Binary Outputs: LEDs

Size: px
Start display at page:

Download "Binary Outputs: LEDs"

Transcription

1 Diode Theory Binary Outputs: LEDs A diode allows current to flow in only one direction. A diode consists of a semiconductor pn junction: In Silicon, the number of free electrons is a constant: np n i In p-type silicon, you dope the silicon with Boron, with a typical doping of atoms per cc p p n p n i 2 p In n-type silicon, the doping is Phosphorus, resulting in n n p n At the pn junction, some electrons and holes are created through thermal electrons. This is a small number, however, so assume it's zero. If electrons and holes are not created, current can only flow by electrons and holes flowing towards the pn junction (where they combine and disappear). Assume the current is flowing from the p-side to the n-side (the left figure below.) In this case, you are using majority carriers, so there are approximately charge carriers. Now, assume the current is flowing from the n-side to the p-side. In this case, you are using minority carriers, resulting in only charge carriers. If the diode has a resistance of 1 when using majority carriers (current p to n), it has a resistance of 44M when using minority carriers (!). A diode only allows current to flow from p to n Current Flow Current p n p n holes electrons electrons holes Low Z High Z majority carriers: # charge carriers = minority carriers: # charge carriers = September 6, 2017

2 Sidelight: The above discussion is a little off when dealing with reverse biased diodes. There are actually two types of current flow: drift current like what's described above, and electron-hole generation in the depletion zone, which is ignored in the above discussion. When forward biased, the number of electrons created in the depletion zone is so small you can ignore it. The depletion zone is small to begin with, and there just aren't that many electron-hole pairs created. When reverse biased, the drift current sees 44M. It doesn't take much to dominate electron-hole generation actually becomes the dominant term for current flow. So, you actually do get a little more current when reverse biased than the above discussion suggests. You can use this 'feature' to your advantage... If you reverse bias a diode, the current flow is related to temperature. This is one way to build a temperture sensor. If you bombard the diode with radiation, current flow will increase as the radiation kicks electrons out of their covalent bonds. This is one way to build a light sensor (photo-transistor) as well as a radiation sensor. With the latter, you can actually see this with an LED. Reverse bias an LED and measure the current flow. Shine a like LED on that LED. The current will increase. 2 September 6, 2017

3 Binary Outputs Using an LED 1W Star LED, 10mm 0.5W White LED, and Piranah RGB LED Light Emitting Diodes (LED's) can be used to display the status of an output pin on the PIC chip. LED's Are diodes, allowing current to only flow in one direction, They convert current to light.(light is proportional to current flow), and They are very fast, capable of over 1000 flashes per second. The LEDs that are in room 211 are as follows: Part # Color Current Typical Vf Typical mcd Wavelength (nm) Price ea 1W White Star LED 350mA 3.4V 100 lm n/a $ W 10mm White LED 100mA 3.3V 25 lm n/a $0.30 Piranah RGB LED Red 20mA 1.8V 8000 mcd 630 nm $0.31 Green 20mA 3.0V 8000 mcd 525 nm Blue 20mA 3.0V 8000 mcd 470 nm V f is the turn-on voltage for this LED. If the first diode is on, the ideal diode model would have a 3.4V drop across the diode. Typical mcd refers to the efficiency of the diode (mcd is a unit of light intensity). Wavelength is the average wavelength of the light from the LED (a more precise definition of the color than the term 'red'). Note that the PIC processor can only output 25mA. To drive the white LEDs at full power, you'll need to add an amplifier (coming up later when we talk about transistors). A PIC can drive these at a lower brightness level (25mA). Also note that the actual voltage across the diode varies with the current as show in the following figure. Since this is a diode, the VI characteristics are exponential in nature: (from ECE 321) I d I dss exp 1 V d nv T This is shown for a Germanium diode, silicon diode, and three LEDs with Vf = 1.7V, 2.8V, and 4.0V. As a rough approximation, the voltage across the diode is almost constant when Id > 0. This isn't exact, but it is close and makes analysis a lot easier. 3 September 6, 2017

4 Id Vd Two types of circuits are used to drive the LED - depending upon whether you want to output a '1' or '0' to turn on the LED: PIC Output Pin R Id + - Vf PIC Output Pin R Id Vf 1 = 'ON' 0 = 'Off' 0 = 'ON' 1 = 'Off' R is selected to set the brightness of the LED when turned on. 4 September 6, 2017

