ALLOWABLE LIMITS TO SHORT TIME VOLTAGE DROPS IN HV WITHSTAND TESTS

Size: px
Start display at page:

Download "ALLOWABLE LIMITS TO SHORT TIME VOLTAGE DROPS IN HV WITHSTAND TESTS"

Transcription

1 The 19 th International Symposium on High Voltage Engineering, Pilsen, Czech Republic, August, 23 28, 2015 ALLOWABLE LIMITS TO SHORT TIME VOLTAGE DROPS IN HV WITHSTAND TESTS William Larzelere Evergreen High Voltage, NY, USA * Abstract: The current versions of IEC60060 part 1 [1] and part 2 [2] give incomplete definitions about the allowable voltage drop during a HV test and give limited requirements for measuring systems necessary for tests where non-disruptive discharges occur. Currently, there is vague information in IEC60060 Part 1 as to how long the specified maximum voltage drop can persist before the test is considered a failure. IEC60060 Part 2 contains some information about the frequency response of measuring systems for AC and DC voltages but does not give guidance on the characteristics of measuring systems needed to record fast, non-disruptive discharges that may be more than 10% for DC and 20% for AC. In this paper, we would like to stimulate a discussion and encourage researchers to work on this problem to form better definitions for voltage drop. This paper also attempts to encourage researchers to study this phenomena to better define criteria for characterizing the response of measuring and recording systems used for tests where short-term, non-disruptive voltage drops are expected. By establishing better definitions and values for these parameters, researchers will be able to help improve the definitions contained in the next IEC revisions and also the requirements for digital measurement systems for recording these events as covered by the proposed new standards IEC61083 Parts 3 and 4. This information can also lead us to improved characterization of the source requirements for AC and DC HV tests. 1 INTRODUCTION The current IEC standard IEC60060 parts 1 and 2 for HV Testing and Measurement include some details about the allowable voltage drop due to the interaction of the test object, the test circuit and the test source and the measurement system. The measurement system requirements defined are for normal dry or wet test situations but do not cover the specific demands of artificial pollution tests whose procedures are covered by IEC Mention is made of faster bandwidth systems being required for pollution tests but no requirements other than the maximum voltage drop are given. During the last revisions of IEC60060 Parts 1 and 2 it was found that there was some controversy about the definitions of test source suitability and questions about whether these current definitions could assure users of the ability to achieve the goal of performing repeatable tests in different test facilities. This paper attempts to review the current definitions of allowable voltage drop for AC and DC testing, the characteristics of measuring systems, and to make recommendations for future work for standard revisions. Of particular interest is to consider how new digital recorders for measuring AC and DC test voltages should be characterized. It should be noted that these problems do not just appear during normal dry or wet testing but also are of particular concern during Artificial Pollution testing and Combined and Composite Testing [4] 2 REVIEW OF IEC AND -2 ON VOLTAGE DROP FOR NORMAL WITHSTAND TESTS The current versions of IEC and 2 give recommendations for the generation and measurement of AC and DC voltages. The following excerpts are from the latest revisions. 2.1 DC VOLTAGE REQUIREMENTS From IEC60060 Part Paragraph 5 Tests with direct voltage Paragraph voltage drop instantaneous reduction of the test voltage for a short duration of up to a few seconds NOTE: Voltage drop may be caused by nondisruptive discharges. Paragraph Tolerances For test durations not exceeding 60 s, the measured values of the test voltage shall be maintained within ±1 % of the specified level throughout the test. For test durations exceeding 60 s, the measured value of the test voltage shall be maintained within ±3 % of the specified level throughout the test. The source characteristics should be sufficient to allow charging of the capacitance of the test object

