3. The current through a given section is steady at 30 pa. How long does a charge of 12 μc take to cross the section? (111 hours)

Size: px
Start display at page:

Download "3. The current through a given section is steady at 30 pa. How long does a charge of 12 μc take to cross the section? (111 hours)"

Transcription

1 UNIVERSITY OF TECHNOLOGY ELECROMECHNICAL DEPARTMANT SYSTEMS BRANCH Dr. Sameir Abd Alkhalik Aziez FIRST YEAR ELECTROMECHNICAL ENGINEERING BASICS ELECRICAL ENGINEERING Question Sheet (1) 1.Give the dimensions (units) for each of the fallowing quantities : - rate of flow of charge ; rate of loss of energy; rate of gain of energy; rate of doing work; energy loss per unit charge; energy gain per unit charge; work per unit charge. 2. Find, the current resulting from the "steady flow of (a) 90 C in 6 s; (b) 900 C in 20 minutes; and (c) 4x10 23 electrons in 5 hours. (15 A, 0.75 A, 3.56 A) 3. The current through a given section is steady at 30 pa. How long does a charge of 12 μc take to cross the section? (111 hours) 4. A light bulb draws a steady current of 0.5 A; what is the charge transported through the bulb in 1 minute? (30 C) 5. A 2000 Kg lift rises 50 m in 25 s; what is the average power? (39.2 KW) 6. Find the voltage between points a and b if 24 J are required to move, from a to b, a charge of (i) 3 C; (ii) -4 C; (iii) 20 x electrons. (8 V, a low; 6 V, a high; V, a high) 7. What is the current drawn by a 220 V, 60 W light bulb? What is the energy it consumes in 1 s? In 1 minute? In 1 hour? (272.7 ma; 60 J; 3.6 KJ; 216 KJ) - 1 -

2 8. A 6220 V, 60 W light bulbs is switched on for 5 hours every day. What is the monthly cost if the electrical rate is 0.01 ID/KWh (Iraqi dinare per kilo watt hour)? (0.09 ID = 90 fils ) 9. Find the voltage across a light bulb if a 0.5 A current flowing through it for 4 s causes the light bulb to give off 480 J of light and heat? (240 V) 10. Batteries are usually rated by their voltage and their Ampere hour: a 12 V, 45 Ah car battery can deliver 4.5 A for 10 hours, or 9A for 5 hours, or 15 A for 3 hours, etc. What is the energy stored in this battery? (1.9 MJ) 11. A small transistor radio works at 6 V, and draws a current of 20 m A. It is supplied by 4 batteries, each rated at 1.5 V, 80 mah. (i) How many joules can the batteries supply? (ii) what is the average power consumed by the radio? (iii) how long can the radio be operated? (1.728 KJ; 120 mw; 4 hours) 12. How long does it take a 100 W electric light to consume energy worth 5 ID if the electric rate is ID/KWh? How long does it take a 2 KW heater? (3333 hours = 140 days ; 167 hours = 7 days) 13. If the electric rate is 20 fils/kwh, how many joules does a dinar buy? (180 MJ) 14. A metal sphere is moved at a uniform speed a distance of 8 m. The sphere is charged with 250 μc, and its motion is opposed by a uniform force of 450 nn. Find the energy gained by the charge, and the potential difference between the initial & final points.( 3.6 μj ; 14.4 mv ) - 2 -

3 15. Complete the following table using suitable units :- resistance current voltage power 1? 4 A 12 V? 2 20 ohms 3.8 A?? ohms? 7.3 V? 4? 6.3 A 240 V? 5? 42 μa 8.4 V? M - ohms? 140 V? 7 22 K ohms? 180 V? 8 50 K ohms 2.1 ma?? M ohms? 17 KV? ohms 91.5 A?? 11? 31 KA 240 V? 12? 30 A? 72 KW 13? 500 A 75 mv? M ohms?? 2 W 15?? 220 V 75 W ( domestic lamp ) 16? 12 V 5 W ( car lamp ) 16. A 330 ohm resistor is rated at 0.5 W. What is the maximum allowable voltage? (12.85 V) 17. A 3.3 MΩ resistor is rated at 2.5 mw. What is the maximum allowable current? voltage? (27.5 μa; 90.8V) 18. A wire is 3 Km long and has a radius of 4.5 mm. The resistivity is 1.6 μωcm, Find the resistance of the wire. (755 mω ) - 3 -