5 Example: Determine the brightness of a red LED when connected to +5V through a 1k resistor: Solution: Assuming an ideal diode, the current flowing is I d 5V 1.8V 1k 3.2mA The brightness for this LED is then Brightness 3.2mA 20mA 8000mcd 1280mcd Example: Design a circuit which outputs 100mcd from a green LED Solution: The required current flow is I d 100mcd 8000mcd 20mA I d 0.25mA This sets R: Assuming an ideal diode, I d 5V 3.0V R R 8000 More Fun with RGB LEDs If you mix a red, green, and blue LED, you can make other colors by mixing them. (RGB are the primary colors in light). If you can adjust the brightness of each one with N grey levels, you are able to output N 3 combinations. The Piranah LEDs combine three LEDs in a single package as follows. Using three resistors, you can turn on and off each LED separately with a PIC processor. RC2 RC1 RC0 Ir Ig Ib Rr Rg Rb 1.8V 3.0V 3.0V red green blue Piranah Package Connection to a PIC 5 September 6, 2017

6 Problem 1: LED Flashlight. Design a system which allows you to output 4 different colors based upon which button you press: RB0 All lights off RB1 Red light on RB2 Green light on RB3 Blue light on Define "on" to be 20mA. Hardware Solution: Connect the Pirannah LED to the PIC board as follows. Pick the three resistors so that 20mA is flowing when the output pin is 5V. Software Solution: ; --- Flashlight.asm ---- ; This program drives an RGB flashlight based upon the button pressed COLOR equ 0 #include <p18f4620.inc> Loop: org 0x800 call Init movf COLOR,W btfsc PORTB,0 ; if RB0 pressed, color = 000 (off) 0 btfsc PORTB,1 ; if RB1 pressed, color = 001 (blue) 1 btfsc PORTB,2 ; if RB2 pressed, color = 010 (green) btfsc PORTB,3 ; if RB3 pressed, color = 100 (red) 4 movwf COLOR ; send the color to PORTC movff COLOR, PORTC goto Loop Init: movwf clrf movwf clrf return end 0xFF TRISB TRISC 0x0F ADCON1 COLOR 6 September 6, 2017

7 Problem #2: Make the LEDs only 25% on (2000 mcd each). Hardware Solution: Change the resistor. Software Solution: Change the code so that each pin is high 1/4th of the time. ; --- Flashlight.asm ---- ; This program drives an RGB flashlight based upon the button pressed COLOR equ 0 CNT1 equ 1 #include <p18f4620.inc> Loop: org 0x800 call Init clrf PORTC ; Turn off the lights for three counts call Wait call Wait call Wait movf COLOR,W btfsc PORTB,0 ; if RB0 pressed, color = 000 (off) 0 btfsc PORTB,1 ; if RB1 pressed, color = 001 (blue) 1 btfsc PORTB,2 ; if RB2 pressed, color = 010 (green) btfsc PORTB,3 ; if RB3 pressed, color = 100 (red) 4 movwf COLOR ; send the color to PORTC movff COLOR, PORTC call Wait ; Turn on for one count Init: goto movwf clrf movwf clrf return Loop 0xFF TRISB TRISC 0x0F ADCON1 COLOR Wait: Loop: movwl 250 movwf CNT1 decfsz goto return end CNT1,F Loop ; waste 25,005 clocks (2.5ms) 7 September 6, 2017

8 If you change the code so that the lights are 5% on (PORTB), 20% (PORTC), and 90% (PORTD), it looks like the following. Note that it looks like the LEDs are variable brightness. Assembler Code - Modified so that PORTB is on 5% of the time, PORTC is on 20% of the time, PORTD is on 90% of the time On an oscilloscope, you can see this better; Signal for 5% Duty Cycle: 8 September 6, 2017

9 Signal for 20% Duty Cycle: Signal for 90% Duty Cycle: 9 September 6, 2017

Embedded Systems. Interfacing PIC with external devices Analog to digital Converter. Eng. Anis Nazer Second Semester

Embedded Systems. Interfacing PIC with external devices Analog to digital Converter. Eng. Anis Nazer Second Semester Embedded Systems Interfacing PIC with external devices Analog to digital Converter Eng. Anis Nazer Second Semester 2016-2017 What is the time? What is the time? Definition Analog: can take any value Digital:

More information

Hashemite University Faculty of Engineering Mechatronics Engineering Department. Microprocessors and Microcontrollers Laboratory

Hashemite University Faculty of Engineering Mechatronics Engineering Department. Microprocessors and Microcontrollers Laboratory Hashemite University Faculty of Engineering Mechatronics Engineering Department Microprocessors and Microcontrollers Laboratory The Hashemite University Faculty of Engineering Department of Mechatronics

More information

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud Electronic Circuits I Instructor: Dr. Alaa Mahmoud alaa_y_emam@hotmail.com Chapter 27 Diode and diode application Outline: Semiconductor Materials The P-N Junction Diode Biasing P-N Junction Volt-Ampere

More information

Diode Limiters or Clipper Circuits

Diode Limiters or Clipper Circuits Diode Limiters or Clipper Circuits Circuits which are used to clip off portions of signal voltages above or below certain levels are called limiters or clippers. Types of Clippers Positive Clipper Negative

More information

Transistors, Gates and Busses 3/21/01 Lecture #

Transistors, Gates and Busses 3/21/01 Lecture # Transistors, Gates and Busses 3/2/ Lecture #8 6.7 The goal for today is to understand a bit about how a computer actually works: how it stores, adds, and communicates internally! How transistors make gates!