2 in a reasonably short time. In the case of wet or pollution tests, the source, including its storage capacitance, should also be adequate to supply the transient discharge currents of the test object with voltage drop of < 10 %. 2.2 SUMMARY OF DC REQUIREMENTS The DC Voltage can drop no more than 10%, instantaneously and cannot exceed a 10% drop for more than a few seconds. These statements are in contradiction. What is "a few seconds"? Repeated how often? What are the requirements of the measurement system to be sure we measure an "instantaneous" event? What rise time? Bandwidth? 2.3 COMMENTS ON DC REQUIREMENTS During DC tests it is often possible to have streamers, or non-disruptive discharges from the HV electrodes and connections or even the test object due to non-uniform electrical fields. These non-disruptive discharges are very common when testing air-insulated devices with positive polarity at voltages above 400kV-500kV, since the electric field required to produce streamers in air compared to negative polarity is reduced. [5] [6][7] If the voltage of a DC test circuit has been raised to the correct test voltage without persistent discharges from anywhere in the test circuit, then normally the voltage will be held at the test voltage and timed for the test duration required. Intermittent discharges can take place in a short period of time and can be repeated often. After a discharge, the voltage recovers to the preset level at a rate that depends on the load capacitance and the voltage regulation characteristics of the DC source. If a voltage drop of 10% is allowed, then a single, short duration of <10us discharge could be recharged in approximately 1 line period considering the following characteristics of a typical 1000kV DC generator [see Figure 1]. This means that non-disruptive discharges can occur often and may not be noticed on control desk panel meters with normal display time constants that are much longer than the discharge event. Figure 1 External Discharge in Air 2.4 TYPICAL 1000 kv DC TEST SYSTEM Generator Internal Capacitance Charging current Voltage Drop 10% Using the formula below Δt = C ΔU i C= 5nF I = 5mA ΔU = 100 kv The recharge time calculated for one time constant is t=100ms. [3] [8] It is safe to say that in several cycles or less than 0.5 to 1 second the voltage will be restored the original voltage. Without fast recording devices monitoring the output voltage, this event may not be noticed. The normal apparatus test duration is either 1- minute, 5 minutes or 1 hour. For any of these test durations "a few seconds" defined as less than 3 seconds would mean that the voltage was lower than 10% for at worst 5% of a 1-minute test. For longer tests it is a lower percentage. This is if one allowable event happened during a single test and if we agree that 3 seconds is a valid duration. In practice most test engineers would call a few second discharge a very long discharge during a DC test and probably result in a much larger voltage drop than 10% because of the energy required to sustain such a long non-disruptive discharge and the source voltage regulation. DC Pollution testing can have currents of several amperes for such long durations without flashovers. If a 3 second discharge could never realistically be sustained with normal DC test without exceeding the 10% voltage drop limit then this requirement should be changed in the IEC standard. An easier approach for all of this is to say that if you exceed a

3 10% voltage drop of any duration your test has failed. This ends the ambiguity of the current standard. A more realistic testing situation is where short duration, non-disruptive discharges (<10 us) and short recharge (<100ms) events happen randomly but can reoccur during a test. It is possible that many of these >10% voltage drop events can occur during a test and no flashover ever occurs which should mean failure. As long as these dips are less than 10% of the test voltage there would be no concern based on magnitude alone. If we agree that the voltage drops cannot exceed 10% for U >90% of the test voltage then we can define how much time the test voltage can be below Utest. In absence of guidance from the relevant technical committees, a proposed value of 1% can be considered. For a one-minute test this would be 0.6 seconds where the voltage can be below the test voltage but above 90% of the test voltage. As a note, the rise time and duration of the events we are talking about are much faster than the frequency of the ripple voltage. In IEC60060 Part 2 the only measurement system frequency characteristics specified is for having adequate bandwidth to measure the ripple voltage of a DC test source. That ripple frequency is usually between 100 and 400 Hz. Clearly, the standard measurement system is inadequate to measure fast voltage dips during DC tests that can be "instantaneous". What we really need is to know on a charging recharging cycle-to-cycle basis if the voltage has dropped but not the actual shape of the drop. The authors hope that research will continue using fast response measuring systems to accumulate data to record the actual characteristics of the non-disruptive discharges in dry, wet, pollution and combined tests. 2.5 DC SUMMARY For HV and UHV DC testing if a test circuit does not have audible or visually observable nondisruptive discharges then IEC qualified DC measuring systems are adequate. For HV and UHV DC tests where audible and visual non-disruptive discharges are present a measurement system with increased bandwidth and a digital recorder should be used to document the test results. It is of no interest to actually see the shape of a non-disruptive discharge. We are interested in the maximum drop in the DC voltage for each charging cycle. Therefore if we have a sufficient sampling rate to record the DC source charging rate (normally twice the mains frequency) for each cycle this would be sufficient to know if the DC voltage has dropped. 2.6 DIGITAL RECORDERS FOR DC HV AND UHV If the charge cycle frequency of the DC source is 2 x 50 Hz or 100 Hz, typical for voltage doublers [8], then the bandwidth of the digitizer to record the ripple voltage and to satisfy the Nyquest Theorem has to be at least 2 x and better for 10x to have safety factor. The characteristics of the digital recorder could be (ripple only): Rated Resolution Sampling Frequency Record length 1-minute test > 8 bits >1k Samples /sec 60k samples 5 minute test 300k samples 60 minute test 1 M samples The stated requirements for the digital recorder are easily met by commercially available components. It should be pointed out that faster events may need to be recorded such as voltage drop during streamers. In this case the digital recorder characteristics will approach those requirements as used for measuring Lightning Impulse voltages as required by IEC DC MEASUREMENT SYSTEM The voltage divider to derive the signal for the digital recorder and measurement system must have a bandwidth sufficient to record the ripple voltage that is normally 2X the mains frequency. Using the same criteria as for digitizers for this purpose the measurement system should have a bandwidth of DC to 2 khz minimum to detect voltage drops. The voltage divider for actually measuring the fast events must exceed the normal requirement for measuring ripple and DC magnitude and even for capturing the 10% voltage dips in normal testing. This is more interesting from a purely research standpoint. A suggestion for researchers studying this problem would be to use "universal" or RCR type dividers that meet the requirements for impulse voltage measurements. Future work may make better definitions

