EC T34 ELECTRONIC DEVICES AND CIRCUITS

Size: px
Start display at page:

Download "EC T34 ELECTRONIC DEVICES AND CIRCUITS"

Transcription

1 RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY PONDY-CUDDALORE MAIN ROAD, KIRUMAMPAKKAM-PUDUCHERRY DEPARTMENT OF ECE EC T34 ELECTRONIC DEVICES AND CIRCUITS II YEAR Mr.L.ARUNJEEVA., AP/ECE 1

2 PN JUNCTION DIODE UNIT I SEMICONDUCTOR DIODES In a piece of semiconductor material if one half is doped by p- type impurity and the the other half is doped by n-type impurity, a PN junction is formed. The plane dividing the two halves is called PN junction. The N-type material has high concentration of free electrons while p- type material has high concentration of holes. At the junction, there is a tendency for the free electrons to diffuse over to P-side and holes to N-side. This process is called diffusion. As the free electrons move across the junction from N-type to P-type, the donor ions becomes positively charged. Hence a positive charge is built on the N-side of the junction. The free electrons that cross the junction uncover the negative acceptor ions by filling in the holes. Therefore a net negative charge is established on the p-side of the junction. This net negative charge on the p side prevents further diffusion of electrons onto the p-side. Similarly the net positive charge on the N-side repels the hole crossing from P-side to N-side. Thus a barrier is set-up near the junction which prevents further movement of charge carriers i.e. electrons and holes. As a consequence of the induced electric field across the depletion layer, an electrostatic potential difference is established between P & N regions, called potential Barrier, junction barrier, diffusion potential or contact potential.(v o ) Note: V o = 0.3 V for Ge = 0.72 V for Si UNDER FORWARD BIAS CONDITION When positive terminal of the battery is connected to the P-type and negative terminal to the N-type of the PN junction diode, the bias applied is known as Forward Bias. OPERATION As shown in the figure, the applied potential with external battery acts in opposition to the internal potential barrier and disturbs the equilibrium. 2

3 Under the forward bias condition, the applied positive potential repels the holes in the p-type region so that the holes move towards the junction and the applied negative potential repels the electrons in the N-type region and the electrons move towards the junction. Eventually, when the applied potential is more than the internal barrier potential the depletion region and the internal potential barrier disappear. VI CHARACTERISTICS OF A DIODE UNDER FORWARD BIAS As the forward voltage (V f ) is increased, for V f <V o, the forward current I f is almost zero because the potential barrier prevents the holes from P-region and electrons from N-region to flow across the depletion region in the opposite direction. For V f >V o, the potential barrier completely disappears and hence, the holes cross the junction from P-type to N-type and the electrons cross the junction in the opposite direction, resulting in relatively large current flow. UNDER REVERSE BIAS CONDITION When the negative terminal of the battery is connected to the P-type and positive terminal of the battery is connected to N-type, the bias applied is known as reverse bias. OPERATION 3

4 Under applied reverse bias, holes from P-side move towards the negative terminal of the battery and electrons from N-side are attracted towards the positive terminal of the battery. Hence, the width of the depletion region increases. Hence, the resultant potential barrier is increased which prevents the flow of majority carriers in both directions; the depletion width (W) is proportional to V o under reverse bias. But a very small current (µa) flows under reverse bias as shown in the characteristics curve. Electrons forming covalent bonds of the semiconductor atoms in P and N- type regions may absorb sufficient energy from heat, causing breaking of some covalent bonds. Hence electron-hole pairs are produced in both regions. Thus holes in p- regions are attracted towards the negative terminal and electrons in the n region are attracted towards the positive terminal of the battery. Consequently, the minority carriers, electrons in P-region and holes in N-region, wander over to the junction and flow towards their majority carrier side giving rise to small reverse current, called Reverse Saturation Current, Io. THEORY OF DIODE CURRENT EQUATION Ideal Diodes The diode equation gives an expression for the current through a diode as a function of voltage. The Ideal Diode Law, expressed as: where: I = the net current flowing through the diode; I 0 = "dark saturation current", the diode leakage current density in the absence of light; V = applied voltage across the terminals of the diode; q = absolute value of electron charge; k = Boltzmann's constant; and T = absolute temperature (K). 4

5 The "dark saturation current" (I 0 ) is an extremely important parameter which differentiates one diode from another. I 0 is a measure of the recombination in a device. A diode with a larger recombination will have a larger I 0. Note that: I 0 increases as T increases; and I 0 decreases as material quality increases. For actual diodes, the expression becomes: where: n = ideality factor, a number between 1 and 2 which typically increases as the current decreases. TEMPERATURE EFFECTS Temperature plays an important role in determining the characteristic of diodes. As temperature increases, the turn-on voltage, v ON, decreases. Alternatively, a decrease in temperature results in an increase in v ON. This is illustrated in figure below where V ON varies linearly with temperature which is evidenced by the evenly spaced curves for increasing temperature in 25 C increments. The temperature relationship is described by equation V ON (T New ) V ON (T room ) = k T (T New T room ) where, Dependence of id on temperature versus vd for real diode (kt = -2.0 mv / C) 5