More information

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng.

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng. Laboratory No. 01: Small & Large Signal Diode Circuits Electrical Enginnering Departement By: Dr. Awad Al-Zaben Instructor: Eng. Tamer Shahta Electronics Laboratory EE 3191 February 23, 2014 I. OBJECTIVES

More information

Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors

Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors Discuss covalent bonding Describe the properties of both p and n type materials Discuss both forward

More information

Ch5 Diodes and Diodes Circuits

Ch5 Diodes and Diodes Circuits Circuits and Analog Electronics Ch5 Diodes and Diodes Circuits 5.1 The Physical Principles of Semiconductor 5.2 Diodes 5.3 Diode Circuits 5.4 Zener Diode References: Floyd-Ch2; Gao-Ch6; 5.1 The Physical

More information

Lecture 7:PN Junction. Structure, Depletion region, Different bias Conditions, IV characteristics, Examples

Lecture 7:PN Junction. Structure, Depletion region, Different bias Conditions, IV characteristics, Examples Lecture 7:PN Junction Structure, Depletion region, Different bias Conditions, IV characteristics, Examples PN Junction The diode (pn junction) is formed by dopping a piece of intrinsic silicon, such that

More information

CHAPTER FORMULAS & NOTES

CHAPTER FORMULAS & NOTES Formulae For u SEMICONDUCTORS By Mir Mohammed Abbas II PCMB 'A' 1 Important Terms, Definitions & Formulae CHAPTER FORMULAS & NOTES 1 Intrinsic Semiconductor: The pure semiconductors in which the electrical

More information

Diode Bridges. Book page

Diode Bridges. Book page Diode Bridges Book page 450-454 Rectification The process of converting an ac supply into dc is called rectification The device that carries this out is called a rectifier Half wave rectifier only half

More information

EC T34 ELECTRONIC DEVICES AND CIRCUITS

EC T34 ELECTRONIC DEVICES AND CIRCUITS RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY PONDY-CUDDALORE MAIN ROAD, KIRUMAMPAKKAM-PUDUCHERRY DEPARTMENT OF ECE EC T34 ELECTRONIC DEVICES AND CIRCUITS II YEAR Mr.L.ARUNJEEVA., AP/ECE 1 PN JUNCTION

More information

CHAPTER SEMI-CONDUCTING DEVICES QUESTION & PROBLEM SOLUTIONS

CHAPTER SEMI-CONDUCTING DEVICES QUESTION & PROBLEM SOLUTIONS Solutions--Ch. 15 (Semi-conducting Devices) CHAPTER 15 -- SEMI-CONDUCTING DEVICES QUESTION & PROBLEM SOLUTIONS 15.1) What is the difference between a conductor and a semi-conductor? Solution: A conductor

More information

Lecture 3: Diodes. Amplitude Modulation. Diode Detection.

Lecture 3: Diodes. Amplitude Modulation. Diode Detection. Whites, EE 322 Lecture 3 Page 1 of 10 Lecture 3: Diodes. Amplitude Modulation. Diode Detection. Diodes are the fourth basic discrete component listed in Lecture 2. These and transistors are both nonlinear

More information

EE70 - Intro. Electronics

EE70 - Intro. Electronics EE70 - Intro. Electronics Course website: ~/classes/ee70/fall05 Today s class agenda (November 28, 2005) review Serial/parallel resonant circuits Diode Field Effect Transistor (FET) f 0 = Qs = Qs = 1 2π

More information

Electron Devices and Circuits (EC 8353)

Electron Devices and Circuits (EC 8353) Electron Devices and Circuits (EC 8353) Prepared by Ms.S.KARKUZHALI, A.P/EEE Diodes The diode is a 2-terminal device. A diode ideally conducts in only one direction. Diode Characteristics Conduction Region

More information

Chapter Semiconductor Electronics

Chapter Semiconductor Electronics Chapter Semiconductor Electronics Q1. p-n junction is said to be forward biased, when [1988] (a) the positive pole of the battery is joined to the p- semiconductor and negative pole to the n- semiconductor

More information

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Lecture outline Historical introduction Semiconductor devices overview Bipolar Junction Transistor (BJT) Field