4 2.8 APPLICATION NOTE It should be noted here that the vast majority of DC testing is done with voltages under 500kV and requires no consideration of non-disruptive discharges in the test and measuring circuit during normal testing. It is mostly when we go above 400 to 500kV, especially with positive polarity, that these non-disruptive discharge problems exist and can impact test results if ignored. With the introduction of more HV DC transmission systems at the higher voltage levels, the issue of voltage drop will become more important in the future. 3 AC VOLTAGE REQUIREMENTS 3.1 FROM IEC60060 Part Paragraph 6 Tests with AC Voltages Paragraph voltage drop instantaneous reduction of the test voltage for a short duration of up to a few periods Paragraph Tolerances For test durations not exceeding 60 s, the measured values of the test voltage shall be maintained within ±1 % of the specified level throughout the test. For test durations exceeding 60 s the measured value of the test voltage shall be maintained within ±3 % of the specified level throughout the test. The test voltage source including the supporting capacitances should be adequate to supply the transient discharge currents also in the case of wet and pollution tests with a voltage drop of < 20 %. Paragraph Generation of the test voltage Paragraph Requirements for the transformer test circuit It is normal for apparatus to produce some current pulses since the test voltages are much higher than the operational voltages and these devices often lack large electrodes and ground shields to keep the test object electrically quiet. Since the current pulses are of short duration, voltage drops may be unrecognized by conventional AC measuring systems. The voltage stability of an AC. test system used in tests with time varying leakage current pulses can be verified by using a voltage measuring system with sufficient bandwidth. 3.2 SUMMARY OF AC REQUIREMENTS AC Voltage can drop no more than 20%, instantaneously and cannot exceed a 20% drop for more than a few line periods. We have the same ambiguity and contradiction as we have with DC. The voltage drop limit must not be exceeded at any time during the test. We have the same question as in DC: What is "a few periods"? What is "instantaneous"? Another question arises as to why we have a 20% limit for AC and a 10% limit for DC? This leads to "What are the characteristics of a measuring system to be able to determine if the requirements are met?" 3.2 COMMENTS ON AC REQUIREMENTS The following discussion relates to AC systems for Dry, Wet, Pollution, Combined or Composite testing. The AC and DC systems for pollution and wet testing have additional requirements on static and dynamic voltage regulation that normal AC or DC test systems for routine tests do not have. In general, this forces the requirements for test sources for pollution and wet testing to be higher current rated and also lower impedance or "stiffer" in source characteristics and fast voltage adjustment schemes. The same comments made about non-disruptive discharges in DC testing apply to AC testing. In the case of AC testing we have to decide the number of line periods that constitute "a few". If we say 3 or 5 we still must have a measuring system that can record the peak voltage of each line half period for comparison with the next via automated means. Again, the simple solution will be to put a limit on the amount of voltage drop and avoid the trap of how much time below the limit is allowed. Figure 2 shows the typical problem we encounter when we have streamers, which can persist for some time before they extinguish. When continuous streamers are present it is recommended that faster responding voltage measurements are made to ensure that the test voltage is held within the voltage drop limit for the duration of the test.