4 19. A 100 m aluminum cable carries a current of 30 A at 20 C. It is required that the voltage drop along the wire does not exceed 6 V. What is the minimum allowable cross-sectional area of the wire? (14.15 mm 2 ) 20. A cable transports power from a generator to a factory 80 m away. The factory load is 200 A. The cable core has o resistivity of μωcm, and a diameter of 10 mm. Find the voltage drop in the cable. (7.0 V) 21.A coil consists of 200C turns of wire having cross sectional area 0.8 mm 2, and resistivity 0.02 μωm at the working temperature. The mean length per turn is 80 cm. calculate the power dissipated in the coil when it is connected to a 110 V dc supply. ( W ) 22. A coil of copper wire is 200 m long. A coil of aluminum wire has the same resistance and cross sectional area; what is its length? (121.6 m) 23. A two-wire distributor is 400 m long. It is fed from one end at 240 V. There is a load of 200 A at a distance of 250 m from the feeding end, and a load of 160 A at the far end. The total voltage drop must not exceed 4 %. The resistivity of the conductors is 2 micro-ohm-cm at the working temperature. Find the minimum allowable cross-sectional area of the wires? (475 mm 2 ) 24. If the distributor of question 23 works 24 hours a day every day of the year, find the yearly cost of the energy loss, assuming an electrical rate of 0.01 ID/K.Wh. How can this cost be decreased at the design stage? (267 ID) 25. A cylindrical iron rod is 66 cm long; its diameter is 3 mm. Find the resistance at a temperature of 72 o C. (1.654 milli-ohms) - 4 -

5 26. A coil of copper wire has a resistance of 38 ohms at 28 C. Find its resistance at 75 C & at -15 C. (44.8 ohms; 31,8 ohms) 27. The voltage drop across a 500 cm long copper conductor is 400 mv. The cross-sectional area is 2.5 mm 2, and the temperature is 65 o C. Find the power consumed in the conductor. (3,95 W ) 28. A 2.5 mm 2 cable is 500 m long. It is connected to a 200 V supply at one end, and short-circuited at the other end. The resistivity is 2.60 micro-ohm-cm at 0 o C, and 2.83 micro-ohm-cm at 20 o C. Find the short-circuit current if the coble temperature is 50 o C. (15.75 A) 29. The voltage and current in a copper conductor at 20 C are 240V and 4.8A respectively. Find the conductor temperature when it is consuming 900 W at the same voltage. (91.3 o C) 30. A wire is 120cm long; its cross-sectional area is 1.5 cm 2. The conductivity is 32*10 6 mho/m at 75 o C, and 40*l0 6 mho/m at 35 o C. Find the resistance of the wire at 50 C. (21.9 milli-ohms) 31.The resistance of a coil was found to be 36 milli-ohms at a temperature of 80 o C, and 29 milli-ohms at 15 o C. At what temperature will the resistance be 32 milli-ohms? (42.9 o C) 32. A conductor is 160 cm long; its cross-sectional area is 0.8 mm 2. The conductivity is 50*10 6 mho/m at 60 o C; the temperature coefficient of resistance is 3.4*l0-3 ( C) -1, also at 60 o C. Find the resistance at 85 C. (43.4 milli-ohms) - 5 -

6 33. Constantan wire of 0.2 mm diameter is wound around a plastic cylinder of 1.0 cm diameter to make a wire-wound resistor. How many turns are needed to obtain a resistance of 50 ohms if the resistivity is49 micro-ohm-cm? (102 turns) 34. A voltage of 1.5 V is applied to a 7.5 KΩ, ± 5 % resistor. What is the expected current? ( μa ) 35. A generator has an emf of 115 V, and an internal resistance of 0.1 ohms. Find the terminal voltage when it supplies a current of 50 A. (110 V) 36. A current source has o constant current of 5 A, and an internal resistance of 2 ohms. Find the terminal current when the voltage is 4 V. (3 A) 37. A battery has an open circuit terminal voltage of 28 V, and a short-circuit current of 200 A. Find the load current when the terminal voltage is 18 V. (71.4 A) 38. The terminal voltage of a d.c. source was found to be 150 V when it was supplying a load resistor of 25 K-ohms. The short-circuit current is 10 ma. Find the terminal voltage and current for a load resistor of 35 K-ohms. (181 V, 5.17 A) 39. The no load voltage of a small battery is 1.5 V. When a 2 K-ohm resistor is connected across the battery terminals, the current is 0.4 ma. Find the load voltage when a 900 ohm resistor is connected to the battery. (0.51 V) 40. a d.c. source was tested, and was found to supply 3 A at 120 V, and 5 A at 100 V. What current will it supply to a 65 ohm resistor? (2 A) - 6 -

7 41. A d.c. source was tested, and was found to supply 0.93 A to a 33 ohm load, and 0.55 A to an 82 ohm load. Find the voltage that would appear across a 63 ohm load resistor. (41.17 V) 42. When connected to a certain load resistor, the terminal voltage and current of a d.c. source were found to be 150 V and 2 A reactively. The open circuit voltage of the source is 200 V. Determine the terminal voltage and current when the source is loaded by a 50 ohm resistor. (133.3 V, 2.67 A) 43. When a voltmeter is connected across a given battery, it reads 2.5 V. When an ammeter is connected across the battery, it reads 500 ma. The resistance of the voltmeter is 0.2 K-ohms, and the resistance of the ammeter is 300 m-ohms. Find the battery parameters: E, I o, R o, and G o. (2.56 V, 531 ma, 4.82 ohms, 207 m-mho) 44. In the figure shown, when the switch is in position 1, the ammeter reading is 2.5 A; when in position 2, the voltmeter reading is 150 V. Find the source parameters E, I o, R o, and G o if (a) the two meters are ideal, and if (b) the ammeter and voltmeter resistances are 3 ohms and 2 K-ohms respectively. (R o = 60 ohms, ohms) - 7 -

CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT

CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT PSPM II 2005/2006 NO. 3 3. (a) Write Kirchhoff s law for the conservation of energy. FIGURE 2 (b) A circuit of two batteries and two resistors is

More information

... (1) A battery of emf ε and negligible internal resistance is connected in series to two resistors. The current in the circuit is I.