More information

EDC Lecture Notes UNIT-1

EDC Lecture Notes UNIT-1 P-N Junction Diode EDC Lecture Notes Diode: A pure silicon crystal or germanium crystal is known as an intrinsic semiconductor. There are not enough free electrons and holes in an intrinsic semi-conductor

More information

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices The Diode The diodes are rarely explicitly used in modern integrated circuits However, a MOS transistor contains at least two reverse biased

More information

Downloaded from

Downloaded from Question 14.1: In an n-type silicon, which of the following statement is true: (a) Electrons are majority carriers and trivalent atoms are the dopants. (b) Electrons are minority carriers and pentavalent

More information

MicroToys Guide: Motors N. Pinckney April 2005

MicroToys Guide: Motors N. Pinckney April 2005 Introduction Three types of motors are applicable to small projects: DC brushed motors, stepper motors, and servo motors. DC brushed motors simply rotate in a direction dependent on the flow of current.

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

EE/COE 152: Basic Electronics. Lecture 3. A.S Agbemenu. https://sites.google.com/site/agbemenu/courses/ee-coe-152

EE/COE 152: Basic Electronics. Lecture 3. A.S Agbemenu. https://sites.google.com/site/agbemenu/courses/ee-coe-152 EE/COE 152: Basic Electronics Lecture 3 A.S Agbemenu https://sites.google.com/site/agbemenu/courses/ee-coe-152 Books: Microelcetronic Circuit Design (Jaeger/Blalock) Microelectronic Circuits (Sedra/Smith)

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo Colantonio A.A. 2015-16 Introduction: materials Conductors e.g. copper or aluminum have a cloud

More information

Section:A Very short answer question

Section:A Very short answer question Section:A Very short answer question 1.What is the order of energy gap in a conductor, semi conductor, and insulator?. Conductor - no energy gap Semi Conductor - It is of the order of 1 ev. Insulator -

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET SEMICONDUCT ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS Class XII : PHYSICS WKSHEET 1. How is a n-p-n transistor represented symbolically? (1) 2. How does conductivity of a semiconductor change

More information

Physics 160 Lecture 5. R. Johnson April 13, 2015

Physics 160 Lecture 5. R. Johnson April 13, 2015 Physics 160 Lecture 5 R. Johnson April 13, 2015 Half Wave Diode Rectifiers Full Wave April 13, 2015 Physics 160 2 Note that there is no ground connection on this side of the rectifier! Output Smoothing

More information

More Fun with A/D Converters

More Fun with A/D Converters More Fun with A/D Converters The A/D input allows you to input numbers (0 to 1023) into the PIC processor with a potentiometer. This illustrates some of the things this allows you to do: Electronic Trombone:

More information

REV NO EXPERIMENT NO 1 AIM: To study the PN junction diode characteristics under Forward & Reverse bias conditions. APPARATUS REQUIRED:

REV NO EXPERIMENT NO 1 AIM: To study the PN junction diode characteristics under Forward & Reverse bias conditions. APPARATUS REQUIRED: KARNAL INSTITUTE OF TECHNOLOGY & MANAGEMENT KUNJPURA, KARNAL LAB MANUAL OF ------- SUBJECT CODE DATE OF ISSUE: SEMESTER: BRANCH: REV NO EXPERIMENT NO 1 AIM: To study the PN junction diode characteristics

More information

PHYS 3050 Electronics I

PHYS 3050 Electronics I PHYS 3050 Electronics I Chapter 4. Semiconductor Diodes and Transistors Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Associate Professor of Space Engineering Department of Earth and Space Science and

More information

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood Electronic I Lecture 2 p-n junction Diode characteristics By Asst. Prof Dr. Jassim K. Hmood THE p-n JUNCTION DIODE The pn junction diode is formed by fabrication of a p-type semiconductor region in intimate

More information

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is 1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is A [ ]) the diode is open. B [ ]) the diode is shorted to ground. C [v]) the diode is

More information

PN Junction Diode Table of Contents. What Are Diodes Made Out Of?

