Chapter 23 Electric Current (cont.)

Size: px
Start display at page:

Download "Chapter 23 Electric Current (cont.)"

Transcription

1 Chapter 23 Electric Current (cont.) Direct current and alternating current Electric power Electric circuits 1

2 Direct Current and Alternating Current Pulsating dc Time Time graphs of dc. Electric current may be dc or ac. By dc, we mean direct current, which refers tot he flowing of charges in one direction. Even if the current occurs in unsteady pulses, so long as electrons move in one direction only, it is dc. A battery produces direct current (dc) in a circuit because the terminals of the battery always have the same sign. 2

3 Alternating Current Time graphs of ac. By ac, we mean alternating current: electrons in the circuit are moved first in one direction and then in the opposite direction, alternating to and fro about relatively fixed positions. This is accomplished by alternating the polarity of voltage at the generator or other voltage source. 60-hertz current: nearly all commercial ac circuits in North America involve voltages and currents that alternate back and forth at a frequency of 60 cycles per second (60 -hertz). 3

4 Converting ac to dc Household current is ac. The current in a battery-operated device such as a pocket calculator is dc. You can operate these devices on ac instead of batteries with an ac-dc converter. The ac-dc converter uses a diode. Diode: a tiny electronic device that acts as a one-way valve to allow electron flow in only one direction. A diode is represented by the symbol. Current flows in the direction of the arrow but not in the reverse direction. a. When input to a diode is ac, b. Output is pulsating dc. 4

5 Electric Power The power and voltage on the light bulb read 100 W 120 V. How many amperes of current will flow through the bulb? The rate at which electric energy is converted into another form such as mechanical energy, heat, or light is called electric power. Electric power is equal to the product of current and voltage. Power = current voltage Units of current: amperes Units of voltage: volts Units of electric power: watts For example, if a lamp rated at 120 watts operates on a 120-volt line, it will draw a current of 1 ampere. How about a 60-watt lamp on a 120-volt line? 5

6 Electric Circuits Circuit: any path along which electrons can flow is a circuit. For a continuous flow of electrons, there must be a complete circuit with no gaps. A gap is usually provided by an electric switch that can be opened or closed to either cut off or allow energy flow. Devices are commonly connected in a circuit in one of two ways: Series or Parallel. 6

7 Series Circuits Series circuit: when connected in series, the devices in the circuit form a single pathway for electron flow between the terminals of the battery or a generator. Important characteristics of a series circuit Electric current has but a single pathway through the circuit. Thus the current passing through each electrical device is the same. The voltage, or potential difference, across each device is proportional to its resistance. The total voltage across the circuit is the sum of all voltage across individual devices. Ohm s law applies to each individual devices. Main disadvantage of a series circuit: If one device (e.g. a bulb) fails, current in the whole circuit ceases. 7

8 Parallel Circuits Parallel circuits: when connected in parallel, devices in the circuit form branches, each of which is a separate path for the flow of electrons. A break in any one path does not interrupt the flow of charge in the other paths. Each device operates independently of the other devices. Major characteristics of parallel circuits: Each device connects the same two points A and B of the circuit and the voltage is the same across each device. The total current in the circuit divides among the parallel branches. The amount of current in each branch is inversely proportional tot he resistance of the branch. The total current in the circuit equals the sum of the currents in its parallel branches. Ohm s law applies to each individual devices. 8

9 Some Examples Alternating current is normally produced by a A) battery. B) generator. C) both of these. D) neither of these. On some early automobiles both headlights went out when one bulb burned out. The headlights must have been connected in A) parallel. B) series. The electric power of a lamp that carries 2A at 120 V is A) 1/6 watts. B) 2 watts. C) 60 watts. D) 20 watts. E) 240 watts. The current through two identical light bulbs connected in series is 0.25 A. The voltage across both bulbs is 110 V. The resistance of a single light bulb is A) 22 ohms. B) 44 ohms. C) 220 ohms. D) 440 ohms. E) none of these. 9

10 Homework 11 (04/07/04) Chapter 23, P. 456, Exercises: 24, 43, 44,

Conceptual Physics. Chapter 23: ELECTRIC CURRENT

Conceptual Physics. Chapter 23: ELECTRIC CURRENT Conceptual Physics Chapter 23: ELECTRIC CURRENT Electric Potential Unit of measurement: volt, 1 volt 1 joule 1 coulomb Example: Twice the charge in same location has twice the electric potential energy