... (1) A battery of emf ε and negligible internal resistance is connected in series to two resistors. The current in the circuit is I. 1. This question is about electric circuits. (a) Define (i) electromotive force (emf ) of a battery. (ii) electrical resistance of a conductor. (b) A battery of emf ε and negligible internal resistance

More information

Electromagnetism Unit- Current Sub-Unit

Electromagnetism Unit- Current Sub-Unit 4.2.1 Electrical Current Definitions current unit: or requires: Example #3 A wire carries a current of 50 amperes. How much charge flows through the wire in 10 seconds? How many electrons pass through

More information

1. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5 A. D. 24.

1. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5 A. D. 24. 1. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5 A. What is the emf of the battery? A. 1.0 V B. 5.0 V C. 6.0 V D. 24.0 V (Total 1 mark) IB Questionbank

More information

Electric Current & DC Circuits

Electric Current & DC Circuits Electric Current & DC Circuits PSI AP Physics B Name Multiple-Choice 1. The length of an aluminum wire is quadrupled and the radius is doubled. By which factor does the resistance change? (A) 2 (B) 4 (C)

More information

CURRENT ELECTRICITY. 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour Ans: c

CURRENT ELECTRICITY. 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour Ans: c CURRENT ELECTRICITY 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour 2. Electric pressure is also called (a) resistance (b) power (c) voltage (d) energy 3. The substances which

More information

Electric Circuits Review

Electric Circuits Review Electric Circuits Review 3.1 Electric Circuits Be able to: o define current o solve problems for current, charge, and time o relate conventional current direction to the electron flow in a conductor o

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. (a) A metal wire of length 1.4 m has a uniform cross-sectional area = 7.8 10 7 m 2. Calculate the resistance, R, of the wire. resistivity of the metal = 1.7 10 8 Ωm............ (b) The wire is now

More information

1. Resistivity of a wire depends on (A) length (B) material (C) cross section area (D) none of the above.

1. Resistivity of a wire depends on (A) length (B) material (C) cross section area (D) none of the above. 1. Resistivity of a wire depends on (A) length (B) material (C) cross section area (D) none of the above. 2. When n resistances each of value r are connected in parallel, then resultant resistance is x.

More information

Section 17.1 Electric Current

Section 17.1 Electric Current PROBLEMS 1, 2, 3 = straightforward, intermediate, challenging = full solution available in Student Solutions Manual/Study Guide web = solution posted at http://info.brookscole.com/serway = biomedical application

More information

State an equation giving the total power delivered by the battery.

State an equation giving the total power delivered by the battery. Electricity Paper2 (set 1) 1. This question is about electric circuits. (a) Define (i) electromotive force (emf ) of a battery. (1) (ii) electrical resistance of a conductor. (1) (b) A battery of emf ε

More information

Forces and Electrical Charges

Forces and Electrical Charges CHAPTER 7 BLM 3-8 Forces and Electrical Charges Goal Review your knowledge of electric charge and its interaction with conductors, insulators, and electroscopes. Answer the questions that follow. 1. Classify

More information

Resistance and Ohm s Law

Resistance and Ohm s Law Need to know info: Resistance and Ohm s Law 1. slows down the flow of electrons and transforms electrical energy. 2. is measured in ohms.we calculate resistance by applying a voltage and measuring the

More information

4. An overheated resistor is usually a symptom of a problem rather than its cause.

4. An overheated resistor is usually a symptom of a problem rather than its cause. TRUE/FALSE 1. Voltage can exist only where there is a current path. Page: 1 2. An open circuit condition is one where R =. 3. One ampere equals 1 joule per second. 4. An overheated resistor is usually

More information

SF026: PAST YEAR UPS QUESTIONS

SF026: PAST YEAR UPS QUESTIONS CHAPTER 3: ELECTRIC CURRENT AND DIRECT-CURRENT CIRCUITS UPS SEMESTER 2 2011/2012 1. (a) (i) What is meant by electrical resistivity? (ii) Calculate the resistance of an iron wire of uniform diameter 0.8

More information

E 1 Ι 1 R 1 R 2 Ι 3 R 3 E 2 Ι 2

E 1 Ι 1 R 1 R 2 Ι 3 R 3 E 2 Ι 2 1 (a) A student has been asked to make an electric heater. The heater is to be rated as 12 V 60 W, and is to be constructed of wire of diameter 0.54 mm. The material of the wire has resistivity 4.9 x 10

More information

D W. (Total 1 mark)

D W. (Total 1 mark) 1. One electronvolt is equal to A. 1.6 10 19 C. B. 1.6 10 19 J. C. 1.6 10 19 V. D. 1.6 10 19 W. 2. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5