PN Junction Diode Table of Contents. What Are Diodes Made Out Of? PN Junction iode Table of Contents What are diodes made out of?slide 3 N-type materialslide 4 P-type materialslide 5 The pn junctionslides 6-7 The biased pn junctionslides 8-9 Properties of diodesslides

More information

Lecture 8 Optical Sensing. ECE 5900/6900 Fundamentals of Sensor Design

Lecture 8 Optical Sensing. ECE 5900/6900 Fundamentals of Sensor Design ECE 5900/6900: Fundamentals of Sensor Design Lecture 8 Optical Sensing 1 Optical Sensing Q: What are we measuring? A: Electromagnetic radiation labeled as Ultraviolet (UV), visible, or near,mid-, far-infrared

More information

;;;;;;; Variables ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; cblock Bank0RAM ;Temporary storage for STATUS during interrupts

;;;;;;; Variables ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; cblock Bank0RAM ;Temporary storage for STATUS during interrupts TotPrgm2 Senior Design Program for Total Project (LED and Motor Control) Hayden Callender list P=PIC16F877, F=INHX8M, C=160, N=77, ST=OFF, MM=OFF, R=DEC, X=OFF #include P16F877.inc config(_cp_off & _PWRTE_ON

More information

Electronic devices-i. Difference between conductors, insulators and semiconductors

Electronic devices-i. Difference between conductors, insulators and semiconductors Electronic devices-i Semiconductor Devices is one of the important and easy units in class XII CBSE Physics syllabus. It is easy to understand and learn. Generally the questions asked are simple. The unit

More information

HOTS (ELECTRONIC DEVICES) 1.Determine the current through resistance R in each circuit.

HOTS (ELECTRONIC DEVICES) 1.Determine the current through resistance R in each circuit. HOTS (ELECTRONIC DEVICES) 1.Determine the current through resistance R in each circuit. Diodes D1 and D2 are identical and ideal. Sol. In circuit (i) Both D1 and D2 are forward baiased hence both will

More information

Unit 2 Semiconductor Devices. Lecture_2.5 Opto-Electronic Devices

Unit 2 Semiconductor Devices. Lecture_2.5 Opto-Electronic Devices Unit 2 Semiconductor Devices Lecture_2.5 Opto-Electronic Devices Opto-electronics Opto-electronics is the study and application of electronic devices that interact with light. Electronics (electrons) Optics

More information

Class XII - Physics Semiconductor Electronics. Chapter-wise Problems

Class XII - Physics Semiconductor Electronics. Chapter-wise Problems lass X - Physics Semiconductor Electronics Materials, Device and Simple ircuit hapter-wise Problems Multiple hoice Question :- 14.1 The conductivity of a semiconductor increases with increase in temperature

More information

GCE A level 1145/01 ELECTRONICS ET5

GCE A level 1145/01 ELECTRONICS ET5 Surname Other Names Centre Number 2 Candidate Number GCE A level 1145/01 ELECTRONICS ET5 A.M. WEDNESDAY, 12 June 2013 1½ hours ADDITIONAL MATERIALS In addition to this examination paper, you will need

More information

Physics of Bipolar Transistor

Physics of Bipolar Transistor Physics of Bipolar Transistor Motivations - In many electronic applications, amplifier is the most fundamental building block. Ex Audio amplifier: amplifies electric signal to drive a speaker RF Power

More information

Energy band diagrams Metals: 9. ELECTRONIC DEVICES GIST ρ= 10-2 to 10-8 Ω m Insulators: ρ> 10 8 Ω m Semiconductors ρ= 1 to 10 5 Ω m 109 A. Intrinsic semiconductors At T=0k it acts as insulator At room

More information

Lesson 08. Name and affiliation of the author: Professor L B D R P Wijesundera Department of Physics, University of Kelaniya.

Lesson 08. Name and affiliation of the author: Professor L B D R P Wijesundera Department of Physics, University of Kelaniya. Lesson 08 Title of the Experiment: Identification of active components in electronic circuits and characteristics of a Diode, Zener diode and LED (Activity number of the GCE Advanced Level practical Guide

More information

Chapter 1: Semiconductor Diodes

Chapter 1: Semiconductor Diodes Chapter 1: Semiconductor Diodes Diodes The diode is a 2-terminal device. A diode ideally conducts in only one direction. 2 Diode Characteristics Conduction Region Non-Conduction Region The voltage across

More information

Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors-

Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors- Lesson 5 Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors- Types and Connections Semiconductors Semiconductors If there are many free

More information

Intrinsic Semiconductor

Intrinsic Semiconductor Semiconductors Crystalline solid materials whose resistivities are values between those of conductors and insulators. Good electrical characteristics and feasible fabrication technology are some reasons

More information

UNIT IX ELECTRONIC DEVICES

UNIT IX ELECTRONIC DEVICES UNT X ELECTRONC DECES Weightage Marks : 07 Semiconductors Semiconductors diode-- characteristics in forward and reverse bias, diode as rectifier. - characteristics of LED, Photodiodes, solarcell and Zener

More information

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline:

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: Narrow-Base Diode BJT Fundamentals BJT Amplification Things you should know when you leave Key Questions How does the narrow-base diode multiply

More information

ETEK TECHNOLOGY CO., LTD.