More information

Any path along which electrons can flow is a circuit A Battery and a Bulb

Any path along which electrons can flow is a circuit A Battery and a Bulb Any path along which electrons can flow is a circuit. Mechanical things seem to be easier to figure out for most people than electrical things. Maybe this is because most people have had experience playing

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Electrical Circuits Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. In solid conductors, electric current is the flow of a. positive and

More information

Why it s important: Electrical circuits are the basis of every electrical device, from electric lights to microwave ovens to computers.

Why it s important: Electrical circuits are the basis of every electrical device, from electric lights to microwave ovens to computers. Why it s important: Electrical circuits are the basis of every electrical device, from electric lights to microwave ovens to computers. Understanding circuits helps you to use them, and to use them safely.

More information

Voltage, Current and Resistance

Voltage, Current and Resistance Voltage, Current and Resistance Foundations in Engineering WV Curriculum, 2002 Foundations in Engineering Content Standards and Objectives 2436.8.3 Explain the relationship between current, voltage, and

More information

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in Page 221»Exercise» Question 1: A piece of wire of resistance R is cut into five equal parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R', then the

More information

Chapter 13. Electric Circuits

Chapter 13. Electric Circuits Chapter 13 Electric Circuits Lower Potential Battery (EMF - E) - + Higher Potential Bulb (Resistor) Wires (No Change in Potential) EMF (Voltage Source) _ + Resistor Working Circuits For a circuit to work,

More information

Series and Parallel DC Circuits

Series and Parallel DC Circuits Series and Parallel DC Circuits asic Circuits n electric circuit is closed loop of conductive material (metal wire) that connects several circuit elements together (batteries, resistors, capacitors, etc.)

More information

Electric Circuits. Physics 6 th Six Weeks

Electric Circuits. Physics 6 th Six Weeks Electric Circuits Physics 6 th Six Weeks Electric Circuits (a review) A circuit is a path through which electricity can flow Electric Circuits always contain 3 things: a voltage source, a conductor (usually

More information

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1.

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1. Contents These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1 Introduction 2 Ohm s law relationships 3 The Ohm s law equation 4

More information

Unit 3. Electrical Circuits

Unit 3. Electrical Circuits Strand G. Electricity Unit 3. Electrical Circuits Contents Page Representing Direct Current Circuits 2 Rules for Series Circuits 5 Rules for Parallel Circuits 9 Circuit Calculations 14 G.3.1. Representing

More information

Resistance and Ohm s Law

Resistance and Ohm s Law Need to know info: Resistance and Ohm s Law 1. slows down the flow of electrons and transforms electrical energy. 2. is measured in ohms.we calculate resistance by applying a voltage and measuring the

More information

4. An overheated resistor is usually a symptom of a problem rather than its cause.

4. An overheated resistor is usually a symptom of a problem rather than its cause. TRUE/FALSE 1. Voltage can exist only where there is a current path. Page: 1 2. An open circuit condition is one where R =. 3. One ampere equals 1 joule per second. 4. An overheated resistor is usually

More information

GRADE 7: Physical processes. UNIT 7P.5 9 hours. Electrical circuits. Resources. About this unit. Previous learning. Expectations

GRADE 7: Physical processes. UNIT 7P.5 9 hours. Electrical circuits. Resources. About this unit. Previous learning. Expectations GRADE 7: Physical processes Electrical circuits UNIT 7P.5 9 hours About this unit This unit is the fifth of five units on physical processes for Grade 7. The unit is designed to guide your planning and

More information

Basic Circuits. PC1222 Fundamentals of Physics II. 1 Objectives. 2 Equipment List. 3 Theory

Basic Circuits. PC1222 Fundamentals of Physics II. 1 Objectives. 2 Equipment List. 3 Theory PC1222 Fundamentals of Physics II Basic Circuits 1 Objectives Investigate the relationship among three variables (resistance, current and voltage) in direct current circuits. Investigate the behaviours