More information

YAL. 12 Electricity. Assignments in Science Class X (Term I) IMPORTANT NOTES

YAL. 12 Electricity. Assignments in Science Class X (Term I) IMPORTANT NOTES Assignments in Science Class X (Term I) 12 Electricity IMPORTANT NOTES 1. There are two kinds of electric charges i.e., positive and negative. The opposite charges attract each other and the similar charges

More information

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in Page 221»Exercise» Question 1: A piece of wire of resistance R is cut into five equal parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R', then the

More information

ELECTRIC Circuits Test

ELECTRIC Circuits Test ELECTRIC Circuits Test Name: /50 Multiple Choice (1 mark each) ( 13 marks) 1. Circle the best answer for each of the multiple choice questions below: Quantity measured Units used 1 -- potential difference

More information

1. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5 A.

1. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5 A. . A battery of internal resistance 2 Ω is connected to an external resistance of 0 Ω. The current is 0.5 What is the emf of the battery?.0 V B. 5.0 V C. 6.0 V D. 24.0 V 2. Two electrodes, separated by

More information

Electricity. AQA Physics topic 2

Electricity. AQA Physics topic 2 Electricity AQA Physics topic 2 Identify circuit components from their symbols. Draw and interpret simple circuit diagrams. Construct a simple electrical circuit. State that resistance restricts the size

More information

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) 1. In an A.C. circuit A ; the current leads the voltage by 30 0 and in circuit B, the current lags behind the voltage by 30 0. What is the

More information

CBSE TEST PAPER-01 CLASS - X Science (Electricity and its Effects)

CBSE TEST PAPER-01 CLASS - X Science (Electricity and its Effects) CBSE TEST PAPER-01 CLASS - X Science (Electricity and its Effects) 1. Which two circuit components are connected in parallel in the following circuit diagram? - >. < < 2. A metallic conductor has loosely

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 20 Electric Circuits 1 20.1 Electromotive Force and Current In an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges

More information

Regents Physics Mr. Mellon Based on Chapter 22 and 23

Regents Physics Mr. Mellon Based on Chapter 22 and 23 Name Regents Physics Mr. Mellon Based on Chapter 22 and 23 Essential Questions What is current? How is it measured? What are the relationships for Ohm s Law? What device measures current and how is it

More information

The topics in this unit are:

The topics in this unit are: The topics in this unit are: 1 Static electricity 2 Repulsion and attraction 3 Electric circuits 4 Circuit symbols 5 Currents 6 Resistance 7 Thermistors and light dependent resistors 8 Series circuits

More information

Section 18.1 Sources of emf. Section 18.2 Resistors in Series. Section 18.3 Resistors in Parallel

Section 18.1 Sources of emf. Section 18.2 Resistors in Series. Section 18.3 Resistors in Parallel PROBLEMS 1, 2, 3 = straightforward, intermediate, challenging = full solution available in Student Solutions Manual/Study Guide = biomedical application Section 18.1 Sources of emf Section 18.2 Resistors

More information

Wallace Hall Academy Physics Department. Electricity. Pupil Notes Name:

Wallace Hall Academy Physics Department. Electricity. Pupil Notes Name: Wallace Hall Academy Physics Department Electricity Pupil Notes Name: 1 Learning intentions for this unit? Be able to state that there are two types of charge; positive and negative Be able to state that

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The figure below shows a circuit containing a battery of e.m.f. 12 V, two resistors, a light-dependent resistor (LDR), an ammeter and a switch S. The battery has negligible

More information

Downloaded from

Downloaded from Question 1: What does an electric circuit mean? An electric circuit consists of electric devices, switching devices, source of electricity, etc. that are connected by conducting wires. Question 2: Define

More information

Electric Current - 1 v Goodman & Zavorotniy

Electric Current - 1 v Goodman & Zavorotniy Chapter Problems Electric Current Classwork 1. If 560 C of electric charge passed through a light bulb in 8 min; what was the magnitude of the average electric current passing through the bulb? 2. If the

More information

PHYSICS ELECTRICITY ASSIGNMENT 1

PHYSICS ELECTRICITY ASSIGNMENT 1 PHYSICS ELECTRICITY ASSIGNMENT 1 1. What does an electric circuit mean? 2. Define the unit of electric current. 3. Calculate the number of electrons in 1 coulomb of charge. 4. Name a device used to maintain

More information

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms ELECTRC CRCUTS PREEW Conventional current is the flow of positive charges though a closed circuit. The current through a resistance and the voltage which produces it are related by Ohm s law. Power is

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The figure below shows a circuit containing a battery of e.m.f. 12 V, two resistors, a light-dependent resistor (LDR), an ammeter and a switch S. The battery has negligible

More information

Exercises of resistors 1. Calculate the resistance of a 10 m long Copper wire with diameter d = 1.0 mm.

Exercises of resistors 1. Calculate the resistance of a 10 m long Copper wire with diameter d = 1.0 mm. Exercises of resistors 1. Calculate the resistance of a 10 m long Copper wire with diameter d = 1.0 mm. 2. Calculate the resistances of following equipment: using 220V AC a) a 1000 W electric heater b)

More information

8.0 Ω 12.0 Ω. When the switch S is open, show that the potential difference between the points X and Y is 7.2 V.