ETEK TECHNOLOGY CO., LTD. Trainer Model: ETEK DCS-6000-07 FSK Modulator ETEK TECHNOLOGY CO., LTD. E-mail: etek21@ms59.hinet.net mlher@etek21.com.tw http: // www.etek21.com.tw Digital Communication Systems (ETEK DCS-6000) 13-1:

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and

More information

Binary Outputs: Transistors Used as a Switch

Binary Outputs: Transistors Used as a Switch Binary Outputs: Transistors Used as a Switch Background A is able to output 5V at 25mA. Some devices require too much power for a to drive these directly. These include: A stepper motor which draws 1A

More information

Diodes and Applications

Diodes and Applications Diodes and Applications Diodes and Applications 2 1 Diode Operation 2 2 Voltage-Current (V-I) Characteristics 2 3 Diode Models 2 4 Half-Wave Rectifiers 2 5 Full-Wave Rectifiers 2 6 Power Supply Filters

More information

ECE-342 Test 1: Sep 27, :00-8:00, Closed Book. Name : SOLUTION

ECE-342 Test 1: Sep 27, :00-8:00, Closed Book. Name : SOLUTION ECE-342 Test 1: Sep 27, 2011 6:00-8:00, Closed Book Name : SOLUTION All solutions must provide units as appropriate. Use the physical constants and data as provided on the formula sheet the last page of

More information

CHAPTER 9: ELECTRONICS

CHAPTER 9: ELECTRONICS CHAPTER 9: ELECTRONICS 9.1 Cathode Rays 9.1.1 Thermionic Emission Thermionic emission is the emission of electrons from a heated metal surface. Factors that influence the rate of thermionic emission: Temperature

More information

Downloaded from

Downloaded from SOLID AND SEMICONDUCTOR DEVICES (EASY AND SCORING TOPIC) 1. Distinction of metals, semiconductor and insulator on the basis of Energy band of Solids. 2. Types of Semiconductor. 3. PN Junction formation

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS. 1. Define diffusion current.

EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS. 1. Define diffusion current. EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS 1. Define diffusion current. A movement of charge carriers due to the concentration gradient in a semiconductor is called process

More information

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014 Q.2 a. State and explain the Reciprocity Theorem and Thevenins Theorem. a. Reciprocity Theorem: If we consider two loops A and B of network N and if an ideal voltage source E in loop A produces current

More information

Electronics I. Midterm #1

Electronics I. Midterm #1 The University of Toledo s6ms_elct7.fm - Electronics I Midterm # Problems Points. 4 2. 5 3. 6 Total 5 Was the exam fair? yes no The University of Toledo s6ms_elct7.fm - 2 Problem 4 points For full credit,

More information

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET).

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Q. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Answer: N-Channel Junction Field Effect Transistor (JFET) Construction: Drain(D)

More information

GCE A level 1145/01 ELECTRONICS ET5. P.M. THURSDAY, 31 May hours. Centre Number. Candidate Number. Surname. Other Names

GCE A level 1145/01 ELECTRONICS ET5. P.M. THURSDAY, 31 May hours. Centre Number. Candidate Number. Surname. Other Names Surname Other Names Centre Number 0 Candidate Number GCE A level 1145/01 ELECTRONICS ET5 P.M. THURSDAY, 31 May 2012 1 1 2 hours For s use Question Maximum Mark Mark Awarded 1. 6 2. 9 3. 8 4. 6 1145 010001

More information

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR!

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR! Diodes: What do we use diodes for? Lecture 5: Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double

More information

Microcontroller Based Inductance Capacitance Meter

Microcontroller Based Inductance Capacitance Meter Microcontroller Based Inductance Capacitance Meter MUDIT AGARWAL This is the Inductance / Capacitance Meters circuit. One can easily build this LC Meter measure inductances starting from mh to 00mH, µh

More information

جامعة اإلسكندرية كلية الهندسة قسم الهندسة الكهربية أبريل ٢٠١٥

جامعة اإلسكندرية كلية الهندسة قسم الهندسة الكهربية أبريل ٢٠١٥ Alexandria University Faculty of Engineering Electrical Engineering Department April 2015 1a EE 132 Electronic Devices and Circuits First Year Time allowed: 1½ hours جامعة اإلسكندرية كلية الهندسة قسم الهندسة

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Final Project Report E3390 Electronic Circuits Design Lab. RFID Access Control System. Jeffrey Mok Joseph Kim

Final Project Report E3390 Electronic Circuits Design Lab. RFID Access Control System. Jeffrey Mok Joseph Kim Final Project Report E3390 Electronic Circuits Design Lab RFID Access Control System Jeffrey Mok Joseph Kim Submitted in partial fulfillment of the requirements for the Bachelor of Science Degree May 11,