More information

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT INTRODUCTION Thus far this text has dealt with direct current (DC); that is, current that does not change direction. However, a coil rotating in a magnetic field

More information

Electricity Practice Test 1

Electricity Practice Test 1 Electricity Practice Test 1 Name: ate: 1. This diagram represents a closed circuit with three light bulbs and a 10-volt battery. 3. This diagram represents a circuit with three 20-ohm light bulbs. The

More information

Radar. Radio. Electronics. Television. .104f 4E011 UNITED ELECTRONICS LABORATORIES LOUISVILLE

Radar. Radio. Electronics. Television. .104f 4E011 UNITED ELECTRONICS LABORATORIES LOUISVILLE Electronics Radio Television.104f Radar UNITED ELECTRONICS LABORATORIES LOUISVILLE KENTUCKY REVISED 1967 4E011 1:1111E111611 COPYRIGHT 1956 UNITED ELECTRONICS LABORATORIES POWER SUPPLIES ASSIGNMENT 23

More information

Chapter 4 Voltage, Current, and Power. Voltage and Current Resistance and Ohm s Law AC Voltage and Power

Chapter 4 Voltage, Current, and Power. Voltage and Current Resistance and Ohm s Law AC Voltage and Power Chapter 4 Voltage, Current, and Power Voltage and Current Resistance and Ohm s Law AC Voltage and Power Review of Electrical Principles Electric current consists of the movement of charges. The charged

More information

Resistance and Ohm s Law R V I. 1 ohm = 1 volt ampere

Resistance and Ohm s Law R V I. 1 ohm = 1 volt ampere Resistance and Ohm s Law If you maintain an electric potential difference, or voltage V, across any conductor, an electric current occurs. In general, the magnitude of the current depends on the potential

More information

General Department PHYSICS LABORATORY APHY 112 EXPERIMENT 2: OHMS LAW. Student s name... Course Semester. Year.Reg.No

General Department PHYSICS LABORATORY APHY 112 EXPERIMENT 2: OHMS LAW. Student s name... Course Semester. Year.Reg.No General Department PHYSICS LABORATORY APHY 112 EXPERIMENT 2: OHMS LAW Student s name... Course Semester. Year.Reg.No FREDERICK UNIVERSITY 1 EXPERIMENT 3 OHMS LAW Equipment needed Equipment needed Circuits

More information

Ch. 18 and 19 Review Problems 2

Ch. 18 and 19 Review Problems 2 Ch. 18 and 19 Review Problems 2 NAME 1) A device that produces electricity by transforming chemical energy into electrical energy is called a A) generator. B) transformer. C) battery. D) none of the given

More information

8) Name three more types of circuits that we will not study in this class.

8) Name three more types of circuits that we will not study in this class. Name Concepts:( power ) 1) What is power? 2) What are the three equations for electrical power? 3) What are two units for power? 4) What does the power company sell its customers? 5) What is the unit sold

More information

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator Physics: 14. Current Electricity Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OP49 Test electrical conduction in a variety of materials,

More information

Chapter 20. Circuits. q I = t. (a) (b) (c) Energy Charge

Chapter 20. Circuits. q I = t. (a) (b) (c) Energy Charge Chapter 0 n an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges move. Circuits Within a battery, a chemical reaction occurs

More information

Lesson 2: How Radio Works

Lesson 2: How Radio Works Lesson 2: How Radio Works Preparation for Amateur Radio Technician Class Exam Topics How radios work Current Frequency & Wavelength Radio Frequencies Quick review of Metric Electricity Conductors & Insulators

More information

Technician License Course Chapter 3. Lesson Plan Module 4 Electricity

Technician License Course Chapter 3. Lesson Plan Module 4 Electricity Technician License Course Chapter 3 Lesson Plan Module 4 Electricity Fundamentals of Electricity Radios are powered by electricity and radio signals are a form of electrical energy. A basic understanding

More information

South Pasadena A.P. Physics Chapter Electric Current & DC Circuits Date / / Period Electricity Practice Test

South Pasadena A.P. Physics Chapter Electric Current & DC Circuits Date / / Period Electricity Practice Test South Pasadena A.P. Physics Name Chapter 18-19 Electric Current & DC Circuits Date / / Period 1 2 3 4 Electricity Practice Test Electric Current I = Q/t 1. A charge of 30 Coulombs passes through a 24-ohm