5 comment as was given in the DC section applies as a suggestion to researchers investigating the transient voltage drops in AC testing. However instead of RCR or "universal" voltage dividers, series damped or purely capacitive voltage dividers may be used in this case. 5 CONCLUSION The current standards do not clearly define the requirements for allowable Voltage Drop Fig. 2 AC External Discharge in Air 3.3 REQUIREMENTS OF MEASUREMENTS IN AC SYSTEMS If we wish to record the highest voltage for each half cycle of the applied AC voltage we will have a bandwidth requirement of 100 or 120 Hz. Following IEC, AC measuring systems must have a bandwidth sufficient to record up to the 7 th harmonic of the fundamental test frequency or Hz. It is normal to have some harmonics particularly with transformers supplying capacitive loads. [9] If we satisfy the Nyquist theorem we will need to sample at twice that rate with a digitizer and up to 10x to add safety factor. This 10X factor will help us in the cases where the test voltage waveform has a crest factor of up to 10% deviation from a perfect sine wave. The characteristics of the digital recorder for AC testing could be: Rated Resolution > 8 bits (1/256) Sampling Frequency Record length >2k samples /sec 1 minute test 120k samples 5 minute test 600k samples 60 minute test 7.2 M samples The requirements for the digital recorder for AC are similar to the requirements for a digital recorder for DC. The measuring system for AC systems for normal applications is inadequate for measuring the characteristics of pulses generated during Wet, Pollution, Combined or Composite tests. A similar The current standards do not clearly define the characteristics of a HV measurement system to know if the allowable voltage drop is exceeded. The normal measurement systems used for HV AC and DC test systems with voltage ratings above kv may not be sufficient to measure the output voltage correctly during periods where nondisruptive discharges occur. More research is required to provide the data to improve the existing standards. 6. RECOMMENDATIONS FOR STANDARDS REVISIONS Determine why AC and DC systems have different allowable Voltage Drop values. (Suggest 10% for both) Define the bandwidth or rise time of measurement systems when the measurement of Voltage Drop is required Define the typical current pulses found in pollution testing to aid in the characterization of test sources Define the total time that a test voltage can be in the range of 90 to 100% as a percentage of the total test time. 6 ACKNOWLEDGMENTS The authors acknowledge the assistance and comments of Dr. Wolfgang Hauschild in preparing this document. REFERENCES [1] IEC Ed. 3 "High Voltage Test Techniques Part 1 "General Definitions and Test Requirements 2010 [2] IEC Ed. 3 "High Voltage Test Techniques Part 2 Measuring Systems" [3] Larzelere, W., Gamlin, M., Acceptable Voltage Drop during AC and DC HV Testing, CIGRE WGD1.35, Kista 2012

6 [4] Hauschild, W., Lemke, E., High-Voltage Test and Measuring Techniques, Springer, Heidelberg, 2014 [5] Meek, J.M. and Craggs, J.D. Electrical Breakdown of Gases, John Wiley, New York 1978 [6] Peek, F.W., Dielectric Phenomena in High- Voltage Engineering, McGraw-Hill, New York, 1929 [7] Naidu, M.S. and Kamaraju, V. High Voltage Engineering, Tata-McGraw Hill, New York 1995 [8] Lee, Reuben, Electronic Transformers and Circuits, John Wiley & Sons, New York 1955 [9] Blume, L.F. Boyajian, A., Camilli, G. et al, Transformer Engineering John Wiley & Sons, New York 1938,1951