8.0 Ω 12.0 Ω. When the switch S is open, show that the potential difference between the points X and Y is 7.2 V. 1. The figure below shows a circuit containing a battery of e.m.f. 12 V, two resistors, a light-dependent resistor (LDR), an ammeter and a switch S. The battery has negligible internal resistance. 8.0

More information

Section A. Two resistors of 10 Ω and 15 Ω are connected in series to a battery of 6V. How can the values of current passing through them be compared?

Section A. Two resistors of 10 Ω and 15 Ω are connected in series to a battery of 6V. How can the values of current passing through them be compared? EXAM PRACTICE Past Year Board Questions CBSE-Class X Physics Electricity Section A (1 mark each) Question 1. Question 2. Question 3. Question 4. Question 5. Question 6. How is an ammeter connected in a

More information

Episode 108: Resistance

Episode 108: Resistance Episode 108: Resistance The idea of resistance should be familiar (although perhaps not secure) from pre-16 science course, so there is no point pretending that this is an entirely new concept. A better

More information

Electricity. Mark Scheme. Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at

Electricity. Mark Scheme. Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Electricity Mark Scheme Level Subject Exam Board Topic Booklet Pre U Physics Cambridge International Examinations Electricity Mark Scheme Time llowed: 56 minutes Score: /46 Percentage: /100 Grade Boundaries:

More information

potential difference resistance current

potential difference resistance current 1 (a) The following electrical quantities are often used when analysing circuits. Draw a straight line from each quantity on the left-hand side to its correct units on the right-hand side. potential difference

More information

PHYS102 Previous Exam Problems. Circuits

PHYS102 Previous Exam Problems. Circuits PHYS102 Previous Exam Problems CHAPTER 27 Circuits Combination of resistors Potential differences Single loop circuits Kirchhoff laws Multiloop circuits RC circuits General 1. Figure 1 shows two resistors

More information

National Physics. Electricity and Energy Homework. Section 2 Electrical Power

National Physics. Electricity and Energy Homework. Section 2 Electrical Power National Physics Electricity and Energy Homework Section 2 Electrical Power Homework 1 : Energy Changes and Power 1. Appliances convert electrical energy into other forms of energy. State the useful energy

More information

1 What is an example of a device that changes chemical energy into electrical energy? (A) battery (B) generator (C) light bulb (D) transformer

1 What is an example of a device that changes chemical energy into electrical energy? (A) battery (B) generator (C) light bulb (D) transformer Assignment 1 Electricity Name: 1 What is an example of a device that changes chemical energy into electrical energy? (A) battery (B) generator (C) light bulb (D) transformer 2 What is the definition for

More information

Chapters 34: Ohm s Law

Chapters 34: Ohm s Law Text: Chapter 34 Think and Explain: 1-3, 6-8, 10 Think and Solve: 1-6 Chapters 34: Ohm s Law Vocabulary: Ohm s Law, resistance, resistivity, superconductor, current, amps, volts, ohms, kw-h, AC, DC Equations:

More information

Practical 2.1 BASIC ELECTRICAL MEASUREMENTS AND DATA PROCESSING

Practical 2.1 BASIC ELECTRICAL MEASUREMENTS AND DATA PROCESSING Practical 2.1 BASIC ELECTRICAL MEASUREMENTS AND DATA PROCESSING September 6, 2017 1 Introduction To measure electrical quantities one uses electrical measuring instruments. There are three main quantities

More information

Electric Currents 2 D V. (1)

Electric Currents 2 D V. (1) Name: Date: Electric Currents 2. A battery is connected in series with a resistor R. The battery transfers 2 000 C of charge completely round the circuit. During this process, 2 500 J of energy is dissipated

More information

(a) In the circuit below, lamps P and Q are identical. The reading on the ammeter is 3A. The cell shown is of emf. 6V. A P [2] ...

(a) In the circuit below, lamps P and Q are identical. The reading on the ammeter is 3A. The cell shown is of emf. 6V. A P [2] ... High Demand Questions QUESTIONSHEET 1 (a) In the circuit below, lamps P and Q are identical. The reading on the ammeter is 3A. The cell shown is of emf. 6V. A P Q Calculate the current that passes through

More information

An electric circuit consists of electric devices, switching devices, source of electricity, etc. that are

An electric circuit consists of electric devices, switching devices, source of electricity, etc. that are Class:X Page 200»Question» What does an electric circuit mean? An electric circuit consists of electric devices, switching devices, source of electricity, etc. that are connected by conducting wires. Define

More information

Table of Contents. Introduction...2 Conductors and Insulators...3 Current, Voltage, and Resistance...6

Table of Contents. Introduction...2 Conductors and Insulators...3 Current, Voltage, and Resistance...6 Table of Contents Introduction...2 Conductors and Insulators...3 Current, Voltage, and Resistance...6 Ohm s Law... 11 DC Circuits... 13 Magnetism...20 Alternating Current...23 Inductance and Capacitance...30

More information

Name: Period: Date: 2. In the circuit below, n charge carriers pass the point P in a time t. Each charge carrier has charge q.