More information

I = q/ t units are C/s = A (ampere)

I = q/ t units are C/s = A (ampere) Physics I - Notes Ch. 19-20 Current, Resistance, and Electric Circuits Electromotive force (emf = ε = V; units are volts) charge pump ; source that maintains the potential difference (voltage) in a closed

More information

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms ELECTRC CRCUTS PREEW Conventional current is the flow of positive charges though a closed circuit. The current through a resistance and the voltage which produces it are related by Ohm s law. Power is

More information

Resistors in Series or in Parallel

Resistors in Series or in Parallel Resistors in Series or in Parallel Key Terms series parallel Resistors in Series In a circuit that consists of a single bulb and a battery, the potential difference across the bulb equals the terminal

More information

Regents Physics Mr. Mellon Based on Chapter 22 and 23

Regents Physics Mr. Mellon Based on Chapter 22 and 23 Name Regents Physics Mr. Mellon Based on Chapter 22 and 23 Essential Questions What is current? How is it measured? What are the relationships for Ohm s Law? What device measures current and how is it

More information

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes Module 1, Lesson 2 Introduction to electricity 45 minutes Student Purpose of this lesson Explanations of fundamental quantities of electrical circuits, including voltage, current and resistance. Use a

More information

Experiment P-24 Circuits and Series Resistance

Experiment P-24 Circuits and Series Resistance 1 Experiment P-24 Circuits and Series Resistance Objectives To study the relationship between the voltage applied to a given resistor and the intensity of the current running through it. Modules and Sensors

More information

Exercise 2: Current in a Series Resistive Circuit

Exercise 2: Current in a Series Resistive Circuit DC Fundamentals Series Resistive Circuits Exercise 2: Current in a Series Resistive Circuit EXERCISE OBJECTIVE circuit by using a formula. You will verify your results with a multimeter. DISCUSSION Electric

More information

Experiment P-10 Ohm's Law

Experiment P-10 Ohm's Law 1 Experiment P-10 Ohm's Law Objectives To study the relationship between the voltage applied to a given resistor and the intensity of the current running through it. Modules and Sensors PC + NeuLog application

More information

Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras

Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras Lecture - 6 Full Wave Rectifier and Peak Detector In

More information

Exercise 2: Ohm s Law Circuit Current

Exercise 2: Ohm s Law Circuit Current Exercise 2: Circuit Current EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine current by using Ohm s law. You will verify your results with a multimeter. DISCUSSION

More information

RESISTANCE & OHM S LAW (PART I

RESISTANCE & OHM S LAW (PART I RESISTANCE & OHM S LAW (PART I and II) Objectives: To understand the relationship between potential and current in a resistor and to verify Ohm s Law. To understand the relationship between potential and

More information

Strand G Unit 3: Electrical Circuits. Introduction. Learning Objectives. Introduction. Key Facts and Principles.

Strand G Unit 3: Electrical Circuits. Introduction. Learning Objectives. Introduction. Key Facts and Principles. Learning Objectives At the end of this unit you should be able to; Represent an electrical circuit using a circuit diagram. Correctly identify common components in a circuit diagram. Calculate current,

More information

A resistor adds resistance to a circuit. Describe what the effect of adding resistance would have on the current flowing in the circuit.

A resistor adds resistance to a circuit. Describe what the effect of adding resistance would have on the current flowing in the circuit. A. Current, Potential Difference and Resistance 1a A student builds a circuit. The circuit is shown in Figure 1. Label the components shown in Figure 1. (3) Figure 1 Voltmeter Power Supply Diode Resistor

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 20 Electric Circuits 1 20.1 Electromotive Force and Current In an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges

More information

Pre-LAB 5 Assignment

Pre-LAB 5 Assignment Name: Lab Partners: Date: Pre-LA 5 Assignment Fundamentals of Circuits III: Voltage & Ohm s Law (Due at the beginning of lab) Directions: Read over the Lab Fundamentals of Circuits III: Voltages :w & Ohm

More information

ELECTRIC CIRCUITS. 1. Which one of the following situations results in a conventional electric current that flows westward?