6 T room = room temperature, or 25 C. T New = new temperature of diode in C. V ON (T room ) = diode voltage at room temperature. V ON (T New ) = diode voltage at new temperature. k T = temperature coefficient in V/ C. Although k T varies with changing operating parameters, standard engineering practice permits approximation as a constant. Values of k T for the various types of diodes at room temperature are given as follows: k T = -2.5 mv/ C for germanium diodes k T = -2.0 mv/ C for silicon diodes The reverse saturation current, I O also depends on temperature. At room temperature, it increases approximately 16% per C for silicon and 10% per C for germanium diodes. In other words, I O approximately doubles for every 5 C increase in temperature for silicon, and for every 7 C for germanium. The expression for the reverse saturation current as a function of temperature can be approximated as where K i = 0.15/ C ( for silicon) and T1 and T2 are two arbitrary temperatures. DIODE RESISTANCE DC or STATIC RESISTANCE The resistance of the diode at the operating point can be found by using. The DC resistance levels at the knee and below will be greater than the resistance levels obtained for the vertical rise section of the characteristics. Resistance in reverse bias will be quite high. AC or DYNAMIC RESISTANCE A straight line drawn tangent to the curve through the q-point will define a particular change in voltage and current that can be used to determine the ac or dynamic resistance for this region of the diode characteristics. 6

7 Note: keep the change in voltage and current as small as possible and equidistant to either side of Q-point. AVERAGE AC RESISTANCE The average ac resistance is the resistance determined by a straight line drawn between the two intersections established by the maxi mum and minimum values of input voltage. ( ) DIODE EQUIVALENT CIRCUITS An equivalent circuit is a combination of elements properly chosen to best represent the actual terminal characteristics of a device, system etc. (i) Piecewise-Linear Equivalent Circuit One technique for obtaining an equivalent circuit for a diode is to approximate the characteristics of the device by straight-line segments, as shown below. The resulting equivalent circuit is naturally called the piecewise-linear equivalent circuit. But the straight-line segments do not result in an exact duplication of the actual characteristics, especially in the knee region. For the sloping section of the equivalence, the average ac resistance is included next to the actual device. It defines the resistance level of the device when it is in the on state. The ideal diode 7

8 is included to establish that there is only one direction of conduction through the device, and a reverse-bias condition will result in the open-circuit state for the device. Since a silicon semiconductor diode does not reach the conduction state until V D reaches 0.7 V with a forward bias, a battery V T opposing the conduction direction must appear in the equivalent circuit as shown below. V T represents the horizontal offset in the curve. Defining the piece wise-linear equivalent circuit using straight-line segments to approximate the characteristic curve. Components of the piecewise-linear equivalent circuit (ii) Simplified Equivalent Circuit For most applications, the resistance rav is sufficiently small to be ignored in comparison to the other elements of the network. The removal of r av from the equivalent circuit is the same as implying that the characteristics of the diode appear as shown in Figure below. The reduced equivalent circuit appears in the same figure. It states that a forward-biased silicon diode in an electronic system under dc 8

9 conditions has a drop of 0.7 V across it in the conduction state at any level of diode current. (iii) Simplified equivalent circuit for the silicon semiconductor diode Ideal Equivalent Circuit 0.7-V level can be ignored when compared to the applied voltage level. In this case the equivalent circuit will be reduced to that of an ideal diode as shown in Figure below with its characteristics. Ideal diode and its characteristics SPACE CHARGE (or) TRANSISTION CAPACITANCE C T OF DIODE Reverse bias causes majority carriers to move away from the junction, thereby creating more ions. Hence the thickness of depletion region increases. This region behaves as the dielectric material used for making capacitors. The p-type and n-type conducting on each side of dielectric act as the plate. The incremental capacitance C T is defined by Since Therefore, where, dq is the increase in charge caused by a change dv in voltage. C T is not constant, it depends upon applied voltage and therefore it is defined as dq / dv. 9

10 When p-n junction is forward biased, then a capacitance is defined called diffusion capacitance C D (rate of change of injected charge with voltage) to take into account the time delay in moving the charges across the junction by the diffusion process. If the amount of charge to be moved across the junction is increased, the time delay is greater, it follows that diffusion capacitance varies directly with the magnitude of forward current. Alloy junction The junction in which there is an abrupt change from acceptor ions on one side to donor ions on the other side is called alloy or fusion junction. Since net charge = 0, = Acceptor concentration Donor concentration. If << ; Neglected and assume that that the entire barrier potential V B appears across the uncovered acceptor ions. By poisson s equation, = ε premitivity of the semiconductor ε = where, relative dielectric constant permitivity of free space Integrating the above equation, At x = Wp W, V= V B, and if V B = V 0 V V 0 V = Thus the thickness of depletion layer increases with applied voltage ie. W = V B If A = Area of junction, then Q = Therefore = 10