Name: Period: Date: 2. In the circuit below, n charge carriers pass the point P in a time t. Each charge carrier has charge q. Name: Period: Date: IB-1 Practice Electrical Currents, Resistance, and Circuits Multiple Choice Questions 1. In the circuit below, which meter is not correctly connected? A 1 3 A 2 4 A. 1 B. 2 C. 3 D.

More information

I p = V s = N s I s V p N p

I p = V s = N s I s V p N p UNIT G485 Module 1 5.1.3 Electromagnetism 11 For an IDEAL transformer : electrical power input = electrical power output to the primary coil from the secondary coil Primary current x primary voltage =

More information

A resistor adds resistance to a circuit. Describe what the effect of adding resistance would have on the current flowing in the circuit.

A resistor adds resistance to a circuit. Describe what the effect of adding resistance would have on the current flowing in the circuit. A. Current, Potential Difference and Resistance 1a A student builds a circuit. The circuit is shown in Figure 1. Label the components shown in Figure 1. (3) Figure 1 Voltmeter Power Supply Diode Resistor

More information

South Pasadena A.P. Physics Chapter Electric Current & DC Circuits Date / / Period Electricity Practice Test

South Pasadena A.P. Physics Chapter Electric Current & DC Circuits Date / / Period Electricity Practice Test South Pasadena A.P. Physics Name Chapter 18-19 Electric Current & DC Circuits Date / / Period 1 2 3 4 Electricity Practice Test Electric Current I = Q/t 1. A charge of 30 Coulombs passes through a 24-ohm

More information

Resistance and Ohm s Law

Resistance and Ohm s Law Resistance and Ohm s Law Textbook pages 290 301 Section 8.3 Summary Before You Read Do you think electrons can move through all conducting substances equally well? Give your reasons why or why not on the

More information

CURRENT, POTENTIAL DIFFERENCE AND RESISTANCE PART I

CURRENT, POTENTIAL DIFFERENCE AND RESISTANCE PART I CURRENT, POTENTIAL DIFFERENCE AND RESISTANCE PART I Q1. An electrical circuit is shown in the figure below. (a) The current in the circuit is direct current. What is meant by direct current? Tick one box.

More information

SUBELEMENT T5 Electrical principles: math for electronics; electronic principles; Ohm s Law 4 Exam Questions - 4 Groups

SUBELEMENT T5 Electrical principles: math for electronics; electronic principles; Ohm s Law 4 Exam Questions - 4 Groups SUBELEMENT T5 Electrical principles: math for electronics; electronic principles; Ohm s Law 4 Exam Questions - 4 Groups 1 T5A Electrical principles, units, and terms: current and voltage; conductors and

More information

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1.

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1. Contents These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1 Introduction 2 Ohm s law relationships 3 The Ohm s law equation 4

More information

Unit 6 ~ Learning Guide Name:

Unit 6 ~ Learning Guide Name: Unit 6 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

ALTERNATING CURRENT. Lesson-1. Alternating Current and Voltage

ALTERNATING CURRENT. Lesson-1. Alternating Current and Voltage esson- ATENATING UENT Alternating urrent and oltage An alternating current or voltage is that variation of current or voltage respectively whose magnitude and direction vary periodically and continuously

More information

Unit 3.C Electrical Theory, Circuits Essential Fundamentals of Electrical Theory, Circuits

Unit 3.C Electrical Theory, Circuits Essential Fundamentals of Electrical Theory, Circuits Unit 3.C Electrical Theory, Circuits Essential Fundamentals of Electrical Theory, Circuits Early Booklet E.C.: + 1 Unit 3.C Hwk. Pts.: / 36 Unit 3.C Lab Pts.: / 50 Late, Incomplete, No Work, No Units Fees?

More information

Resistance and Ohm s Law R V I. 1 ohm = 1 volt ampere

Resistance and Ohm s Law R V I. 1 ohm = 1 volt ampere Resistance and Ohm s Law If you maintain an electric potential difference, or voltage V, across any conductor, an electric current occurs. In general, the magnitude of the current depends on the potential

More information

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Electric Circuits)

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Electric Circuits) PHYSICS 3204 PUBLIC EXAM QUESTIONS (Electric Circuits) NAME: August 2009------------------------------------------------------------------------------------------------------------------ 26. What is the

More information

PH213 Chapter 26 solutions

PH213 Chapter 26 solutions PH213 Chapter 26 solutions 26.6. IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel combination is the same as the current through the 45.0-Ω resistor.

More information

1. The coulomb is a unit of. A. charge B. voltage C. energy D. capacitance E. current. 2. The following is not true about voltage:

1. The coulomb is a unit of. A. charge B. voltage C. energy D. capacitance E. current. 2. The following is not true about voltage: BioE 1310 - Review 1 - DC 1/16/2017 Instructions: On the Answer Sheet, enter your 2-digit ID number (with a leading 0 if needed) in the boxes of the ID section. Fill in the corresponding numbered circles.