ELECTRIC CIRCUITS. 1. Which one of the following situations results in a conventional electric current that flows westward? chapter ELECTRIC CIRCUITS www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 20.1 Electromotive Force and Current Section 20.2 Ohm s Law 1. Which one of the following

More information

Q2. Figure 1 shows the oscilloscope trace an alternating current (a.c.) electricity supply produces.

Q2. Figure 1 shows the oscilloscope trace an alternating current (a.c.) electricity supply produces. SERIES AND PARALEL CIRCUITS Q1. A student set up the electrical circuit shown in the figure below. (a) The ammeter displays a reading of 0.10 A. Calculate the potential difference across the 45 Ω resistor.

More information

Summer Vacation Homework Physics O'3

Summer Vacation Homework Physics O'3 Summer vacation Homework Physics O'3 1 (a) A sound wave in air consists of alternate compressions and rarefactions along its path. Explain how a compression differs from a rarefaction. 1 Explain, in terms

More information

Unit 7 Parallel Circuits

Unit 7 Parallel Circuits Unit 7 Parallel Circuits Objectives: Unit 7 Parallel Circuits Discuss the characteristics of parallel circuits. State the three rules for solving electrical values of resistance for parallel circuits.

More information

Period 12 Activity Sheet Solutions: Electric Circuits

Period 12 Activity Sheet Solutions: Electric Circuits Period 2 Activity Sheet Solutions: Electric Circuits Activity 2.: How are Voltage, Current, and Resistance Related? a) Data Collection Connect the DC power supply to the thin 30 cm length of nichrome wire.

More information

INTRODUCTION TO CIRCUITS NOTES

INTRODUCTION TO CIRCUITS NOTES INTRODUCTION TO CIRCUITS NOTES WHAT IS A CIRCUIT? For electricity to flow from a battery to light up a light bulb, there must be a complete path from the positive terminal on top of the battery to the

More information

The answer is R= 471 ohms. So we can use a 470 ohm or the next higher one, a 560 ohm.

The answer is R= 471 ohms. So we can use a 470 ohm or the next higher one, a 560 ohm. Introducing Resistors & LED s P a g e 1 Resistors are used to adjust the voltage and current in a circuit. The higher the resistance value, the more electrons it blocks. Thus, higher resistance will lower

More information

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012 SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

More information

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering MEMS1082 Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Bipolar Transistor Construction npn BJT Transistor Structure npn BJT I = I + E C I B V V BE CE = V = V B C V V E E Base-to-emitter

More information

Resistors & Circuits. Module 4.0 Current & Voltage. Module. Current & Voltage in Resistor Networks

Resistors & Circuits. Module 4.0 Current & Voltage.  Module. Current & Voltage in Resistor Networks Module 4 www.learnabout-electronics.org Resistors & Circuits Module 4.0 Current & Voltage What you ll learn in Module 4.0 After studying this section, you should be able to: Describe the distribution of

More information

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt Electric Circuits Quantity Symbol Units Charge Q,q coulomb (C) Alternate Units Formula Electric Potential V volt (V) 1 V = 1 J/C V = E P /q V = W/q Work, energy W, E P joule (J) W = qv E P = qv Current

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 7 LAMPS OBJECTIVES The purpose of this experiment is to introduce the concept of resistance change

More information

Topic 4 Exam Questions Resistance

Topic 4 Exam Questions Resistance IGCSE Physics Topic 4 Exam Questions Resistance Name: 44 marks Q2.A light meter is used to check the light levels during a cricket match. Figure shows a cricket umpire using a light meter. Figure (a) Some

More information

Electric Current & DC Circuits

Electric Current & DC Circuits Electric Current & DC Circuits PSI AP Physics B Name Multiple-Choice 1. The length of an aluminum wire is quadrupled and the radius is doubled. By which factor does the resistance change? (A) 2 (B) 4 (C)

More information

Series Circuit. Addison Danny Chris Luis

Series Circuit. Addison Danny Chris Luis Series Circuit Addison Danny Chris Luis Series A circuit is in series whenever the current (flow of charge) is in sequence An example of this could be a person holding a screwdriver. The charge from the

More information

Series and parallel resistances

Series and parallel resistances Series and parallel resistances Objectives Calculate the equivalent resistance for resistors connected in both series and parallel combinations. Construct series and parallel circuits of lamps (resistors).

