BASIC ELECTRONICS DC CIRCUIT ANALYSIS. December 2011

Size: px
Start display at page:

Download "BASIC ELECTRONICS DC CIRCUIT ANALYSIS. December 2011"

Transcription

1 AM BASIC ELECTRONICS DC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for public release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT HUACHUCA ARIZONA

2 AM Basic Electronics DC Circuits Analysis This Page Intentionally Left Blank ii Ver. 1.0

3 AM Basic Electronics - DC Circuit Analysis CHANGE PAGE LIST OF EFFECTIVE PAGES INSERT LATEST CHANGED PAGES. DISTROY SUPERSEDED PAGES NOTE The portion of this text affected by the changes is indicated by a vertical line in the outer margins of the page. Changes to illustrations are indicated by shaded or screened areas or by miniature pointing hands. Changes of issue for original and changed pages are: ORIGIONAL..0. Page Chang NO. e No. Title Page NO. Change No. Page No. Change No. *Zero in this column indicates an original page A Change 0 US Army 2. RETAIN THIS NOTICE AND INSERT BEFORE TABLE OF CONTENTS. 3. Holders of this document will verify that page changes and additions indicated above have been entered. This notice page will be retained as a check sheet. This issuance, together with appended pages, is a separate publication. Each notice is to be retained by the stocking points until the standard is completely revised of canceled. Ver. 1.0 iii

4 AM Basic Electronics DC Circuits Analysis This Page Intentionally Left Blank iv Ver. 1.0

5 AM Basic Electronics - DC Circuit Analysis CONTENTS 1 DC CIRCUIT ANALYSIS REFERENCE OHM'S LAW TEMPERATURE COEFFICIENT HEAT AND POWER POWER DISSIPATION IN RESISTORS THE SERIES CIRCUIT PARALLEL CIRCUITS VOLTAGE DIVIDERS COMBINATION SERIES/PARALLEL CIRCUITS Ver. 1.0 v

6 AM Basic Electronics DC Circuits Analysis IMPROVEMENTS (Suggested corrections, or changes to this document, should be submitted through your State Director to the Regional Director. Any Changes will be made by the National documentation team. DISTRIBUTION Distribution is unlimited. VERSIONS The Versions are designated in the footer of each page if no version number is designated the version is considered to be 1.0 or the original issue. Documents may have pages with different versions designated; if so verify the versions on the Change Page at the beginning of each document. REFERENCES The following references apply to this manual: Allied Communications Publications (ACP): ACP Glossary of Communications Electronics Terms US Army FM/TM Manuals 1. TM Electrical Design, Lightning and Static Electricity Protection 2. TM Facilities Engineering Electrical Facilities Safety 3. TM Grounding and Bonding in Command, Control, Communications, Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR) Facilities 4. TM Electrical Fundamentals, Direct Current 5. TM-664 Basic Theory and Use of Electronic Test Equipment US Army Handbooks 1. MIL-HDBK Grounding, Bonding and Shielding Design Practices Commercial References 2. Basic Electronics, Components, Devices and Circuits; ISBN X, By William P Hand and Gerald Williams Glencoe/McGraw Hill Publishing Co. 3. Standard Handbook for Electrical Engineers - McGraw Hill Publishing Co. CONTRIBUTORS This document has been produced by the Army MARS Technical Writing Team under the authority of Army MARS HQ, Ft Huachuca, AZ. The following individuals are subject matter experts who made significant contributions to this document. William P Hand vi Ver. 1.0

7 AM Basic Electronics - DC Circuit Analysis 1 DC CIRCUIT ANALYSIS 1.1 REFERENCE Basic Electronics, Components, Devices and Circuits; ISBN X By William P Hand and Gerald Williams. 1.2 OHM'S LAW The German physicist George Simon Ohm conducted extensive experiments into the abilities of various materials to conduct electric energy. He found that materials with the same physical size had different resistances. He was able to establish that, for a fixed voltage, the amount of current flowing through any material depends upon type and physical size of material. The ratio of voltage and current (resistance) for any given type of conductor is a constant that is dependent upon material and its dimensions. This ratio can be expressed mathematically as follows: E= IR In this equation, E is the applied voltage in volts, I is the current in amperes, and R is the resistance in ohms, the unit of measure for resistance. The equation can be interpreted as: 1 volt will force 1 ampere of current through a resistance of 1 ohm, When it is desired to specify how good a conductor is, rather than how much resistance it offers, the unit is the mho (ohm spelled backward), Electric conductance/siemens The siemens is the practical unit of conductance, The siemens is the reciprocal of ohm since conductance is the reciprocal of resistance, The relationship between ohms and siemens is given by G = R siemens, A conductance of one siemens will permit a current flow of one ampere (A) under an electrical pressure of one volt (V), the siemens is a new unit honoring a pioneer in electricity, NOTE Formerly, the unit of conductance was called the mho. The symbol for conductance is G, and the abbreviation for siemens is S, The symbol for ohm is the Greek letter Ω (omega). The symbol for the mho is an upside-down omega, U. The three forms of Ohm's law are as follows (Reference Fig. 1-1): Ver

8 AM Basic Electronics DC Circuits Analysis Figure 1-1 The Ohm's Law Memory Aid The voltage (E)* that is required to maintain a certain current in a circuit in which resistance is known is equal to the product of the current (I) and the resistance (R). E = IR The current (I) in any circuit is equal to the voltage (E) applied, divided by resistance of the circuit. The resistance (R) needed in a circuit so that a certain current (I) will flow when a certain voltage (E) is applied is equal to the voltage (E) divided by the current (I). * E stands for electromotive force. V (for voltage) is also commonly used (V = I R, I = V / R, R = V / I). In order to understand applications of the Ohm's law variations, we will work an example of each type. (1) Example 3-1 Problem: What voltage must be applied to a circuit containing a resistance of 150 ohms and a required current of 3 amps in the circuit? 1-2 Ver. 1.0