11 Hence C T = DIFFUSION CAPACITANCE If the bias is in the forward direction the potential barrier at the junction is lowered and holes from the p- side enter the n side. similarly the electrons from the n side move into the p- side. This is the process of minority carrier injection, where the excess hole density falls off exponentially with the distance. The diffusion or storage capacitance (C D ) is defined as the rate of change of injected charge with applied voltage. Expression for C D : Assume : one side of the diode i.e p-type is heavily doped compared with n-type and current due to electrons crossing the junction from n type to p type is zero. Therefore, total diode current crossing the junction is the hole current moving from p side to n side. Ie. I = I pn (o) The excess minority charge Q is given by, Q = ( ) Wher A diode cross section E charge of an electron Q = [ ( ) ] And C D = = Ae L P ( ) The hole current Ipn(x), at x= 0 is I = ( ) Differentiating Pn(o) with respect to voltage is and simplifying, C D = PN DIODE SWITCHING TIMES When a diode is driven from the reversed condition to the forwardstste or in the opposite direction, the diode response is accompanied by a transient and an interval of time before the diode recovers to its steady state. Forward Recovery time t fr 11

12 It is the time difference between the 10% point of the diode voltage and the time when this voltage reaches and remains within 10% of this final value. Diode Reverse Recovery time When an external voltage forward biases PN junctions, the number of minority carriers is very large. They are supplied from the other side of the junction. As the minority carriers approach the junction they rapidly swept across and the density of minority carriers diminishes to zero at the junction. If the external voltage is suddenly reversed in a diode in FB, the diode current will not immediately fall to its steady state reverse voltage value. The current cannot attain its steady state value until the minority carrier distributionat the moment of voltage reversal had the form(a) reduces to form (b). Storage and transition times Consider the voltage in (b) is applied to the diode resistor circuit in figure (a).upto time t 1, the voltage vi = v f, forward biases the diode. Then the current is i = At t 1, the vi = -v r, but the current does not drop to zero, but instead reverses and remains at the value i = until t = t 2. At t = t 2 as in, the injected minority carrier density at x= 0 has reached its equilibrium state.if the diode ohmic resistance is R d, at t 1 the diode voltage falls of slightly, but does not reverse. At t = t 2, the diode voltage begins to reverse and the magnitude of the diode current begins to decrease. Storage time t s The interval t 1 to t 2, for the stored minority charge to become zero, is called the storage time t s. Transition Time t 1 The time which elapses between t 2 and the time when the diode has nominally recovered is called the transistion time t t.this recovery interval will be completed when the minority carriers at some distance from the junction have diffused to the junction and crossed it and C T has charged to voltage V R. Reverse recovery time (t rr ) The reverse recovery time (or) turn off time is the interval from the current reversal at t = t 1 until the diode has recovered to a specified extent in terms of diode current or resistance ie. t rr = t s + t t 12

13 ZENER DIODES When the reverse voltage reaches breakdown voltage in normal PN junction diode, the current through the junction and power dissipated at the junction will be high. Such an operation is destructive and diode gets damaged. Diodes which are designed with adequate power dissipation capabilities to operate in the breakdown region may be employed as voltage reference or constant voltage devices. Such diodes are known as avalanche, breakdown or zener diodes. Under forward biased condition, the zener works in similar with the PN diode. Under reverse bias, breakdown of the junction occurs and voltage remains constant and current varies largely. Two mechanisms of diode breakdown for increasing reverse voltage are: Avalanche Breakdown The thermally generated electrons and holes acquire sufficient energy from the applied reverse potential to produce new carriers by removing valence electrons. These new carriers, in turn produce additional carriers again through the process of disrupting bonds. This cumulative process is referred to as avalanche multiplication. It results in the flow of large reverse currents. The diode is said to be in avalanche breakdown region. Zener Breakdown When the P and N regions are heavily doped, direct rupture of covalent bonds takes place because of strong electric fields at the junction of PN diode. The new electron hole pairs so created increase the reverse current in a reverse biased PN diode. The decrease in current takes place at a constant value of reverse bias ie. below 6V for heavily doped diodes. 13

14 14

EDC Lecture Notes UNIT-1

EDC Lecture Notes UNIT-1 P-N Junction Diode EDC Lecture Notes Diode: A pure silicon crystal or germanium crystal is known as an intrinsic semiconductor. There are not enough free electrons and holes in an intrinsic semi-conductor

More information

Analog Electronic Circuits

Analog Electronic Circuits Analog Electronic Circuits Chapter 1: Semiconductor Diodes Objectives: To become familiar with the working principles of semiconductor diode To become familiar with the design and analysis of diode circuits

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 1 (CONT D) DIODES

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 1 (CONT D) DIODES KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 1 (CONT D) DIODES Most of the content is from the textbook: Electronic devices and circuit theory, Robert L.