More information

Activity Electrical Circuits Simulation

Activity Electrical Circuits Simulation Activity 1.2.3 Electrical Circuits Simulation Introduction Since the late 1800s, engineers have designed systems to utilize electrical energy due to its ability to be converted, stored, transmitted, and

More information

VISUAL PHYSICS ONLINE. Experiment PA41A ELECTRIC CIRCUITS

VISUAL PHYSICS ONLINE. Experiment PA41A ELECTRIC CIRCUITS VISUAL PHYSICS ONLINE Experiment PA41A ELECTRIC CIRCUITS Equipment (see Appendices) 12V DC power supply (battery): multimeter (and/or milliammeter and voltmeter); electrical leads; alligator clips; fixed

More information

General Licensing Class Circuits

General Licensing Class Circuits General Licensing Class Circuits Valid July 1, 2011 Through June 30, 2015 1 Amateur Radio General Class Element 3 Course Presentation ELEMENT 3 SUB-ELEMENTS (Groupings) Your Passing CSCE Your New General

More information

Circuits. What is Ohm s law? Section 1: Ohm s Law. Suggested Film. Extension Questions. Q1. What is current? Q2. What is voltage?

Circuits. What is Ohm s law? Section 1: Ohm s Law. Suggested Film. Extension Questions. Q1. What is current? Q2. What is voltage? Circuits PHYSICS ELECTRICITY AND CIRCUITS CIRCUITS Section 1: Ohm s Law What is Ohm s law? Ohm s law gives the relation between current, resistance and voltage. It states that the current which fl ows

More information

Current Electricity. What is Current Electricity? Electrical Circuits Electrochemical Cells. Wet, Dry and Fuel Cells

Current Electricity. What is Current Electricity? Electrical Circuits Electrochemical Cells. Wet, Dry and Fuel Cells Current Electricity What is Current Electricity? Electrical Circuits Electrochemical Cells Wet, Dry and Fuel Cells Current Electricity Current Electricity continuous flow of electrons in a closed circuit

More information

ENGR 1181 Lab 3: Circuits

ENGR 1181 Lab 3: Circuits ENGR 1181 Lab 3: Circuits - - Lab Procedure - Report Guidelines 2 Overview of Circuits Lab: The Circuits Lab introduces basic concepts of electric circuits such as series and parallel circuit, used in

More information

Vocabulary. Electric Current. Electric Circuit. Open Circuit. Conductors. Insulators. Ohm s Law Current. Voltage. Resistance.

Vocabulary. Electric Current. Electric Circuit. Open Circuit. Conductors. Insulators. Ohm s Law Current. Voltage. Resistance. Vocabulary Term Electric Current Definition Electric Circuit Open Circuit Conductors Insulators Ohm s Law Current Voltage Resistance Electrical Power Series Circuit Parallel Circuit Page 1 Symbols Used

More information

Book page Syllabus 2.8, 2.9, Series and parallel circuits

Book page Syllabus 2.8, 2.9, Series and parallel circuits Book page 77 79 Syllabus 2.8, 2.9, 2.14 Series and parallel circuits Find the Fib! (1) The symbol for a bulb is (2) In a parallel circuit potential difference is the same as the supply voltage on all branches.

More information

ANSWERS AND MARK SCHEMES. (a) 3 A / 2 1 = 1.5 A 1. (b) 6 V 1. (c) resistance = V / I 1 = 6 / (b) I = V / R 1 = 3 / 15 1 = 0.

ANSWERS AND MARK SCHEMES. (a) 3 A / 2 1 = 1.5 A 1. (b) 6 V 1. (c) resistance = V / I 1 = 6 / (b) I = V / R 1 = 3 / 15 1 = 0. QUESTIONSHEET (a) 3 A / 2 =.5 A (b) 6 V (c) resistance = V / I = 6 /.5 = 4 Ω QUESTIONSHEET 2 TOTAL / 6 (a) 5 Ω + 0 Ω = 5 Ω (b) I = V / R = 3 / 5 = 0.2 A Units are essential in calculations. Sometimes eamination

More information

30V 30 R1 120V R V 30 R1 120V. Analysis of a single-loop circuit using the KVL method

30V 30 R1 120V R V 30 R1 120V. Analysis of a single-loop circuit using the KVL method Analysis of a singleloop circuit using the KVL method Below is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power delivered

More information

Series and Parallel Circuits Basics 1

Series and Parallel Circuits Basics 1 1 Name: Symbols for diagrams Directions: 1. Log on to your computer 2. Go to the following website: http://phet.colorado.edu/en/simulation/-construction-kit-dc Click the button that says Play with sims

More information

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit.