More information

Question 3.1: The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4Ω, what is the maximum current that can be drawn from the battery? Emf of the battery, E =

More information

D V (Total 1 mark)

D V (Total 1 mark) 1. One electronvolt is equal to A. 1.6 10 19 C. B. 1.6 10 19 J. C. 1.6 10 19 V. D. 1.6 10 19 W. 2. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5

More information

ELECTRIC CIRCUITS. 1. Which one of the following situations results in a conventional electric current that flows westward?

ELECTRIC CIRCUITS. 1. Which one of the following situations results in a conventional electric current that flows westward? chapter ELECTRIC CIRCUITS www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 20.1 Electromotive Force and Current Section 20.2 Ohm s Law 1. Which one of the following

More information

GCSE Physics. The PiXL Club Ltd, Company number

GCSE Physics.   The PiXL Club Ltd, Company number he PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club he PiXL

More information

3.2 Measurement of high voltages

3.2 Measurement of high voltages DEPT OF HIGH VOLTAGE AND INSULATION ENG, HONGQING UNIVERSITY Part I- hapter 3: Insulation test techniques 3. Measurement of high voltages Instructor: Dr. Jian Li Lecture 7- DEPT OF HIGH VOLTAGE AND INSULATION

More information

Name: AP Homework Coulomb s Law. Date: Class Period:

Name: AP Homework Coulomb s Law. Date: Class Period: AP Homework 12.1 Coulomb s Law Name: Date: Class Period: (Q1) Two metal spheres are hanging from nylon threads. When you bring the spheres close to each other, they tend to attract. Based on this information

More information

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt Electric Circuits Quantity Symbol Units Charge Q,q coulomb (C) Alternate Units Formula Electric Potential V volt (V) 1 V = 1 J/C V = E P /q V = W/q Work, energy W, E P joule (J) W = qv E P = qv Current

More information

Chapter 12 Electric Circuits

Chapter 12 Electric Circuits Conceptual Physics/ PEP Name: Date: Chapter 12 Electric Circuits Section Review 12.1 1. List one way electric current is similar to water current and one way it is different. 2. Draw a circuit diagram

More information

Chapter 20. Circuits. q I = t. (a) (b) (c) Energy Charge

Chapter 20. Circuits. q I = t. (a) (b) (c) Energy Charge Chapter 0 n an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges move. Circuits Within a battery, a chemical reaction occurs

More information

RESISTANCE IN WIRES 4) 4R

RESISTANCE IN WIRES 4) 4R RESISTANCE IN WIRES NAME: 1. A copper wire of length L and cross-sectional area A has resistance R. A second copper wire at the same temperature has a length of 2L and a cross-sectional area of 1 2A. What

More information

Electric Circuits Notes 1 Circuits

Electric Circuits Notes 1 Circuits Electric Circuits Notes 1 Circuits In the last chapter we examined how static electric charges interact with one another. These fixed electrical charges are not the same as the electricity that we use

More information

Electricity Practice Test 1

Electricity Practice Test 1 Electricity Practice Test 1 Name: ate: 1. This diagram represents a closed circuit with three light bulbs and a 10-volt battery. 3. This diagram represents a circuit with three 20-ohm light bulbs. The

More information

CURRENT ELECTRICITY LEVEL A QUESTIONS

CURRENT ELECTRICITY LEVEL A QUESTIONS CURRENT ELECTRICITY LEVEL A QUESTIONS 1.Define electric current and give its SI unit. (1) 2. Define current density and give its SI unit. (1) 3. State Ohm s law. (1) 4. Derive an expression for resistivity..mention

More information

Fig [5]

Fig [5] 1 (a) Fig. 4.1 shows the I-V characteristic of a light-emitting diode (LED). 40 I / 10 3 A 30 20 10 0 1.0 1.5 2.0 V / V Fig. 4.1 (i) In Describe the significant features of the graph in terms of current,

More information

Refer to your text book (page 349 to 352) (1) Draw a circuit diagram to represent the wiring in a typical parallel circuit.

Refer to your text book (page 349 to 352) (1) Draw a circuit diagram to represent the wiring in a typical parallel circuit. SERIES and PARALLEL CIRCUITS Refer to your text book (page 349 to 352) (1) Draw a circuit diagram to represent the wiring in a typical parallel circuit. (2) What are some of the advantages of using parallel

More information

A battery of emf 10 V and internal resistance 3 Ω is connected to a resistor. If the current

A battery of emf 10 V and internal resistance 3 Ω is connected to a resistor. If the current Question 3.1: The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4Ω, what is the maximum current that can be drawn from the battery? Emf of the battery, E =

More information

Q3.: When switch S is open, the ammeter in the circuit shown in Fig 2 reads 2.0 A. When S is closed, the ammeter reading: (Ans: increases)

Q3.: When switch S is open, the ammeter in the circuit shown in Fig 2 reads 2.0 A. When S is closed, the ammeter reading: (Ans: increases) Old Exams-Chapter 27 T081 Q1. Fig 1 shows two resistors 3.0 Ω and 1.5 Ω connected in parallel and the combination is connected in series to a 4.0 Ω resistor and a 10 V emf device. The potential difference

