts. If there is no difference in pressure from

More information

Forces and Electrical Charges

Forces and Electrical Charges CHAPTER 7 BLM 3-8 Forces and Electrical Charges Goal Review your knowledge of electric charge and its interaction with conductors, insulators, and electroscopes. Answer the questions that follow. 1. Classify

More information

Wallace Hall Academy Physics Department. Electricity. Pupil Notes Name:

Wallace Hall Academy Physics Department. Electricity. Pupil Notes Name: Wallace Hall Academy Physics Department Electricity Pupil Notes Name: 1 Learning intentions for this unit? Be able to state that there are two types of charge; positive and negative Be able to state that

More information

Large aluminum collection grid ( Mesh type ) grid must not touch the earth, place it on plastic or wooden poles. 8 Gauge outdoor electrical wire runs

Large aluminum collection grid ( Mesh type ) grid must not touch the earth, place it on plastic or wooden poles. 8 Gauge outdoor electrical wire runs to 20,000 volts x 1,800 amps of power. Free Electricity From The Sky? Fact or fiction? It is fact! You may have read in old hobby books from the 1950's how free-powered radios became famous in connection

More information

ASE 6 - Electrical Electronic Systems. Module 3 Properties of Electricty

ASE 6 - Electrical Electronic Systems. Module 3 Properties of Electricty Electronic Systems Module 3 Acknowledgements General Motors, the IAGMASEP Association Board of Directors, and Raytheon Professional Services, GM's training partner for GM's Service Technical College wish

More information

Single-Phase Transformation Review

Single-Phase Transformation Review Single-Phase Transformation Review S T U D E N T M A N U A L March 2, 2005 2 STUDENT TRAINING MANUAL Prerequisites: None Objectives: Given the Construction Standards manual and a formula sheet, you will

More information

IC800SSD Hardware Manual Pub 348R5. for models. A publication of

IC800SSD Hardware Manual Pub 348R5. for models. A publication of IC800SSD Hardware Manual Pub 348R5 for models IC800SSD104S1A IC800SSD104RS1A IC800SSD107S1A IC800SSD107RS1A IC800SSD407RS1A IC800SSD216S1A IC800SSD216RS1A IC800SSD420RS1A IC800SSD228S1A IC800SSD228RS1A

More information

Electric Circuits. Physics 6 th Six Weeks

Electric Circuits. Physics 6 th Six Weeks Electric Circuits Physics 6 th Six Weeks Electric Circuits (a review) A circuit is a path through which electricity can flow Electric Circuits always contain 3 things: a voltage source, a conductor (usually

More information

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator Physics: 14. Current Electricity Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OP49 Test electrical conduction in a variety of materials,

More information

21.1 Resistors in Series and Parallel

21.1 Resistors in Series and Parallel 808 Chapter 21 Circuits and DC Instruments Explain why batteries in a flashlight gradually lose power and the light dims over time. Describe what happens to a graph of the voltage across a capacitor over

More information

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt Electric Circuits Quantity Symbol Units Charge Q,q coulomb (C) Alternate Units Formula Electric Potential V volt (V) 1 V = 1 J/C V = E P /q V = W/q Work, energy W, E P joule (J) W = qv E P = qv Current

More information

3. The current through a given section is steady at 30 pa. How long does a charge of 12 μc take to cross the section? (111 hours)

3. The current through a given section is steady at 30 pa. How long does a charge of 12 μc take to cross the section? (111 hours) UNIVERSITY OF TECHNOLOGY ELECROMECHNICAL DEPARTMANT SYSTEMS BRANCH Dr. Sameir Abd Alkhalik Aziez FIRST YEAR ELECTROMECHNICAL ENGINEERING BASICS ELECRICAL ENGINEERING Question Sheet (1) 1.Give the dimensions

More information