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit. OHM S LW OBJECTIES: PRT : 1) Become familiar with the use of ammeters and voltmeters to measure DC voltage and current. 2) Learn to use wires and a breadboard to build circuits from a circuit diagram.

More information

Experiment 1: Circuits Experiment Board

Experiment 1: Circuits Experiment Board 01205892C AC/DC Electronics Laboratory Experiment 1: Circuits Experiment Board EQUIPMENT NEEDED: AC/DC Electronics Lab Board: Wire Leads Dcell Battery Graph Paper Purpose The purpose of this lab is to

More information

charge time Electric Current and Circuits Current HEAT will flow if there is a difference in temperature

charge time Electric Current and Circuits Current HEAT will flow if there is a difference in temperature Electric Current and Circuits Electrons will flow if there is a difference in electric pressure. Electric pressure is called Potential, and is measured in Volts. If there is no difference in pressure from

More information

Forces and Electrical Charges

Forces and Electrical Charges CHAPTER 7 BLM 3-8 Forces and Electrical Charges Goal Review your knowledge of electric charge and its interaction with conductors, insulators, and electroscopes. Answer the questions that follow. 1. Classify

More information

Radio and Electronics Fundamentals

Radio and Electronics Fundamentals Amateur Radio License Class Radio and Electronics Fundamentals Presented by Steve Gallafent September 26, 2007 Radio and Electronics Fundamentals Voltage, Current, and Resistance Electric current is the

More information

Exercise 12. Semiconductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to semiconductors. The diode

Exercise 12. Semiconductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to semiconductors. The diode Exercise 12 Semiconductors EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of a diode. You will learn how to use a diode to rectify ac voltage to produce

More information

Basic Electronics Course Part 2

Basic Electronics Course Part 2 Basic Electronics Course Part 2 Simple Projects using basic components Including Transistors & Pots Following are instructions to complete several electronic exercises Image 7. Components used in Part

More information

Applications of diodes

Applications of diodes Applications of diodes Learners should be able to: (a) describe the I V characteristics of a silicon diode (b) describe the use of diodes for component protection in DC circuits and half-wave rectification

More information

Unit 4: Electricity (Part 1)

Unit 4: Electricity (Part 1) Unit 4: Electricity (Part 1) Learning Outcomes Students should be able to: 1. Explain what is meant by current, potential difference and resistance, stating their units 2. Draw and interpret circuit diagrams

More information

The following symbols are used in electric circuits:

The following symbols are used in electric circuits: Circuit Electricity The following symbols are used in electric circuits: Four devices are commonly used in the laboratory to study Ohm s law: the battery, the voltmeter, the ammeter and a resistance. The

More information

CURRENT ELECTRICITY. 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour Ans: c

CURRENT ELECTRICITY. 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour Ans: c CURRENT ELECTRICITY 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour 2. Electric pressure is also called (a) resistance (b) power (c) voltage (d) energy 3. The substances which

More information

ENGR4300 Fall 2005 Test 4A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points)

ENGR4300 Fall 2005 Test 4A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points) ENGR4300 Fall 2005 Test 4A Name Section Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points) Total (100 points): Please do not write on the crib sheets. On all questions:

More information

Downloaded from

Downloaded from Question 1: What does an electric circuit mean? An electric circuit consists of electric devices, switching devices, source of electricity, etc. that are connected by conducting wires. Question 2: Define

More information

Introduction to Engineering ENGR Electrical Engineering. Dr. Coates

Introduction to Engineering ENGR Electrical Engineering. Dr. Coates Introduction to Engineering ENG 1100 - Electrical Engineering Dr. Coates Branches of Electrical Engineering Circuits/Microelectronics Communications Computer Hardware and Software, Digital Logic, Microprocessor

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Experiment 26 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits LabQuest 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are

More information

Lab. 1: Simple Linear Circuit Analysis

Lab. 1: Simple Linear Circuit Analysis Lab. 1: Simple Linear Circuit Analysis Philippe Piot (February 9th, 27) 1. Ohm's Law The circuit shown in Figure 1 was built with resistance R=1 and then 1 kω. For these two values of the resistance, the

More information

Example 25 1: A total charge of 25 C passes through a wire every 5 seconds. What is the current in this wire?