ROEVER ENGINEERING COLLEGE ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

ROEVER ENGINEERING COLLEGE ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING ROEVER ENGINEERING COLLEGE ELAMBALUR, PERAMBALUR 621 212 DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING EE1003 HIGH VOLTAGE ENGINEERING QUESTION BANK UNIT-I OVER VOLTAGES IN ELECTRICAL POWER SYSTEM

More information

MEASUREMENT OF THE INTERNAL INDUCTANCE OF IMPULSE VOLTAGE GENERATORS AND THE LIMITS OF LI FRONT TIMES

MEASUREMENT OF THE INTERNAL INDUCTANCE OF IMPULSE VOLTAGE GENERATORS AND THE LIMITS OF LI FRONT TIMES The 20 th International Symposium on High Voltage Engineering, Buenos Aires, Argentina, August 27 September 01, 2017 MEASUREMENT OF THE INTERNAL INDUCTANCE OF IMPULSE VOLTAGE GENERATORS AND THE LIMITS

More information

DEPARTMENT OF DEFENSE TEST METHOD STANDARD METHOD 301, DIELECTRIC WITHSTANDING VOLTAGE

DEPARTMENT OF DEFENSE TEST METHOD STANDARD METHOD 301, DIELECTRIC WITHSTANDING VOLTAGE INCH-POUND MIL-STD-202-301 18 April 2015 SUPERSEDING MIL-STD-202G w/change 2 (IN PART) 28 June 2013 (see 6.1) DEPARTMENT OF DEFENSE TEST METHOD STANDARD METHOD 301, DIELECTRIC WITHSTANDING VOLTAGE AMSC

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1402 HIGH VOLTAGE ENGINEERING UNIT I

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1402 HIGH VOLTAGE ENGINEERING UNIT I DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1402 HIGH VOLTAGE ENGINEERING YEAR / SEM : IV / VII UNIT I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS 1. What

More information

High-Voltage Test and

High-Voltage Test and Eberhard Wolfgang Hauschild Lemke High-Voltage Test and Measuring Techniques ^ Springer Contents 1 Introduction 1 1.1 Development of Power Systems and Required High-Voltage Test Systems 1 1.2 The International

More information

CHAPTER 10 HIGH VOLTAGE TESTING OF ELECTRICAL APPARATUS

CHAPTER 10 HIGH VOLTAGE TESTING OF ELECTRICAL APPARATUS CHAPTER 10 HIGH VOLTAGE TESTING OF ELECTRICAL APPARATUS 1. Introduction 2. Classification of High Voltage Tests 3. Test Voltages 4. High Voltage Testing of Electrical Apparatus 1. INTRODUCTION Purpose

More information

Evaluation and Limitations of Corona Discharge Measurements An Application Point of View

Evaluation and Limitations of Corona Discharge Measurements An Application Point of View Evaluation and Limitations of Corona Discharge Measurements An Application Point of View P. Mraz, P. Treyer, U. Hammer Haefely Hipotronics, Tettex Instruments Division 2016 International Conference on

More information

Disclosure to Promote the Right To Information

Disclosure to Promote the Right To Information इ टरन ट म नक Disclosure to Promote the Right To Information Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information

More information

Prepared by Mick Maytum

Prepared by Mick Maytum IEC Technical Committee 109: Standards on insulation co-ordination for low-voltage equipment Warning Prepared by Mick Maytum mjmaytum@gmail.com The document content is of a general nature only and is not

More information

Harmonizing the ANSI-C12.1(2008) EMC Tests. Harmonizing the ANSI-C12.1(2008) EMC Tests

Harmonizing the ANSI-C12.1(2008) EMC Tests. Harmonizing the ANSI-C12.1(2008) EMC Tests Harmonizing the ANSI-C12.1(2008) EMC Tests Subcommittee 1 (Emissions) Subcommittee 5 (Immunity) Joint Task Force on C12.1 June 17, 2013 1 The Accredited Standards Committee C63 presents Harmonizing the