9 AM Basic Electronics - DC Circuit Analysis Solution: E = IR = (3) (150) = 450 volts (2) Example 3-2 Problem: If a lamp with a resistance of 75 ohms is connected across a voltage source of 117 volts, what current will flow through the lamp? Solution: Ver

10 AM Basic Electronics DC Circuits Analysis (3) Example 3-3 Problem: What resistance will cause a current of 1.2 amps to flow when a voltage of 150 volts is applied to the circuit? Solution: Up to this point we have not considered temperature in our calculations. We have considered only a normal room temperature of 20 degrees Celsius (20 C). The resistance of any conductor depends upon the number of free electrons in it. Therefore, as the temperature of a conductor is raised, energy is transferred to the atoms because of the temperature increase. This additional energy given to the atoms causes them to move around more than they did, thus causing an increase in distance between atoms. The increase in distance will provide more space for free electrons to move in without colliding with an atom. 1-4 Ver. 1.0

11 AM Basic Electronics - DC Circuit Analysis 1.3 TEMPERATURE COEFFICIENT When we heat most substances they will enlarge to some extent. As we increase emperature, it will cause an increase in resistance in most substances. This is known as a positive temperature coefficient. Reference the graph shown in Figure 1-2 for copper. Note that it is approximately linear (a straight line graph) over the normal temperature range in which electronic equipment operates. Figure 1-2 Temperature Coefficient of Copper (Cu) Scientists have measured the resistance of conductors at varying temperatures and have determined that most metals increase in resistance. The increase is approximately linear over a wide temperature range. Ver

12 AM Basic Electronics DC Circuits Analysis NOTES 1-6 Ver. 1.0

13 AM Basic Electronics - DC Circuit Analysis 2 HEAT AND POWER When current flows in a circuit there is some power (or J2 R) loss in the circuit. This loss is in the form of heat. (Power) Watts = I 2 R Commercial resistors have two basic ratings, the resistance in ohms and a power rating expressed in watts. A resistor must be able to dissipate the heat it produces. If the internal temperature of a resistor increases to a high level its resistance will change, and often it is a permanent change. Most common lower wattage resistors, that is, ¼ to 2 watts, have their resistance values specified by a color code printed on their bodies. The wattage rating is simply a matter of the resistor's physical size, which, with a little practice, can easily be learned. Table 2-1 shows the resistor color code and how it works. The color code should be memorized, as it will be used in almost all electronic equipment you will encounter. 1. Example 4-1 Problem: Figure the value of a resistor with the following color bands: red, first band; green, second band; orange, third band; silver, fourth band. Reference Resistor Color Code Chart in Table 1-1 Red Green Orange Silver (3 zeros) 10% Solution: 25,000 ohms ± 10% 2.1 POWER DISSIPATION IN RESISTORS The power dissipated by a resistor is the product of current through it and voltage across it. P= E I This formula can also be stated in two other forms: P=I 2 R 1. Example 5-1 Problem: Find power dissipation of a resistor with an applied voltage of 10 volts and a current of 0.2 amps (the unit of measure is the watt). Solution: P = 10 x 0.2 = 2 watts Ver

14 AM Basic Electronics DC Circuits Analysis Table 2-1 Resistor Color Code 2-2 Ver. 1.0

15 AM Basic Electronics - DC Circuit Analysis The power dissipation can also be calculated when only current and resistance or voltage and resistance are known. 2. Example 5-2 Problem: Find power dissipation of a 100.Ω resistor with a current through it of 0.1 amp. Solution: P=I 2 R P=0.1 2 x 100 P= 1 watt 3. Example 5-3 Problem: Find the power dissipation of a 100 ohm resistor when there is a voltage of 10 volts across it. Solution: Ver

16 AM Basic Electronics DC Circuits Analysis NOTES 2-4 Ver. 1.0

17 AM Basic Electronics - DC Circuit Analysis 3 THE SERIES CIRCUIT In a series circuit the same current passes through EACH element in the circuit before completing its path to the source. A simple series circuit is shown in Figure 3-1 (A). This circuit is made up of six lamps in series, like a string of Christmas tree lamps. In order for the current to complete its path, it must flow through each lamp in turn before flowing back to the battery. If anyone of the six lamps burns out, it will open the circuit and current will cease the flow. This opening of the circuit is like a switch. A switch is a simple device to open a circuit whenever current flow is not wanted. In part A of the figure, the circuit is redrawn showing resistors in place of the lamps. Many times a circuit such as that shown in part B of the figure can be more easily understood when symbols of an equivalent nature are used as shown in Figure 3-2. Figure 3-1 Series DC Circuit Ver