More information

semiconductor p-n junction Potential difference across the depletion region is called the built-in potential barrier, or built-in voltage:

semiconductor p-n junction Potential difference across the depletion region is called the built-in potential barrier, or built-in voltage: Chapter four The Equilibrium pn Junction The Electric field will create a force that will stop the diffusion of carriers reaches thermal equilibrium condition Potential difference across the depletion

More information

Chapter 1: Diode circuits

Chapter 1: Diode circuits Analog Electronics Circuits Nagamani A N Lecturer, PESIT, Bangalore 85 Email nagamani@pes.edu Chapter 1: Diode circuits Objective To understand the diode operation and its equivalent circuits To understand

More information

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood Electronic I Lecture 2 p-n junction Diode characteristics By Asst. Prof Dr. Jassim K. Hmood THE p-n JUNCTION DIODE The pn junction diode is formed by fabrication of a p-type semiconductor region in intimate

More information

Lecture -1: p-n Junction Diode

Lecture -1: p-n Junction Diode Lecture -1: p-n Junction Diode Diode: A pure silicon crystal or germanium crystal is known as an intrinsic semiconductor. There are not enough free electrons and holes in an intrinsic semi-conductor to

More information

Semiconductor Devices Lecture 5, pn-junction Diode

Semiconductor Devices Lecture 5, pn-junction Diode Semiconductor Devices Lecture 5, pn-junction Diode Content Contact potential Space charge region, Electric Field, depletion depth Current-Voltage characteristic Depletion layer capacitance Diffusion capacitance

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

CHAPTER 1 DIODE CIRCUITS. Semiconductor act differently to DC and AC currents

CHAPTER 1 DIODE CIRCUITS. Semiconductor act differently to DC and AC currents CHAPTER 1 DIODE CIRCUITS Resistance levels Semiconductor act differently to DC and AC currents There are three types of resistances 1. DC or static resistance The application of DC voltage to a circuit

More information

CHAPTER 8 The pn Junction Diode

CHAPTER 8 The pn Junction Diode CHAPTER 8 The pn Junction Diode Consider the process by which the potential barrier of a pn junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors

Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors Discuss covalent bonding Describe the properties of both p and n type materials Discuss both forward

More information

Ch5 Diodes and Diodes Circuits

Ch5 Diodes and Diodes Circuits Circuits and Analog Electronics Ch5 Diodes and Diodes Circuits 5.1 The Physical Principles of Semiconductor 5.2 Diodes 5.3 Diode Circuits 5.4 Zener Diode References: Floyd-Ch2; Gao-Ch6; 5.1 The Physical

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo Colantonio A.A. 2015-16 Introduction: materials Conductors e.g. copper or aluminum have a cloud

More information

EE/COE 152: Basic Electronics. Lecture 3. A.S Agbemenu. https://sites.google.com/site/agbemenu/courses/ee-coe-152

EE/COE 152: Basic Electronics. Lecture 3. A.S Agbemenu. https://sites.google.com/site/agbemenu/courses/ee-coe-152 EE/COE 152: Basic Electronics Lecture 3 A.S Agbemenu https://sites.google.com/site/agbemenu/courses/ee-coe-152 Books: Microelcetronic Circuit Design (Jaeger/Blalock) Microelectronic Circuits (Sedra/Smith)

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices The Diode The diodes are rarely explicitly used in modern integrated circuits However, a MOS transistor contains at least two reverse biased

More information

Diode Limiters or Clipper Circuits

Diode Limiters or Clipper Circuits Diode Limiters or Clipper Circuits Circuits which are used to clip off portions of signal voltages above or below certain levels are called limiters or clippers. Types of Clippers Positive Clipper Negative

More information

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng.

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng. Laboratory No. 01: Small & Large Signal Diode Circuits Electrical Enginnering Departement By: Dr. Awad Al-Zaben Instructor: Eng. Tamer Shahta Electronics Laboratory EE 3191 February 23, 2014 I. OBJECTIVES

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

Electron Devices and Circuits (EC 8353)

Electron Devices and Circuits (EC 8353) Electron Devices and Circuits (EC 8353) Prepared by Ms.S.KARKUZHALI, A.P/EEE Diodes The diode is a 2-terminal device. A diode ideally conducts in only one direction. Diode Characteristics Conduction Region

More information

IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Lecture-4

IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Lecture-4 2 P-n Lecture-4 20 Introduction: If a junction is formed between a p-type and a n-type semiconductor this combination is known as p-n junction diode and has the properties of a rectifier 21 Formation of