More information

CHAPTER 2. v-t CHARACTERISTICS FOR STANDARD IMPULSE VOLTAGES

CHAPTER 2. v-t CHARACTERISTICS FOR STANDARD IMPULSE VOLTAGES 23 CHAPTER 2 v-t CHARACTERISTICS FOR STANDARD IMPULSE VOLTAGES 2.1 INTRODUCTION For reliable design of power system, proper insulation coordination among the power system equipment is necessary. Insulation

More information

LESSON PLAN LP-EE Sub Code: EE 2353 Sub Name: HIGH VOLTAGE ENGINEERING Unit: I Branch: EEE Semester: VI

LESSON PLAN LP-EE Sub Code: EE 2353 Sub Name: HIGH VOLTAGE ENGINEERING Unit: I Branch: EEE Semester: VI Unit: I Branch: EEE Semester: VI Page 1 of 6 OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS Causes of over voltages and its effect on power system Lightning, switching surges and temporary over voltages - protection

More information

HVDC Transmission. Michael Muhr. Institute of High Voltage Engineering and System Performance Graz University of Technology Austria P A S S I O N

HVDC Transmission. Michael Muhr. Institute of High Voltage Engineering and System Performance Graz University of Technology Austria P A S S I O N S C I E N C E P A S S I O N T E C H N O L O G Y HVDC Transmission Michael Muhr Graz University of Technology Austria www.tugraz.at 1 Definition HV High Voltage AC Voltage > 60kV 220kV DC Voltage > 60kV

More information

Australian Standard. Electricity metering equipment (AC) Particular requirements. Part 22: Static meters for active energy (classes 0.2 S and 0.

Australian Standard. Electricity metering equipment (AC) Particular requirements. Part 22: Static meters for active energy (classes 0.2 S and 0. AS 62053.22 2005 IEC 62053-22, Ed.1.0 (2003) AS 62053.22 2005 Australian Standard Electricity metering equipment (AC) Particular requirements Part 22: Static meters for active energy (classes 0.2 S and

More information

Power Quality and Reliablity Centre

Power Quality and Reliablity Centre Technical Note No. 8 April 2005 Power Quality and Reliablity Centre TRANSIENT OVERVOLTAGES ON THE ELECTRICITY SUPPLY NETWORK CLASSIFICATION, CAUSES AND PROPAGATION This Technical Note presents an overview

More information

Device Under Test: ALTEA VS- 24-I VS-24-I. 0 24/09/12 First issue A. Peretto L. Peretto 1 24/06/16 All text review E. Scala L. Peretto J. L.

Device Under Test: ALTEA VS- 24-I VS-24-I. 0 24/09/12 First issue A. Peretto L. Peretto 1 24/06/16 All text review E. Scala L. Peretto J. L. /9 TECHNICAL SPECIFICATIONS VOLTAGE LOW-POWER TRANSFORMER VS- Rev. Date Revision Description Prepared by Checked by Approved by 0 24/09/2 First issue A. Peretto L. Peretto 24/06/6 All text review E. Scala

More information

EE 1402 HIGH VOLTAGE ENGINEERING

EE 1402 HIGH VOLTAGE ENGINEERING EE 1402 HIGH VOLTAGE ENGINEERING Unit 5 TESTS OF INSULATORS Type Test To Check The Design Features Routine Test To Check The Quality Of The Individual Test Piece. High Voltage Tests Include (i) Power frequency

More information

Immunity Testing for the CE Mark

Immunity Testing for the CE Mark Immunity Testing for the CE Mark Summary The European Union (EU) currently has 25 member countries with 2 additional countries to be added in 2007. The total population at that time will be nearly a half

More information

POWER TRANSFORMER SPECIFICATION, DESIGN, QUALITY CONTROL AND TESTING 18 MARCH 2009

POWER TRANSFORMER SPECIFICATION, DESIGN, QUALITY CONTROL AND TESTING 18 MARCH 2009 POWER TRANSFORMER SPECIFICATION, DESIGN, QUALITY CONTROL AND TESTING 18 MARCH 2009 Nkosinathi Buthelezi Senior Consultant: Power Transformers and Reactors Presentation Content Standardization of Power

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 60060-3 First edition 2006-02 High-voltage test techniques Part 3: Definitions and requirements for on-site testing Reference number IEC 60060-3:2006(E) Publication numbering