18 AM Basic Electronics DC Circuits Analysis Figure 3-2 Equivalent Series Circuit 3-2 Ver. 1.0

19 AM Basic Electronics - DC Circuit Analysis 4 PARALLEL CIRCUITS In Figure 4-1 we can see the differences in series and parallel circuits. In part A of the figure there is only one path for current to follow. This single path through two resistors and back to the battery makes it a series circuit. In part B of the figure, we have a much different situation. There are two different paths that current can, and does, or follow. Currents II and h both flow from the battery to the junction of the two resistors. At that point the current splits; current II will flow through RI and current will flow through R2. The two currents then recombine after flowing through the resistors and flow back to the battery, thus completing the circuit. A very important distinction should be noted here about circuits. It is not totally correct to state that two components connected across each other make a parallel circuit. As you can see in Figure 6-1, both series and parallel circuits across the power source, in this case, the battery. In part A, the series circuit, as we already know, the same current is flowing through both resistors and the battery. In part B of the figure, RI and R2 are connected across each other and the combination of the two resistors is connected across the battery. The two resistors RI and R2 cannot be in series because different currents flow through each resistor. It can be seen that the way in which the current flows in a circuit determines whether it is a series or a parallel circuit; and that the total current or combined current, is the sum of the currents flowing through each branch, as shown by I t = I 1 + I 2 + i In parallel circuits. the total current flowing through any parallel combination can always be found by applying Ohm's law to each branch in turn and then adding the resulting currents. Figure 4-1 Series and Parallel Circuits Example 4-1 Problem: What is the total current flowing, when a 200 ohm, a 150 ohm, and Ver

20 AM Basic Electronics DC Circuits Analysis a 300 ohm resistor are connected in parallel across a 100 volt source? Solution: 100 II = 200 = = 150 = = 300 = 0.33 It = = 1.49 amps From this example it can be seen that the total current is much greater than the current through any one of the individual parallel branches. We now have enough data to state Kirchhoff s first law: At any junction point in an electrical circuit, the algebraic sum of the currents entering the point must be equal to the algebraic sum of the currents leaving the point. Let us look at an example of this law. Example 4-2 Problem: What is the current through the resistor R 2 in the circuit? Diagram for example 4-2. Solution: Therefore, from Kirchhoffs Law 4-2 Ver. 1.0

21 AM Basic Electronics - DC Circuit Analysis In the examples it was shown that the branches is the lighting circuit in a house. Each light in the house is connected in parallel with all the others to the 117 volt source, and switching one of the lights on or off has no effect on the others in the house. Ver

22 AM Basic Electronics DC Circuits Analysis NOTES 4-4 Ver. 1.0

23 AM Basic Electronics - DC Circuit Analysis 5 VOLTAGE DIVIDERS The basic voltage divider normally consists of a series of resistors having two input terminals, across which the input voltage from the power source is applied. The outputs are across the various resistors depending upon what part of the input voltage is desired. The simple voltage divider is a special series circuit. Shown in Figure 5-1 is an example of a voltage divider. Example 5-1 Problem: Figure 5-1 shows a simple voltage divider. Find the voltage between each terminal and ground. Solution: a. Calculate total current I t = E/(R l + R 2 + R 3 ) (Ohm's law) I t = 100/1000 = 0.1 amp Using the resistance between terminal A and ground and the total current, calculate the voltage E= IR E= 0.1 X 100 E = 10 volts Using the total resistance between terminal B and ground and the total current, calculate the voltage E= IR E= 0.1 X E= 0.1 X 400 Figure 5-1 Simple Voltage Divider. E = 40 volts Ver

24 AM Basic Electronics DC Circuits Analysis There is no need to calculate the voltage between terminal C and ground because it is directly across the battery. Suppose we increase the value of resistors R I, R 2, and R 3 to 6k, 3k, and lk, respectively, and solve the problem again. a. Calculate the total current. Keep in mind that k means 1,000. b. Using the resistance between terminal A and ground and the total current, calculate the voltage. E= IR E= 0.01 X 1000 E = 10 volts c. Using the total resistance between terminal B and ground and the total current, calculate the voltage. E= IR E = 0.01 X E = 0.01 X 4000 E = 40 volts Voltage between terminal and first second ground example example A 10 volts 10 volts B 40 volts 40 volts C 100 volts 100 volts The two examples make the important point that the terminal voltages in a voltage divider depend only upon the resistance ratios and not on the absolute values of the resistors. 5-2 Ver. 1.0

25 AM Basic Electronics - DC Circuit Analysis 6 COMBINATION SERIES/PARALLEL CIRCUITS As the name implies, the series-parallel circuit is a combination of series and parallel circuits. Figure 6-1 shows the two basic types of series-parallel circuits and their simplified equivalent circuits. As can be seen from Figure 6-1, a series-parallel circuit can be defined as one that has the combined characteristics of both series circuits and parallel circuits in the total network. If there are two or more components in a parallel branch in a complex network, all of the characteristics of a parallel network apply to this part of the complex network. If there are two or more components in series in the complex network, all of the characteristics of a series network apply to this part of the circuit. The best way to solve a series-parallel network problem is to break it down into separate parallel and series networks. When this separation is done, each of the sections can be simplified in turn. In example 6-1 we will show a simple series-parallel network problem along with each step of the simplification process. Example 6-1 Problem: A 12-ohm resistor is placed in series with a parallel network of 10 ohms and 40 ohms. A 100 volt supply is connected to this series-parallel combination. What is the current through each resistor? What is the total current? Circuit for example 6-1 Solution: Step 1: Isolate R 2 and R 3. Find the equivalent resistance: R eq = (10) (40) 400 = = 8 ohms Ver

26 AM Basic Electronics DC Circuits Analysis Now the circuit is reduced to: Circuit equivalent for example 6-1 Step 2: Find the series equivalent resistance. R t = = 20 ohms 6-2 Ver. 1.0

AM BASIC ELECTRONICS TRANSMISSION LINES JANUARY 2012 DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT HUACHUCA ARIZONA