Example 25 1: A total charge of 25 C passes through a wire every 5 seconds. What is the current in this wire? 1 PHYS:100 LECTUE 5 ELECTICITY AND MAGNETISM (3) This lecture is devoted entirely to the very practical topic of electric circuits. This discussion will include concepts that everyone should be aware of,

More information

Exercise 9. Electromagnetism and Inductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Magnetism, magnets, and magnetic field

Exercise 9. Electromagnetism and Inductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Magnetism, magnets, and magnetic field Exercise 9 Electromagnetism and Inductors EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the concepts of magnetism, magnets, and magnetic field, as well as electromagnetism

More information

Putting it All Together

Putting it All Together Putting it All Together 1. Vocabulary Review Write the term that correctly completes each statement. Use each term once. ampere electric current resistor battery series connection parallel connection electric

More information

EE 42/100 Lecture 16: Inductance. Rev B 3/15/2010 (8:55 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 16: Inductance. Rev B 3/15/2010 (8:55 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 16 p. 1/23 EE 42/100 Lecture 16: Inductance ELECTRONICS Rev B 3/15/2010 (8:55 PM) Prof. Ali M. Niknejad University of California, Berkeley

More information

Exercise 3: Ohm s Law Circuit Voltage

Exercise 3: Ohm s Law Circuit Voltage Ohm s Law DC Fundamentals Exercise 3: Ohm s Law Circuit Voltage EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine voltage by using Ohm s law. You will verify your

More information

Prof. Hala J. El Khozondar Spring 2016

Prof. Hala J. El Khozondar Spring 2016 Technical English Unit 43 professional english Current, voltage and resistance Prof. Hala J. El Khozondar Spring 2016 Content A. Electric current B. Voltage and resistance C. Electrical power 2 A. Electric

More information

END-OF-SUBCOURSE EXAMINATION

END-OF-SUBCOURSE EXAMINATION END-OF-SUBCOURSE EXAMINATION Circle the letter of the correct answer to each question. When you have answered all of the questions, use a Number 2 pencil to transfer your answers to the TSC Form 59. 1.

More information

Pre-Laboratory Assignment

Pre-Laboratory Assignment Measurement of Electrical Resistance and Ohm's Law PreLaboratory Assignment Read carefully the entire description of the laboratory and answer the following questions based upon the material contained

More information

Lab 2: Blinkie Lab. Objectives. Materials. Theory

Lab 2: Blinkie Lab. Objectives. Materials. Theory Lab 2: Blinkie Lab Objectives This lab introduces the Arduino Uno as students will need to use the Arduino to control their final robot. Students will build a basic circuit on their prototyping board and

More information

A practical introduction to electronics for anyone in any field of practice Voltage, Current, Resistance, Power, & Diodes

A practical introduction to electronics for anyone in any field of practice Voltage, Current, Resistance, Power, & Diodes A practical introduction to electronics for anyone in any field of practice Voltage, Current, Resistance, Power, & Diodes 1 Basic Electronics What is considered to be a basic level of understanding for

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 2 BASIC CIRCUIT ELEMENTS OBJECTIVES The purpose of this experiment is to familiarize the student with

More information

A.C. Circuits -- Conceptual Solutions

A.C. Circuits -- Conceptual Solutions A.C. Circuits -- Conceptual Solutions 1.) Charge carriers in a DC circuit move in one direction only. What do charge carriers do in an AC circuit? Solution: The voltage difference between the terminals

More information

Section B: Electricity

Section B: Electricity Section B: Electricity The best way to remember the information in this chapter is to get a pen and paper and write down your answers Electricity - Current - Voltage - Power 1 What is Electricity? 2 What

More information