More information

Coherence and time-frequency analysis of impulse voltage and current measurements

Coherence and time-frequency analysis of impulse voltage and current measurements Coherence and time-frequency analysis of impulse voltage and current measurements Jelena Dikun Electrical Engineering Department, Klaipeda University, Klaipeda, Lithuania Emel Onal Electrical Engineering

More information

Comparison of CAN/CSA C88.1, IEEE C /01 & IEC 60137

Comparison of CAN/CSA C88.1, IEEE C /01 & IEC 60137 ITEM Power factor (tanδ) & Capacitance Measurement Dry 1-minute Power frequency with partial discharge measurement CAN/CSA C88.1-96 IEEE C57.19.00/01 IEC 60137 Requirement Requirement Requirement Clause

More information

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit. Current Transducer CTSR 0.6-TP/SP2 I PRN = 600 ma For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit. Features

More information

Test Specification for Type Approval

Test Specification for Type Approval A2 (1991) (Rev.1 1993) (Rev.2 1997) (Rev. 2.1 July 1999) (Rev.3 May 2001) (Corr.1 July 2003) (Rev.4 May 2004) (Rev.5 Dec 2006) (Rev.6 Oct 2014) Test Specification for Type Approval.1 General This Test

More information

Testing of 400 kv GIS

Testing of 400 kv GIS Testing of 400 kv GIS Robert le Roux, Dermot Dorgan, Brian Perry ESB International - Ireland Paper 028 1 Introduction The 400 kv transmission is designed for critical periods of low loading. Due to critical

More information

Alternative Coupling Method for Immunity Testing of Power Grid Protection Equipment

Alternative Coupling Method for Immunity Testing of Power Grid Protection Equipment Alternative Coupling Method for Immunity Testing of Power Grid Protection Equipment Christian Suttner*, Stefan Tenbohlen Institute of Power Transmission and High Voltage Technology (IEH), University of

More information

Pre location: Impulse-Current-Method (ICE)

Pre location: Impulse-Current-Method (ICE) 1 ICE (Impulse current method three phased 2 1.1 Ionisation delay time 2 1.2 DIRECT MODE 2 1.3 Output impedance of the generator 2 Surge generator as impulse source 3 High voltage test set as impulse source

More information

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Aggregated Generating Facilities Technical Requirements

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Aggregated Generating Facilities Technical Requirements Division 502 Technical Applicability 1(1) Section 502.1 applies to: Expedited Filing Draft August 22, 2017 the legal owner of an aggregated generating facility directly connected to the transmission system

More information

TRANSFORMERS FAULT ANALYSIS - A MULTIDISCIPLINARY APPROACH

TRANSFORMERS FAULT ANALYSIS - A MULTIDISCIPLINARY APPROACH TRANSFORMERS FAULT ANALYSIS - A MULTIDISCIPLINARY APPROACH Giuseppe Cappai, Bernhard Heinrich, Giuseppe Simioli, Leonardo Trevisan Weidmann Electrical Technology AG, Switzerland Abstract: A large solar

More information

High-Voltage Test Techniques

High-Voltage Test Techniques High-Voltage Test Techniques Dieter Kind Kurt Feser 2nd Revised and Enlarged Edition With 211 Figures and 12 Laboratory Experiments Translated from the German by Y. Narayana Rao Professor of Electrical

More information

Modeling insulation in high-voltage substations

Modeling insulation in high-voltage substations 38 ABB REVIEW DESIGNED FOR SAFETY DESIGNED FOR SAFETY Modeling insulation in high-voltage substations The goal of insulation coordination is to determine the dielectric strength of transformers and other

More information

Investigation on the Performance of Different Lightning Protection System Designs

Investigation on the Performance of Different Lightning Protection System Designs IX- Investigation on the Performance of Different Lightning Protection System Designs Nicholaos Kokkinos, ELEMKO SA, Ian Cotton, University of Manchester Abstract-- In this paper different lightning protection

More information

Low voltage products in high altitudes

Low voltage products in high altitudes WHITE PAPER Low voltage products in high altitudes Information and technical guidance for applications above 2000 m sea level This white paper provides information including technical guidance for high