AM BASIC ELECTRONICS TRANSMISSION LINES JANUARY 2012 DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT HUACHUCA ARIZONA AM 5-306 BASIC ELECTRONICS TRANSMISSION LINES JANUARY 2012 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT HUACHUCA

More information

DIGITAL ELECTRONICS WAVE SHAPING AND PULSE CIRCUITS. September 2012

DIGITAL ELECTRONICS WAVE SHAPING AND PULSE CIRCUITS. September 2012 AM 5-403 DIGITAL ELECTRONICS WAVE SHAPING AND PULSE CIRCUITS September 2012 DISTRIBUTION RESTRICTION: Approved for public release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO

More information

DC Circuits and Ohm s Law

DC Circuits and Ohm s Law DC Circuits and Ohm s Law INTRODUCTION During the nineteenth century so many advances were made in understanding the electrical nature of matter that it has been called the age of electricity. One such

More information

DC Circuits and Ohm s Law

DC Circuits and Ohm s Law DC Circuits and Ohm s Law INTRODUCTION During the nineteenth century so many advances were made in understanding the electrical nature of matter that it has been called the age of electricity. One such

More information

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws.

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws. Kirchhoff s laws Objectives Apply Kirchhoff s first and second laws. Calculate the current and voltage for resistor circuits connected in parallel. Calculate the current and voltage for resistor circuits

More information

Closed circuit complete path for electrons follow. Open circuit no charge flow and no current.

Closed circuit complete path for electrons follow. Open circuit no charge flow and no current. Section 1 Schematic Diagrams and Circuits Electric Circuits, continued Closed circuit complete path for electrons follow. Open circuit no charge flow and no current. short circuit closed circuit, no load.

More information

DIGITAL ELECTRONICS GATE FUNDUMENTALS

DIGITAL ELECTRONICS GATE FUNDUMENTALS AM 5-402 DIGITAL ELECTRONICS GATE FUNDUMENTALS September 2012 DISTRIBUTION RESTRICTION: Approved for public release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

More information

Ohm's Law and DC Circuits

Ohm's Law and DC Circuits Physics Lab II Ohm s Law Name: Partner: Partner: Partner: Ohm's Law and DC Circuits EQUIPMENT NEEDED: Circuits Experiment Board Two Dcell Batteries Wire leads Multimeter 100, 330, 560, 1k, 10k, 100k, 220k

More information

Unit 8 Combination Circuits

Unit 8 Combination Circuits Unit 8 Combination Circuits Objectives: Define a combination circuit. List the rules for parallel circuits. List the rules for series circuits. Solve for combination circuit values. Characteristics There

More information

Chapter two. Basic Laws. 2.1 Introduction

Chapter two. Basic Laws. 2.1 Introduction 2.1 Introduction Chapter two Basic Laws Chapter 1 introduced basic concepts in an electric circuit. To actually determine the values of these variables in a given circuit requires that we understand some

More information

Mixed Series & Parallel Circuits

Mixed Series & Parallel Circuits Add Important Mixed Series & arallel Circuits age: 477 Mixed Series & arallel Circuits NGSS Standards: N/A MA Curriculum Frameworks (006): 5. A hysics 1 Learning Objectives: 5.B.9.1, 5.B.9., 5.B.9., 5.C..1,

More information

Basic Circuits. PC1222 Fundamentals of Physics II. 1 Objectives. 2 Equipment List. 3 Theory

Basic Circuits. PC1222 Fundamentals of Physics II. 1 Objectives. 2 Equipment List. 3 Theory PC1222 Fundamentals of Physics II Basic Circuits 1 Objectives Investigate the relationship among three variables (resistance, current and voltage) in direct current circuits. Investigate the behaviours

More information

Section 4. Ohm s Law: Putting up a Resistance. What Do You See? What Do You Think? Investigate

Section 4. Ohm s Law: Putting up a Resistance. What Do You See? What Do You Think? Investigate Section 4 Ohm s Law: Putting up a Resistance Florida Next Generation Sunshine State Standards: Additional Benchmarks met in Section 4 SC.912.N.2.4 Explain that scientific knowledge is both durable and

More information

Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law

Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law Exercise 7 Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law EXERCISE OBJECTIVE When you have completed this exercise, you will be able to calculate the equivalent resistance of multiple

More information

Resistance and Ohm s Law

Resistance and Ohm s Law Resistance and Ohm s Law Textbook pages 290 301 Section 8.3 Summary Before You Read Do you think electrons can move through all conducting substances equally well? Give your reasons why or why not on the

More information

Electric Circuits. Physics 6 th Six Weeks

Electric Circuits. Physics 6 th Six Weeks Electric Circuits Physics 6 th Six Weeks Electric Circuits (a review) A circuit is a path through which electricity can flow Electric Circuits always contain 3 things: a voltage source, a conductor (usually

More information

Combined Series and Parallel Circuits

Combined Series and Parallel Circuits Combined Series and Parallel Circuits Objectives: 1. Calculate the equivalent resistance, current, and voltage of series and parallel circuits. 2. Calculate the equivalent resistance of circuits combining

More information

In this section you will learn about Ohm's Law as applied to a single resistor circuit. Phillips Textbook pp including some maths on notation.