More information

Lecture 4. Reading: Chapter EE105 Fall 2007 Lecture 4, Slide 1 Prof. Liu, UC Berkeley

Lecture 4. Reading: Chapter EE105 Fall 2007 Lecture 4, Slide 1 Prof. Liu, UC Berkeley Lecture 4 OUTLNE Bipolar Junction Transistor (BJT) General considerations Structure Operation in active mode Large-signal model and - characteristics Reading: Chapter 4.1-4.4.2 EE105 Fall 2007 Lecture

More information

Page 1. Date 15/02/2013

Page 1. Date 15/02/2013 Page 1 Date 15/02/2013 Final Term Examination Fall 2012 Phy301-Circuit Theory 1. State kirchhoff s current law (KCL) Marks: 2: Answer: (PAGE 42) KIRCHHOF S CURRENT LAW Sum of all the currents entering

More information

ET215 Devices I Unit 4A

ET215 Devices I Unit 4A ITT Technical Institute ET215 Devices I Unit 4A Chapter 3, Section 3.1-3.2 This unit is divided into two parts; Unit 4A and Unit 4B Chapter 3 Section 3.1 Structure of Bipolar Junction Transistors The basic

More information

Light Emitting Diodes

Light Emitting Diodes Light Emitting Diodes Topics covered in this presentation: LED operation LED Characteristics Display devices Protection and limiting 1 of 9 Light Emitting Diode - LED A special type of diode is the Light

More information

Electronics The basics of semiconductor physics

Electronics The basics of semiconductor physics Electronics The basics of semiconductor physics Prof. Márta Rencz, Gábor Takács BME DED 17/09/2015 1 / 37 The basic properties of semiconductors Range of conductivity [Source: http://www.britannica.com]

More information

Stepper Motors & Look Up Table

Stepper Motors & Look Up Table tepper Motors & Look Up Table Unipolar (5 lead) stepper motor from www.mpj.com. stepper motor is a digital motor with two phases and 4, 5, or 6 leads. These leads connect to two sets of electromagets.

More information

Diode as a Temperature Sensor

Diode as a Temperature Sensor M.B. Patil, IIT Bombay 1 Diode as a Temperature Sensor Introduction A p-n junction obeys the Shockley equation, I D = I s e V a/v T 1 ) I s e Va/V T for V a V T, 1) where V a is the applied voltage, V

More information

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3.

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. What is difference between electron and hole? 4. Why electrons have

More information

Semiconductor Diodes

Semiconductor Diodes Semiconductor Diodes A) Motivation and Game Plan B) Semiconductor Doping and Conduction C) Diode Structure and I vs. V D) Diode Circuits Reading: Schwarz and Oldham, Chapter 13.1-13.2 Motivation Digital

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

L MOSFETS, IDENTIFICATION, CURVES. PAGE 1. I. Review of JFET (DRAW symbol for n-channel type, with grounded source)

L MOSFETS, IDENTIFICATION, CURVES. PAGE 1. I. Review of JFET (DRAW symbol for n-channel type, with grounded source) L.107.4 MOSFETS, IDENTIFICATION, CURVES. PAGE 1 I. Review of JFET (DRAW symbol for n-channel type, with grounded source) 1. "normally on" device A. current from source to drain when V G = 0 no need to

More information

ELECTRONIC DEVICES AND CIRCUITS

ELECTRONIC DEVICES AND CIRCUITS ELECTRONIC DEVICES AND CIRCUITS 1. At room temperature the current in an intrinsic semiconductor is due to A. holes B. electrons C. ions D. holes and electrons 2. Work function is the maximum energy required

More information

o Semiconductor Diode Symbol: The cathode contains the N-type material and the anode contains the P-type material.

o Semiconductor Diode Symbol: The cathode contains the N-type material and the anode contains the P-type material. Cornerstone Electronics Technology and Robotics I Week 16 Diodes and Transistor Switches Administration: o Prayer o Turn in quiz Review: o Design and wire a voltage divider that divides your +9 V voltage

More information

Chapter 2. Diodes & Applications

Chapter 2. Diodes & Applications Chapter 2 Diodes & Applications The Diode A diode is made from a small piece of semiconductor material, usually silicon, in which half is doped as a p region and half is doped as an n region with a pn

More information

EASTERN MEDITERRANEAN UNIVERSITY FACULTY OF ENGINEERING Electrical and Electronics Engineering Department

EASTERN MEDITERRANEAN UNIVERSITY FACULTY OF ENGINEERING Electrical and Electronics Engineering Department EASTERN MEDITERRANEAN UNIVERSITY FACULTY OF ENGINEERING Electrical and Electronics Engineering Department Fall 2003-2004 EEE 420 Project Report Ahmet Cem VARDAR 004245 Project Title: Heart Rate Monitor