More information

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud Electronic Circuits I Instructor: Dr. Alaa Mahmoud alaa_y_emam@hotmail.com Chapter 27 Diode and diode application Outline: Semiconductor Materials The P-N Junction Diode Biasing P-N Junction Volt-Ampere

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder pn junction! Junction diode consisting of! p-doped silicon! n-doped silicon! A p-n junction where

More information

EXPERIMENTS USING SEMICONDUCTOR DIODES

EXPERIMENTS USING SEMICONDUCTOR DIODES EXPERIMENT 9 EXPERIMENTS USING SEMICONDUCTOR DIODES Semiconductor Diodes Structure 91 Introduction Objectives 92 Basics of Semiconductors Revisited 93 A p-n Junction Operation of a p-n Junction A Forward

More information

Intrinsic Semiconductor

Intrinsic Semiconductor Semiconductors Crystalline solid materials whose resistivities are values between those of conductors and insulators. Good electrical characteristics and feasible fabrication technology are some reasons

More information

Part II. Devices Diode, BJT, MOSFETs

Part II. Devices Diode, BJT, MOSFETs Part II Devices Diode, BJT, MOSFETs 49 4 Semiconductor Semiconductor The number of charge carriers available to conduct current 1 is between that of conductors and that of insulators. Semiconductor is

More information

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional)

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional) EE40 Lec 17 PN Junctions Prof. Nathan Cheung 10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional) Slide 1 PN Junctions Semiconductor Physics of pn junctions (for reference

More information

Chapter 8. Field Effect Transistor

Chapter 8. Field Effect Transistor Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There

More information

Electronics The basics of semiconductor physics

Electronics The basics of semiconductor physics Electronics The basics of semiconductor physics Prof. Márta Rencz, Gábor Takács BME DED 17/09/2015 1 / 37 The basic properties of semiconductors Range of conductivity [Source: http://www.britannica.com]

More information

EE70 - Intro. Electronics

EE70 - Intro. Electronics EE70 - Intro. Electronics Course website: ~/classes/ee70/fall05 Today s class agenda (November 28, 2005) review Serial/parallel resonant circuits Diode Field Effect Transistor (FET) f 0 = Qs = Qs = 1 2π

More information

Section 2.3 Bipolar junction transistors - BJTs

Section 2.3 Bipolar junction transistors - BJTs Section 2.3 Bipolar junction transistors - BJTs Single junction devices, such as p-n and Schottkty diodes can be used to obtain rectifying I-V characteristics, and to form electronic switching circuits

More information

Chapter 1: Semiconductor Diodes

Chapter 1: Semiconductor Diodes Chapter 1: Semiconductor Diodes Diodes The diode is a 2-terminal device. A diode ideally conducts in only one direction. 2 Diode Characteristics Conduction Region Non-Conduction Region The voltage across

More information

Electronic devices-i. Difference between conductors, insulators and semiconductors

Electronic devices-i. Difference between conductors, insulators and semiconductors Electronic devices-i Semiconductor Devices is one of the important and easy units in class XII CBSE Physics syllabus. It is easy to understand and learn. Generally the questions asked are simple. The unit

More information

EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT TEST-1 EXPECTED QUESTIONS

EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT TEST-1 EXPECTED QUESTIONS EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT TEST-1 EXPECTED QUESTIONS 1. List the PN diode parameters. 1. Bulk Resistance. 2. Static Resistance/Junction Resistance (or) DC Forward Resistance 3. Dynamic

More information

Lesson 08. Name and affiliation of the author: Professor L B D R P Wijesundera Department of Physics, University of Kelaniya.

Lesson 08. Name and affiliation of the author: Professor L B D R P Wijesundera Department of Physics, University of Kelaniya. Lesson 08 Title of the Experiment: Identification of active components in electronic circuits and characteristics of a Diode, Zener diode and LED (Activity number of the GCE Advanced Level practical Guide

More information

Ideal Diode Summary. p-n Junction. Consequently, characteristics curve of the ideal diode is given by. Ideal diode state = OF F, if V D < 0

Ideal Diode Summary. p-n Junction. Consequently, characteristics curve of the ideal diode is given by. Ideal diode state = OF F, if V D < 0 Course Contents ELE230 Electronics I http://www.ee.hacettepe.edu.tr/ usezen/ele230/ Dr. Umut Sezen & Dr. Dinçer Gökcen Department of Electrical and Electronic Engineering Hacettepe University and Diode

More information

PN Junction Diode Table of Contents. What Are Diodes Made Out Of?

PN Junction Diode Table of Contents. What Are Diodes Made Out Of? PN Junction iode Table of Contents What are diodes made out of?slide 3 N-type materialslide 4 P-type materialslide 5 The pn junctionslides 6-7 The biased pn junctionslides 8-9 Properties of diodesslides

More information

Electro - Principles I

Electro - Principles I The PN Junction Diode Introduction to the PN Junction Diode Note: In this chapter we consider conventional current flow. Page 11-1 The schematic symbol for the pn junction diode the shown in Figure 1.