In this section you will learn about Ohm's Law as applied to a single resistor circuit. Phillips Textbook pp including some maths on notation. Ohms Law (these theory notes support the ppt) In this section you will learn about Ohm's Law as applied to a single resistor circuit. Phillips Textbook pp. 43-59 including some maths on notation. At the

More information

Experiment P-24 Circuits and Series Resistance

Experiment P-24 Circuits and Series Resistance 1 Experiment P-24 Circuits and Series Resistance Objectives To study the relationship between the voltage applied to a given resistor and the intensity of the current running through it. Modules and Sensors

More information

CURRENT ELECTRICITY. 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour Ans: c

CURRENT ELECTRICITY. 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour Ans: c CURRENT ELECTRICITY 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour 2. Electric pressure is also called (a) resistance (b) power (c) voltage (d) energy 3. The substances which

More information

OHM'S LAW AND RESISTANCE NETWORKS OBJECT

OHM'S LAW AND RESISTANCE NETWORKS OBJECT 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

ELECTRIC Circuits Test

ELECTRIC Circuits Test ELECTRIC Circuits Test Name: /50 Multiple Choice (1 mark each) ( 13 marks) 1. Circle the best answer for each of the multiple choice questions below: Quantity measured Units used 1 -- potential difference

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C03 TUTORIAL 4 ELECTRICAL RESISTANCE On completion of this tutorial you should be able to do the following. Explain resistance and resistors. Explain

More information

Series and parallel resistances

Series and parallel resistances Series and parallel resistances Objectives Calculate the equivalent resistance for resistors connected in both series and parallel combinations. Construct series and parallel circuits of lamps (resistors).

More information

DC CIRCUITS AND OHM'S LAW

DC CIRCUITS AND OHM'S LAW July 15, 2008 DC Circuits and Ohm s Law 1 Name Date Partners DC CIRCUITS AND OHM'S LAW AMPS - VOLTS OBJECTIVES OVERVIEW To learn to apply the concept of potential difference (voltage) to explain the action

More information

Regents Physics Mr. Mellon Based on Chapter 22 and 23

Regents Physics Mr. Mellon Based on Chapter 22 and 23 Name Regents Physics Mr. Mellon Based on Chapter 22 and 23 Essential Questions What is current? How is it measured? What are the relationships for Ohm s Law? What device measures current and how is it

More information

Series and Parallel Circuits. Series Connection

Series and Parallel Circuits. Series Connection Series and Parallel Circuits When devices are connected in an electric circuits, they can be connected in series or in parallel with other devices. A Series Connection When devices are series, any current

More information

Resistance and Ohm s law

Resistance and Ohm s law Resistance and Ohm s law Objectives Characterize materials as conductors or insulators based on their electrical properties. State and apply Ohm s law to calculate current, voltage or resistance in an

More information

Resistors & Circuits. Module 4.0 Current & Voltage. Module. Current & Voltage in Resistor Networks

Resistors & Circuits. Module 4.0 Current & Voltage.  Module. Current & Voltage in Resistor Networks Module 4 www.learnabout-electronics.org Resistors & Circuits Module 4.0 Current & Voltage What you ll learn in Module 4.0 After studying this section, you should be able to: Describe the distribution of

More information

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in Page 221»Exercise» Question 1: A piece of wire of resistance R is cut into five equal parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R', then the

More information

A practical introduction to electronics for anyone in any field of practice Voltage, Current, Resistance, Power, & Diodes

A practical introduction to electronics for anyone in any field of practice Voltage, Current, Resistance, Power, & Diodes A practical introduction to electronics for anyone in any field of practice Voltage, Current, Resistance, Power, & Diodes 1 Basic Electronics What is considered to be a basic level of understanding for

More information

Air. Radar 4- Television. Radio. Electronics UNITED ELECTRONICS LABORATORIES LOUISVILLE FILL KENTUCKY OHM'S LAW ---PARALLEL C CUITS ASSIGNMENT 8B

Air. Radar 4- Television. Radio. Electronics UNITED ELECTRONICS LABORATORIES LOUISVILLE FILL KENTUCKY OHM'S LAW ---PARALLEL C CUITS ASSIGNMENT 8B Electronics Radio Air Television Radar 4- UNITED ELECTRONICS LABORATORIES LOUISVILLE KENTUCKY FILL REVISED 1966 Or COPYRIGHT 1956 UNITED ELECTRONICS LABORATORIES OHM'S LAW ---PARALLEL C CUITS ASSIGNMENT

More information

Electromagnetism Unit- Current Sub-Unit

Electromagnetism Unit- Current Sub-Unit 4.2.1 Electrical Current Definitions current unit: or requires: Example #3 A wire carries a current of 50 amperes. How much charge flows through the wire in 10 seconds? How many electrons pass through

More information

Exercise 3: Power in a Series/Parallel Circuit

Exercise 3: Power in a Series/Parallel Circuit DC Fundamentals Power in DC Circuits Exercise 3: Power in a Series/Parallel Circuit EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the power dissipated in a series/

More information

Voltage, Current and Resistance

Voltage, Current and Resistance Voltage, Current and Resistance Foundations in Engineering WV Curriculum, 2002 Foundations in Engineering Content Standards and Objectives 2436.8.3 Explain the relationship between current, voltage, and

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 20 Electric Circuits 1 20.1 Electromotive Force and Current In an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges

More information

Component modeling. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Component modeling. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Component modeling This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES 57 Name Date Partners Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES AMPS - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit.

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 5 Resistance and Ohm s Law EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the notion of resistance, and know how to measure this parameter using an ohmmeter.