More information

Unit 4: Electricity (Part 1)

Unit 4: Electricity (Part 1) Unit 4: Electricity (Part 1) Learning Outcomes Students should be able to: 1. Explain what is meant by current, potential difference and resistance, stating their units 2. Draw and interpret circuit diagrams

More information

Electricity. Intext Exercise 1

Electricity. Intext Exercise 1 Intext Exercise 1 Question 1: What does an electric circuit mean? Solution 1: A continuous and closed path of an electric current is called an electric circuit. electric circuit consists of electric devices

More information

RADIO AMATEUR EXAM GENERAL CLASS

RADIO AMATEUR EXAM GENERAL CLASS RAE-Lessons by 4S7VJ 1 CHAPTER-7 RADIO AMATEUR EXAM GENERAL CLASS MEASURMENTS By 4S7VJ 7.1 TEST EQUIPMENT & MEASUREMENTS Correct operation of amateur radio equipment involves measurements to ensure optimum

More information

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this 1 1. In a series LCR circuit the voltage across inductor, a capacitor and a resistor are 30 V, 30 V and 60 V respectively. What is the phase difference between applied voltage and current in the circuit?

More information

Draw, in the space below, a circuit diagram of this circuit. Use the correct symbols for each part of the circuit.

Draw, in the space below, a circuit diagram of this circuit. Use the correct symbols for each part of the circuit. Q1. The drawing shows the circuit used to investigate how the current through a 5 ohm (Ω) resistor changes as the potential difference (voltage) across the resistor changes. (a) Draw, in the space below,

More information

Sample Examination Questions

Sample Examination Questions Sample Examination Questions Contents Question Question type Question focus number (section A or B) 1 B Power of a lens; formation of an image 2 B Digitising an image; spectra of a signal 3 A EM spectrum;

More information

Ch. 18 and 19 Review Problems 2

Ch. 18 and 19 Review Problems 2 Ch. 18 and 19 Review Problems 2 NAME 1) A device that produces electricity by transforming chemical energy into electrical energy is called a A) generator. B) transformer. C) battery. D) none of the given

More information

Radio and Electronics Fundamentals

Radio and Electronics Fundamentals Amateur Radio License Class Radio and Electronics Fundamentals Presented by Steve Gallafent September 26, 2007 Radio and Electronics Fundamentals Voltage, Current, and Resistance Electric current is the

More information

Chapter 21 Electric Current and Direct-Current Circuit

Chapter 21 Electric Current and Direct-Current Circuit Chapter 21 Electric Current and Direct-Current Circuit Outline 21-1 Electric Current 21-2 Resistance and Ohm s Law 21-3 Energy and Power in Electric Circuit 21-4 Resistance in Series and Parallel 21-5

More information

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator Physics: 14. Current Electricity Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OP49 Test electrical conduction in a variety of materials,

More information

Vocabulary. Electric Current. Electric Circuit. Open Circuit. Conductors. Insulators. Ohm s Law Current. Voltage. Resistance.

Vocabulary. Electric Current. Electric Circuit. Open Circuit. Conductors. Insulators. Ohm s Law Current. Voltage. Resistance. Vocabulary Term Electric Current Definition Electric Circuit Open Circuit Conductors Insulators Ohm s Law Current Voltage Resistance Electrical Power Series Circuit Parallel Circuit Page 1 Symbols Used

More information

Chapter Moving Charges and Magnetism

Chapter Moving Charges and Magnetism 100 Chapter Moving Charges and Magnetism 1. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is [2013] 2. [2002] zero RvB vbl/r vbl

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour,

More information

Copper and Electricity: Transformers and. the Grid. Transformers

Copper and Electricity: Transformers and. the Grid. Transformers PHYSICS Copper and Electricity: Transformers and 16-18 YEARS the Grid Transformers Using transformers We use transformers to change the size of a voltage. We can step the voltage down from a high voltage

More information

In this section you will learn about Ohm's Law as applied to a single resistor circuit. Phillips Textbook pp including some maths on notation.

In this section you will learn about Ohm's Law as applied to a single resistor circuit. Phillips Textbook pp including some maths on notation. Ohms Law (these theory notes support the ppt) In this section you will learn about Ohm's Law as applied to a single resistor circuit. Phillips Textbook pp. 43-59 including some maths on notation. At the

More information

ENGINEERING ACADEMY X V

ENGINEERING ACADEMY X V 1. Two incandescent bulbs of rating 230, 100 W and 230, 500 W are connected in parallel across the mains. As a result, what will happen? a) 100 W bulb will glow brighter b) 500 W bulb will glow brighter

More information

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012 SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

More information

Book page Syllabus 2.8, 2.9, Series and parallel circuits

Book page Syllabus 2.8, 2.9, Series and parallel circuits Book page 77 79 Syllabus 2.8, 2.9, 2.14 Series and parallel circuits Find the Fib! (1) The symbol for a bulb is (2) In a parallel circuit potential difference is the same as the supply voltage on all branches.

More information