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

FET Channel. - simplified representation of three terminal device called a field effect transistor (FET)

FET Channel. - simplified representation of three terminal device called a field effect transistor (FET) FET Channel - simplified representation of three terminal device called a field effect transistor (FET) - overall horizontal shape - current levels off as voltage increases - two regions of operation 1.

More information

BASIC ELECTRONICS ENGINEERING

BASIC ELECTRONICS ENGINEERING BASIC ELECTRONICS ENGINEERING Objective Questions UNIT 1: DIODES AND CIRCUITS 1 2 3 4 5 6 7 8 9 10 11 12 The process by which impurities are added to a pure semiconductor is A. Diffusing B. Drift C. Doping

More information

2 MARKS EE2203 ELECTRONIC DEVICES AND CIRCUITS UNIT 1

2 MARKS EE2203 ELECTRONIC DEVICES AND CIRCUITS UNIT 1 2 MARKS EE2203 ELECTRONIC DEVICES AND CIRCUITS UNIT 1 1. Define PN junction. When a p type semiconductor is joined to a N type semiconductor the contact surface is called PN junction. 2. What is an ideal

More information

Semiconductor Materials and Diodes

Semiconductor Materials and Diodes C C H H A A P P T T E E R R 1 Semiconductor Materials and Diodes 1.0 1.0 PREVIEW PREVIEW This text deals with the analysis and design of circuits containing electronic devices, such as diodes and transistors.

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

THERMIONIC AND GASEOUS STATE DIODES

THERMIONIC AND GASEOUS STATE DIODES THERMIONIC AND GASEOUS STATE DIODES Thermionic and gaseous state (vacuum tube) diodes Thermionic diodes are thermionic-valve devices (also known as vacuum tubes, tubes, or valves), which are arrangements

More information

Electronics I. Midterm #1

Electronics I. Midterm #1 The University of Toledo Section f6ms_elct7.fm - Electronics I Midterm # Problems Points. 4 2. 5 3. 6 Total 5 Was the exam fair? yes no The University of Toledo f6ms_elct7.fm - 2 Problem 4 points For full

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

PN Junction in equilibrium

PN Junction in equilibrium PN Junction in equilibrium PN junctions are important for the following reasons: (i) PN junction is an important semiconductor device in itself and used in a wide variety of applications such as rectifiers,

More information

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is 1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is A [ ]) the diode is open. B [ ]) the diode is shorted to ground. C [v]) the diode is

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Chapter 1 & 2 A. Kruger Diode Review, Page-1 Semiconductors licon () atoms have 4 electrons in valence band and form strong covalent bonds with surrounding atoms. Section 1.1.2

More information

3A.1. Lecture 3A Semiconductors. Semiconductor Structure

3A.1. Lecture 3A Semiconductors. Semiconductor Structure 3A.1 Lecture 3A Semiconductors Semiconductor structure. ptype semiconductor. ntype semiconductor. The pn junction. The pn junction characteristic (diode vi characteristic). Diode models. The Halleffect

More information

Material Provided by JNTU World

Material Provided by JNTU World ELECTRON It is a stable elementary particle with a charge of negative electricity, found in all atoms and acting as the primary carrier of electricity in solids. ELECTRONICS Electronics is the movement

More information

Electronics I. Midterm #1

Electronics I. Midterm #1 The University of Toledo s6ms_elct7.fm - Electronics I Midterm # Problems Points. 4 2. 5 3. 6 Total 5 Was the exam fair? yes no The University of Toledo s6ms_elct7.fm - 2 Problem 4 points For full credit,

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34 CONTENTS Preface x Prologue Semiconductors and the Integrated Circuit xvii PART I Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials

More information

Physics 160 Lecture 5. R. Johnson April 13, 2015

Physics 160 Lecture 5. R. Johnson April 13, 2015 Physics 160 Lecture 5 R. Johnson April 13, 2015 Half Wave Diode Rectifiers Full Wave April 13, 2015 Physics 160 2 Note that there is no ground connection on this side of the rectifier! Output Smoothing

More information

Diode Bridges. Book page

Diode Bridges. Book page Diode Bridges Book page 450-454 Rectification The process of converting an ac supply into dc is called rectification The device that carries this out is called a rectifier Half wave rectifier only half

More information

Key Questions ECE 340 Lecture 28 : Photodiodes

Key Questions ECE 340 Lecture 28 : Photodiodes Things you should know when you leave Key Questions ECE 340 Lecture 28 : Photodiodes Class Outline: How do the I-V characteristics change with illumination? How do solar cells operate? How do photodiodes

More information

PHYS 3050 Electronics I

PHYS 3050 Electronics I PHYS 3050 Electronics I Chapter 4. Semiconductor Diodes and Transistors Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Associate Professor of Space Engineering Department of Earth and Space Science and

More information

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Electronics I. Midterm #1

Electronics I. Midterm #1 EECS:3400 Electronics I s5ms_elct7.fm - Section Electronics I Midterm # Problems Points. 4 2. 5 3. 6 Total 5 Was the exam fair? yes no EECS:3400 Electronics I s5ms_elct7.fm - 2 Problem 4 points For full

More information

EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS. 1. Define diffusion current.

EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS. 1. Define diffusion current. EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS 1. Define diffusion current. A movement of charge carriers due to the concentration gradient in a semiconductor is called process

More information

Class XII - Physics Semiconductor Electronics. Chapter-wise Problems

Class XII - Physics Semiconductor Electronics. Chapter-wise Problems lass X - Physics Semiconductor Electronics Materials, Device and Simple ircuit hapter-wise Problems Multiple hoice Question :- 14.1 The conductivity of a semiconductor increases with increase in temperature

More information

Lecture 7:PN Junction. Structure, Depletion region, Different bias Conditions, IV characteristics, Examples

Lecture 7:PN Junction. Structure, Depletion region, Different bias Conditions, IV characteristics, Examples Lecture 7:PN Junction Structure, Depletion region, Different bias Conditions, IV characteristics, Examples PN Junction The diode (pn junction) is formed by dopping a piece of intrinsic silicon, such that

More information

Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II. Module- IV Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

More information

SYED AMMAL ENGINEERING COLLEGE

SYED AMMAL ENGINEERING COLLEGE SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2008 Certified Institution Dr. E.M.Abdullah

More information

SEMICONDUCTOR EECTRONICS MATERIAS, DEVICES AND SIMPE CIRCUITS Important Points: 1. In semiconductors Valence band is almost filled and the conduction band is almost empty. The energy gap is very small

More information

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor.

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor. FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. [An ISO 9001:2008 Certified Institution] QUESTION BANK EC6201 ELECTRONIC DEVICES SEMESTER:

More information

Project 6 Capacitance of a PN Junction Diode

Project 6 Capacitance of a PN Junction Diode Project 6 Capacitance of a PN Junction Diode OVERVIEW: In this project, we will characterize the capacitance of a reverse-biased PN diode. We will see that this capacitance is voltage-dependent and we

More information

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline:

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: Narrow-Base Diode BJT Fundamentals BJT Amplification Things you should know when you leave Key Questions How does the narrow-base diode multiply

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and

More information

ENG2210 Electronic Circuits. Chapter 3 Diodes

ENG2210 Electronic Circuits. Chapter 3 Diodes ENG2210 Electronic Circuits Mokhtar A. Aboelaze York University Chapter 3 Diodes Objectives Learn the characteristics of ideal diode and how to analyze and design circuits containing multiple diodes Learn

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Section:A Very short answer question

Section:A Very short answer question Section:A Very short answer question 1.What is the order of energy gap in a conductor, semi conductor, and insulator?. Conductor - no energy gap Semi Conductor - It is of the order of 1 ev. Insulator -

More information

IENGINEERS- CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU

IENGINEERS- CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING Unit 1 Objectives Q.1 The breakdown mechanism in a lightly doped p-n junction under reverse biased condition is called. (A) avalanche breakdown. (B) zener breakdown. (C) breakdown

More information

Downloaded from

Downloaded from Question 14.1: In an n-type silicon, which of the following statement is true: (a) Electrons are majority carriers and trivalent atoms are the dopants. (b) Electrons are minority carriers and pentavalent

More information

Chapter 2 PN junction and diodes

Chapter 2 PN junction and diodes Chapter 2 PN junction and diodes ELEC-H402/CH2: PN junction and diodes 1 PN junction and diodes PN junction What happens in a PN junction Currents through the PN junction Properties of the depletion region

More information

UNIT IX ELECTRONIC DEVICES

UNIT IX ELECTRONIC DEVICES UNT X ELECTRONC DECES Weightage Marks : 07 Semiconductors Semiconductors diode-- characteristics in forward and reverse bias, diode as rectifier. - characteristics of LED, Photodiodes, solarcell and Zener

More information

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre EJECICIOS DE COMPONENTES ELECTÓNICOS. 1 er cuatrimestre 2 o Ingeniería Electrónica Industrial Juan Antonio Jiménez Tejada Índice 1. Basic concepts of Electronics 1 2. Passive components 1 3. Semiconductors.