More information

21.1 Resistors in Series and Parallel

21.1 Resistors in Series and Parallel 808 Chapter 21 Circuits and DC Instruments Explain why batteries in a flashlight gradually lose power and the light dims over time. Describe what happens to a graph of the voltage across a capacitor over

More information

Chapter 21 Electric Current and Direct-Current Circuit

Chapter 21 Electric Current and Direct-Current Circuit Chapter 21 Electric Current and Direct-Current Circuit Outline 21-1 Electric Current 21-2 Resistance and Ohm s Law 21-3 Energy and Power in Electric Circuit 21-4 Resistance in Series and Parallel 21-5

More information

South Pasadena A.P. Physics Chapter Electric Current & DC Circuits Date / / Period Electricity Practice Test

South Pasadena A.P. Physics Chapter Electric Current & DC Circuits Date / / Period Electricity Practice Test South Pasadena A.P. Physics Name Chapter 18-19 Electric Current & DC Circuits Date / / Period 1 2 3 4 Electricity Practice Test Electric Current I = Q/t 1. A charge of 30 Coulombs passes through a 24-ohm

More information

Current, resistance, and Ohm s law

Current, resistance, and Ohm s law Current, resistance, and Ohm s law Apparatus DC voltage source set of alligator clips 2 pairs of red and black banana clips 3 round bulb 2 bulb sockets 2 battery holders or 1 two-battery holder 2 1.5V

More information

Chapter 13. Electric Circuits

Chapter 13. Electric Circuits Chapter 13 Electric Circuits Lower Potential Battery (EMF - E) - + Higher Potential Bulb (Resistor) Wires (No Change in Potential) EMF (Voltage Source) _ + Resistor Working Circuits For a circuit to work,

More information

ELECTRICAL CIRCUITS. All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison

ELECTRICAL CIRCUITS. All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison Ohm s Law I = V / R I V R = Current (Amperes) (amps) = Voltage (Volts) = Resistance (ohms) Georg

More information

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1.

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1. Contents These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1 Introduction 2 Ohm s law relationships 3 The Ohm s law equation 4

More information

ENGR 1181 Lab 3: Circuits

ENGR 1181 Lab 3: Circuits ENGR 1181 Lab 3: Circuits - - Lab Procedure - Report Guidelines 2 Overview of Circuits Lab: The Circuits Lab introduces basic concepts of electric circuits such as series and parallel circuit, used in

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The figure below shows a circuit containing a battery of e.m.f. 12 V, two resistors, a light-dependent resistor (LDR), an ammeter and a switch S. The battery has negligible

More information

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel Electrical Circuits I (ENG 2405) Chapter 2 Ohm s Law, KCL, KVL, esistors in Series/Parallel esistivity Materials tend to resist the flow of electricity through them. This property is called resistance

More information

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt Electric Circuits Quantity Symbol Units Charge Q,q coulomb (C) Alternate Units Formula Electric Potential V volt (V) 1 V = 1 J/C V = E P /q V = W/q Work, energy W, E P joule (J) W = qv E P = qv Current

More information

Introduction to Engineering ENGR Electrical Engineering. Dr. Coates

Introduction to Engineering ENGR Electrical Engineering. Dr. Coates Introduction to Engineering ENG 1100 - Electrical Engineering Dr. Coates Branches of Electrical Engineering Circuits/Microelectronics Communications Computer Hardware and Software, Digital Logic, Microprocessor

More information

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms ELECTRC CRCUTS PREEW Conventional current is the flow of positive charges though a closed circuit. The current through a resistance and the voltage which produces it are related by Ohm s law. Power is

More information

CONSTRUCTION ELECTRICIAN APPRENTICESHIP PROGRAM Line D: Apply Circuit Concepts D-2 LEARNING GUIDE D-2 ANALYZE DC CIRCUITS

CONSTRUCTION ELECTRICIAN APPRENTICESHIP PROGRAM Line D: Apply Circuit Concepts D-2 LEARNING GUIDE D-2 ANALYZE DC CIRCUITS CONSTRUCTION ELECTRICIAN APPRENTICESHIP PROGRAM Level 1 Line D: Apply Circuit Concepts D-2 LEARNING GUIDE D-2 ANALYZE DC CIRCUITS Foreword The Industry Training Authority (ITA) is pleased to release this

More information

Electric Circuits Notes 1 Circuits

Electric Circuits Notes 1 Circuits Electric Circuits Notes 1 Circuits In the last chapter we examined how static electric charges interact with one another. These fixed electrical charges are not the same as the electricity that we use

More information

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 3 Ohm s Law 3.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 2 Ohm s Law 2.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

Ohm s Law. Air Washington Electronics ~ Direct Current Lab

Ohm s Law. Air Washington Electronics ~ Direct Current Lab Ohm s Law Air Washington Electronics ~ Direct Current Lab This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/.

More information

Combined Series and Parallel Circuits

Combined Series and Parallel Circuits Combined Series and Parallel Circuits Objectives: 1. Calculate the equivalent resistance, current, and voltage of series and parallel l circuits. it 2. Calculate the equivalent resistance of circuits combining

More information

10 DIRECT-CURRENT CIRCUITS

10 DIRECT-CURRENT CIRCUITS Chapter 10 Direct-Current Circuits 435 10 DIRECT-CURRENT CIRCUITS Figure 10.1 This circuit shown is used to amplify small signals and power the earbud speakers attached to a cellular phone. This circuit

More information

Introduction. Upon completion of Basics of Electricity you will be able to: Explain the difference between conductors and insulators

Introduction. Upon completion of Basics of Electricity you will be able to: Explain the difference between conductors and insulators Table of Contents Introduction...2 Electron Theory...4 Conductors, Insulators and Semiconductors...5 Electric Charges...7 Current...9 Voltage... 11 Resistance... 13 Simple Electric Circuit... 15 Ohm s

More information

Radar. Radio. Electronics. Television. ilk UNITED ELECTRONICS LABORATORIES LOUISVILLE KENTUCKY OHM'S LAW SERIES PARALLEL CIRCUITS ASSIGNMENT 17B