More information

ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร

ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร EN2042102 วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 5 สารก งต วน า Semiconductor สาขาว ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร Bohr model of an atom As seen

More information

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam Georgia Institute of Technology School of Electrical and Computer Engineering Midterm Exam ECE-3400 Fall 2013 Tue, September 24, 2013 Duration: 80min First name Solutions Last name Solutions ID number

More information

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre EJECICIOS DE COMPONENTES ELECTÓNICOS. 1 er cuatrimestre 2 o Ingeniería Electrónica Industrial Juan Antonio Jiménez Tejada Índice 1. Basic concepts of Electronics 1 2. Passive components 1 3. Semiconductors.

More information

Intro to Electricity. Introduction to Transistors. Example Circuit Diagrams. Water Analogy

Intro to Electricity. Introduction to Transistors. Example Circuit Diagrams. Water Analogy Introduction to Transistors Transistors form the basic building blocks of all computer hardware. Invented by William Shockley, John Bardeen and Walter Brattain in 1947, replacing previous vaccuumtube technology

More information

LAB V. LIGHT EMITTING DIODES

LAB V. LIGHT EMITTING DIODES LAB V. LIGHT EMITTING DIODES 1. OBJECTIVE In this lab you are to measure I-V characteristics of Infrared (IR), Red and Blue light emitting diodes (LEDs). The emission intensity as a function of the diode

More information

Module 04.(B1) Electronic Fundamentals

Module 04.(B1) Electronic Fundamentals 1.1a. Semiconductors - Diodes. Module 04.(B1) Electronic Fundamentals Question Number. 1. What gives the colour of an LED?. Option A. The active element. Option B. The plastic it is encased in. Option

More information

Experiment Topic : FM Modulator

Experiment Topic : FM Modulator 7-1 Experiment Topic : FM Modulator 7.1: Curriculum Objectives 1. To understand the characteristics of varactor diodes. 2. To understand the operation theory of voltage controlled oscillator (VCO). 3.

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING PUNALKULAM. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE : EE1152 SEM / YEAR : II / I SUBJECT NAME : ELECTRIC CIRCUITS AND ELECTRON DEVICES

More information

Chapter 3 Bipolar Junction Transistors (BJT)

Chapter 3 Bipolar Junction Transistors (BJT) Chapter 3 Bipolar Junction Transistors (BJT) Transistors In analog circuits, transistors are used in amplifiers and linear regulated power supplies. In digital circuits they function as electrical switches,

More information

EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT TEST-1 EXPECTED QUESTIONS

EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT TEST-1 EXPECTED QUESTIONS EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT TEST-1 EXPECTED QUESTIONS 1. List the PN diode parameters. 1. Bulk Resistance. 2. Static Resistance/Junction Resistance (or) DC Forward Resistance 3. Dynamic

More information

I E I C since I B is very small

I E I C since I B is very small Figure 2: Symbols and nomenclature of a (a) npn and (b) pnp transistor. The BJT consists of three regions, emitter, base, and collector. The emitter and collector are usually of one type of doping, while

More information

Chapter 2 PN junction and diodes

Chapter 2 PN junction and diodes Chapter 2 PN junction and diodes ELEC-H402/CH2: PN junction and diodes 1 PN junction and diodes PN junction What happens in a PN junction Currents through the PN junction Properties of the depletion region

More information

LED lecture. Wei Chih Wang University of Washington

LED lecture. Wei Chih Wang University of Washington LED lecture Wei Chih Wang University of Washington Linear and Nonlinear electronics current voltage Vaccum tube (i.e. type 2A3) voltage Thermistor (large negative temperature coefficient of resistivity)

More information

IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Lecture-4

IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Lecture-4 2 P-n Lecture-4 20 Introduction: If a junction is formed between a p-type and a n-type semiconductor this combination is known as p-n junction diode and has the properties of a rectifier 21 Formation of

More information

Electromagnetic spectrum

Electromagnetic spectrum Slide 1 Electromagnetic spectrum insert wavelengths of blue to red. 6.071 Optoelectronics 1 Slide 2 Electromagnetic spectrum E = hν = kt e E - Energy k - Plank s constant ν - frequency k - Boltzman s constant

More information

Semiconductor Devices Lecture 5, pn-junction Diode

Semiconductor Devices Lecture 5, pn-junction Diode Semiconductor Devices Lecture 5, pn-junction Diode Content Contact potential Space charge region, Electric Field, depletion depth Current-Voltage characteristic Depletion layer capacitance Diffusion capacitance

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences.

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Discussion #9 EE 05 Spring 2008 Prof. u MOSFETs The standard MOSFET structure is shown

More information