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Chapter 1 & 2 A. Kruger Diode Review, Page-1 Semiconductors licon () atoms have 4 electrons in valence band and form strong covalent bonds with surrounding atoms. Section 1.1.2

More information

Physics 281 EXPERIMENT 7 I-V Curves of Non linear Device

Physics 281 EXPERIMENT 7 I-V Curves of Non linear Device Physics 281 EXPERIMENT 7 I-V Curves of Non linear Device Print this page to start your lab report (1 copy) Bring a diskette to save your data. OBJECT: To study the method of obtaining the characteristics

More information

Electronic Devices 1. Current flowing in each of the following circuits A and respectively are: (Circuit 1) (Circuit 2) 1) 1A, 2A 2) 2A, 1A 3) 4A, 2A 4) 2A, 4A 2. Among the following one statement is not

More information

f14m1s_elct7.fm - 1 The University of Toledo EECS:3400 Electronocs I Electronics I Problems Points Total 15 Was the exam fair?

f14m1s_elct7.fm - 1 The University of Toledo EECS:3400 Electronocs I Electronics I Problems Points Total 15 Was the exam fair? f4ms_elct7.fm - Electronics I Midterm I Examination Problems Points. 4 2. 5 3. 6 Total 5 Was the exam fair? yes no f4ms_elct7.fm - 2 Problem 4 points For full credit, mark your answers yes, no, or not

More information

Part I Lectures 1-7 Diode Circuit Applications

Part I Lectures 1-7 Diode Circuit Applications Part Lectures -7 iode Circuit Applications The PN Junction iode Electrical and Electronic Engineering epartment Lecture One - Page of 7 Second Year, Electronics, 9 - The PN Junction iode Basic Construction:

More information

Diodes. Analog Electronics Lesson 4. Objectives and Overview:

Diodes. Analog Electronics Lesson 4. Objectives and Overview: Analog Electronics Lesson 4 Diodes Objectives and Overview: This lesson will introduce p- and n-type material, how they form a junction that rectifies current, and familiarize you with basic p-n junction

More information

SKP Engineering College

SKP Engineering College SKP Engineering College Tiruvannamalai 606611 A Course Material on Electronic Devices By K.Vijayalakshmi Assistant Professor Electronics and Communication Engineering Department Electronics and Communication

More information

Downloaded from

Downloaded from SOLID AND SEMICONDUCTOR DEVICES (EASY AND SCORING TOPIC) 1. Distinction of metals, semiconductor and insulator on the basis of Energy band of Solids. 2. Types of Semiconductor. 3. PN Junction formation

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Power Semiconductor Devices

Power Semiconductor Devices TRADEMARK OF INNOVATION Power Semiconductor Devices Introduction This technical article is dedicated to the review of the following power electronics devices which act as solid-state switches in the circuits.

More information

Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors-

Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors- Lesson 5 Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors- Types and Connections Semiconductors Semiconductors If there are many free

More information

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR!

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR! Diodes: What do we use diodes for? Lecture 5: Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double

More information

Lecture 3: Diodes. Amplitude Modulation. Diode Detection.

Lecture 3: Diodes. Amplitude Modulation. Diode Detection. Whites, EE 322 Lecture 3 Page 1 of 10 Lecture 3: Diodes. Amplitude Modulation. Diode Detection. Diodes are the fourth basic discrete component listed in Lecture 2. These and transistors are both nonlinear

More information

ECE-342 Test 1: Sep 27, :00-8:00, Closed Book. Name : SOLUTION

ECE-342 Test 1: Sep 27, :00-8:00, Closed Book. Name : SOLUTION ECE-342 Test 1: Sep 27, 2011 6:00-8:00, Closed Book Name : SOLUTION All solutions must provide units as appropriate. Use the physical constants and data as provided on the formula sheet the last page of

More information

Field Effect Transistors (npn)

Field Effect Transistors (npn) Field Effect Transistors (npn) gate drain source FET 3 terminal device channel e - current from source to drain controlled by the electric field generated by the gate base collector emitter BJT 3 terminal

More information

UNIT VIII-SPECIAL PURPOSE ELECTRONIC DEVICES. 1. Explain tunnel Diode operation with the help of energy band diagrams.

UNIT VIII-SPECIAL PURPOSE ELECTRONIC DEVICES. 1. Explain tunnel Diode operation with the help of energy band diagrams. UNIT III-SPECIAL PURPOSE ELECTRONIC DEICES 1. Explain tunnel Diode operation with the help of energy band diagrams. TUNNEL DIODE: A tunnel diode or Esaki diode is a type of semiconductor diode which is

More information

PROLOGUE TO ELECTRONICS

PROLOGUE TO ELECTRONICS PROLOGUE TO ELECTRONICS When most of us hear the word electronics, we think of televisions, laptop computers, cell phones, or ipods. Actually, these items are electronic systems composed of subsystems

More information

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014 Q.2 a. State and explain the Reciprocity Theorem and Thevenins Theorem. a. Reciprocity Theorem: If we consider two loops A and B of network N and if an ideal voltage source E in loop A produces current

More information