Radar. Radio. Electronics. Television. ilk UNITED ELECTRONICS LABORATORIES LOUISVILLE KENTUCKY OHM'S LAW SERIES PARALLEL CIRCUITS ASSIGNMENT 17B Electronics Radio Television Radar UNITED ELECTRONICS LABORATORIES LOUISVILLE ilk KENTUCKY REVISED 1T67 COPYRIGHT 1955 UNITED ELECTRONICS LABORATORIES OHM'S LAW SERIES PARALLEL CIRCUITS ASSIGNMENT 17B

More information

Chapter 20. Circuits. q I = t. (a) (b) (c) Energy Charge

Chapter 20. Circuits. q I = t. (a) (b) (c) Energy Charge Chapter 0 n an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges move. Circuits Within a battery, a chemical reaction occurs

More information

ELECTRIC CIRCUIT PROBLEMS 12 AUGUST 2014

ELECTRIC CIRCUIT PROBLEMS 12 AUGUST 2014 ELECTRIC CIRCUIT PROBLEMS 12 AUGUST 2014 In this lesson we: Lesson Description Discuss the application of Ohm s Law Explain the series and parallel connection of resistors Discuss the effect of internal

More information

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t Chapters 34 & 35: Electric Circuits NAME: Text: Chapter 34 Chapter 35 Think and Explain: 1-3, 6-8, 10 Think and Explain: 1-10 Think and Solve: 1-6 Think and Solve: 1-4 Vocabulary: Ohm s Law, resistance,

More information

Prof. Hala J. El Khozondar Spring 2016

Prof. Hala J. El Khozondar Spring 2016 Technical English Unit 43 professional english Current, voltage and resistance Prof. Hala J. El Khozondar Spring 2016 Content A. Electric current B. Voltage and resistance C. Electrical power 2 A. Electric

More information

Unit 6 ~ Learning Guide Name:

Unit 6 ~ Learning Guide Name: Unit 6 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

HANDS-ON ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND WIRING DIRECTIONS

HANDS-ON ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND WIRING DIRECTIONS ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND Make sure you read the background in Activity 3 before doing this activity. WIRING DIRECTIONS Materials per group of two: one or two D-cells

More information

Bell Ringer: Define to the best of your ability the definition of: Current Voltage Resistance

Bell Ringer: Define to the best of your ability the definition of: Current Voltage Resistance Bell Ringer: Define to the best of your ability the definition of: Current Voltage Resistance Explain the behavior of the current and the voltage in a Series Circuit. Explain the behavior of the current

More information

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction.

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction. By substituting the definition for resistance into the formula for conductance, the reciprocal formula for resistance in parallel circuits is obtained: In parallel circuits, there are junctions where two

More information

Circuit Analysis and Ohm s Law

Circuit Analysis and Ohm s Law Excerpt from Circuit Analysis and Ohm s Law By Robert Cecci iii Preview The following is a sample excerpt from a study unit converted into the Adobe Acrobat format. A sample online exam is available for

More information

R A Calaz C Eng, B Sc(Eng), MIET, ACGI,

R A Calaz C Eng, B Sc(Eng), MIET, ACGI, Home Digital Systems Part One Fundamentals of Electricity R A Calaz C Eng, B Sc(Eng), MIET, ACGI, MSCTE Copyright Notice All rights reserved. No part of this publication may be reproduced without the

More information

Chapter 23 Circuits. Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1

Chapter 23 Circuits. Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1 Chapter 23 Circuits Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1 Chapter 23 Preview Looking Ahead: Analyzing Circuits Practical circuits consist

More information

Lab 3 DC CIRCUITS AND OHM'S LAW

Lab 3 DC CIRCUITS AND OHM'S LAW 43 Name Date Partners Lab 3 DC CIRCUITS AND OHM'S LAW AMPS + - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit. To understand

More information

4. An overheated resistor is usually a symptom of a problem rather than its cause.

4. An overheated resistor is usually a symptom of a problem rather than its cause. TRUE/FALSE 1. Voltage can exist only where there is a current path. Page: 1 2. An open circuit condition is one where R =. 3. One ampere equals 1 joule per second. 4. An overheated resistor is usually

More information

SECTION 2 Basic Electric Circuits. UNIT 6 Series Circuits

SECTION 2 Basic Electric Circuits. UNIT 6 Series Circuits SECTION 2 Basic Electric Circuits UNIT 6 Series Circuits OUTLINE 6-1 Series Circuits 6-2 Voltage Drops in a Series Circuit 6-3 Resistance in a Series Circuit 6-4 Calculating Series Circuit Values 6-5 Solving

More information

Downloaded from

Downloaded from Question 1: What does an electric circuit mean? An electric circuit consists of electric devices, switching devices, source of electricity, etc. that are connected by conducting wires. Question 2: Define

More information

Series and Parallel DC Circuits

Series and Parallel DC Circuits Series and Parallel DC Circuits asic Circuits n electric circuit is closed loop of conductive material (metal wire) that connects several circuit elements together (batteries, resistors, capacitors, etc.)

More information

RESISTANCE & OHM S LAW (PART I

RESISTANCE & OHM S LAW (PART I RESISTANCE & OHM S LAW (PART I and II) Objectives: To understand the relationship between potential and current in a resistor and to verify Ohm s Law. To understand the relationship between potential and

More information

Experiment P-10 Ohm's Law

Experiment P-10 Ohm's Law 1 Experiment P-10 Ohm's Law Objectives To study the relationship between the voltage applied to a given resistor and the intensity of the current running through it. Modules and Sensors PC + NeuLog application

More information

Pre-Laboratory Assignment

Pre-Laboratory Assignment Measurement of Electrical Resistance and Ohm's Law PreLaboratory Assignment Read carefully the entire description of the laboratory and answer the following questions based upon the material contained

More information

Unit 4: Electricity (Part 1)

Unit 4: Electricity (Part 1) Unit 4: Electricity (Part 1) Learning Outcomes Students should be able to: 1. Explain what is meant by current, potential difference and resistance, stating their units 2. Draw and interpret circuit diagrams

More information

Unit 7 Parallel Circuits

Unit 7 Parallel Circuits Unit 7 Parallel Circuits Objectives: Unit 7 Parallel Circuits Discuss the characteristics of parallel circuits. State the three rules for solving electrical values of resistance for parallel circuits.

More information

Chapter 4 Voltage, Current, and Power. Voltage and Current Resistance and Ohm s Law AC Voltage and Power

Chapter 4 Voltage, Current, and Power. Voltage and Current Resistance and Ohm s Law AC Voltage and Power Chapter 4 Voltage, Current, and Power Voltage and Current Resistance and Ohm s Law AC Voltage and Power Review of Electrical Principles Electric current consists of the movement of charges. The charged

More information

EE301 - SERIES CIRCUITS, KIRCHHOFF S VOLTAGE LAW

EE301 - SERIES CIRCUITS, KIRCHHOFF S VOLTAGE LAW Learning Objectives a. Identify elements that are connected in series b. State and apply KVL in analysis of a series circuit c. Determine the net effect of series-aiding and series-opposing voltage sources

More information

Parallel Circuits. Objectives: Summary of Theory:

Parallel Circuits. Objectives: Summary of Theory: Parallel Circuits Objectives: 1. Demonstrate that the total resistance in a parallel circuit decreases as resistors are added. 2. Compute and measure resistance and currents in parallel circuits. 3. Explain

More information

I = q/ t units are C/s = A (ampere)

I = q/ t units are C/s = A (ampere) Physics I - Notes Ch. 19-20 Current, Resistance, and Electric Circuits Electromotive force (emf = ε = V; units are volts) charge pump ; source that maintains the potential difference (voltage) in a closed

More information

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012 SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

More information

PH213 Chapter 26 solutions

PH213 Chapter 26 solutions PH213 Chapter 26 solutions 26.6. IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel combination is the same as the current through the 45.0-Ω resistor.

More information

charge time Electric Current and Circuits Current HEAT will flow if there is a difference in temperature

charge time Electric Current and Circuits Current HEAT will flow if there is a difference in temperature Electric Current and Circuits Electrons will flow if there is a difference in electric pressure. Electric pressure is called Potential, and is measured in Volts. If there is no difference in pressure from

More information

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator Physics: 14. Current Electricity Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OP49 Test electrical conduction in a variety of materials,

More information

Duration of resource: 23 Minutes. Year of Production: Stock code: VEA12041

Duration of resource: 23 Minutes. Year of Production: Stock code: VEA12041 ADDITIONAL RESOURCES We use electrical circuits every day. In the home, the car, at work and school they are a vital part of our lives. This program covers the basics of electrical circuits in detail.

More information

Series Circuits. Chapter

Series Circuits. Chapter Chapter 4 Series Circuits Topics Covered in Chapter 4 4-1: Why I Is the Same in All Parts of a Series Circuit 4-2: Total R Equals the Sum of All Series Resistances 4-3: Series IR Voltage Drops 4-4: Kirchhoff

More information

Conceptual Physics. Chapter 23: ELECTRIC CURRENT

Conceptual Physics. Chapter 23: ELECTRIC CURRENT Conceptual Physics Chapter 23: ELECTRIC CURRENT Electric Potential Unit of measurement: volt, 1 volt 1 joule 1 coulomb Example: Twice the charge in same location has twice the electric potential energy

More information

Chapter 26: Direct current circuit

Chapter 26: Direct current circuit Chapter 26: Direct current circuit Resistors in circuits Equivalent resistance The nature of the electric potential and current in circuit Kirchhoff s rules (for complicated circuit analysis) Resistors

More information

Series Circuits. Chapter

Series Circuits. Chapter Chapter 4 Series Circuits Topics Covered in Chapter 4 4-1: Why I Is the Same in All Parts of a Series Circuit 4-2: Total R Equals the Sum of All Series Resistances 4-3: Series IR Voltage Drops 4-4: Kirchhoff

More information

OHM S LAW. Ohm s Law The relationship between potential difference (V) across a resistor of resistance (R) and the current (I) passing through it is

OHM S LAW. Ohm s Law The relationship between potential difference (V) across a resistor of resistance (R) and the current (I) passing through it is OHM S LAW Objectives: a. To find the unknown resistance of an ohmic resistor b. To investigate the series and parallel combination of resistors c. To investigate the non-ohmic resistors Apparatus Required:

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

Physics 25 Chapters Dr. Alward

Physics 25 Chapters Dr. Alward Physics 25 Chapters 19-20 Dr. Alward Electric Circuits Batteries store chemical energy. When the battery is used to operate an electrical device, such as a lightbulb, the chemical energy stored in the

More information

Ohm s Law and Electrical Circuits

Ohm s Law and Electrical Circuits Ohm s Law and Electrical Circuits INTRODUCTION In this experiment, you will measure the current-voltage characteristics of a resistor and check to see if the resistor satisfies Ohm s law. In the process

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information