More information

AMENDMENT NO. 1 SEPTEMBER IS (Part 1) : 2001/IEC (1991) SURGE ARRESTORS

AMENDMENT NO. 1 SEPTEMBER IS (Part 1) : 2001/IEC (1991) SURGE ARRESTORS AMENDMENT NO. 1 SEPTEMBER 2011 TO IS 15086 (Part 1) : 2001/IEC 60099-1 (1991) SURGE ARRESTORS PART 1 NON-LINEAR RESISTOR TYPE GAPPED SURGE ARRESTORS FOR a.c. SYSTEMS (The Amendment was originally published

More information

EFFECT OF INTEGRATION ERROR ON PARTIAL DISCHARGE MEASUREMENTS ON CAST RESIN TRANSFORMERS. C. Ceretta, R. Gobbo, G. Pesavento

EFFECT OF INTEGRATION ERROR ON PARTIAL DISCHARGE MEASUREMENTS ON CAST RESIN TRANSFORMERS. C. Ceretta, R. Gobbo, G. Pesavento Sept. 22-24, 28, Florence, Italy EFFECT OF INTEGRATION ERROR ON PARTIAL DISCHARGE MEASUREMENTS ON CAST RESIN TRANSFORMERS C. Ceretta, R. Gobbo, G. Pesavento Dept. of Electrical Engineering University of

More information

FGJTCFWP"KPUVKVWVG"QH"VGEJPQNQI[" FGRCTVOGPV"QH"GNGEVTKECN"GPIKPGGTKPI" VGG"246"JKIJ"XQNVCIG"GPIKPGGTKPI

FGJTCFWPKPUVKVWVGQHVGEJPQNQI[ FGRCTVOGPVQHGNGEVTKECNGPIKPGGTKPI VGG246JKIJXQNVCIGGPIKPGGTKPI FGJTFWP"KPUKWG"QH"GEJPQNQI[" FGRTOGP"QH"GNGETKEN"GPIKPGGTKPI" GG"46"JKIJ"XQNIG"GPIKPGGTKPI Resonant Transformers: The fig. (b) shows the equivalent circuit of a high voltage testing transformer (shown

More information

The University of New South Wales. School of Electrical Engineering and Telecommunications. High Voltage Systems ELEC9712. Appendix Partial Discharge

The University of New South Wales. School of Electrical Engineering and Telecommunications. High Voltage Systems ELEC9712. Appendix Partial Discharge The University of New South Wales School of Electrical Engineering and Telecommunications High Voltage Systems ELEC9712 Appendix Partial Discharge Content Introduction Quantities measured Test circuits

More information

Reconfiguration of 3 MV Marx Generator into a Modern High Efficiency System

Reconfiguration of 3 MV Marx Generator into a Modern High Efficiency System Reconfiguration of 3 MV Marx Generator into a Modern High Efficiency System Joni V. Klüss Mississippi State University, USA William Larzelere Evergreen High Voltage, USA Abstract High voltage impulse generators

More information

Type 297, High-Voltage Mica Capacitors Corona-free Mica Coupling Capacitors for Medium-Voltage PDA s

Type 297, High-Voltage Mica Capacitors Corona-free Mica Coupling Capacitors for Medium-Voltage PDA s Designed for Partial Discharge Analyzers (PDA s) monitoring rotating machinery or other medium-voltage equipment from 1 to 35 kvac RMS at power-line frequencies of 10 Hz to 1 khz, Mica Capacitor Type 297

More information

Design and construction of double-blumlein HV pulse power supply

Design and construction of double-blumlein HV pulse power supply Sādhan ā, Vol. 26, Part 5, October 2001, pp. 475 484. Printed in India Design and construction of double-blumlein HV pulse power supply DEEPAK K GUPTA and P I JOHN Institute for Plasma Research, Bhat,

More information

TRANSMISSION ENGINEERING STANDARD TES-P , Rev. 0 TABLE OF CONTENTS 1.0 SCOPE 2.0 BONDING METHODS

TRANSMISSION ENGINEERING STANDARD TES-P , Rev. 0 TABLE OF CONTENTS 1.0 SCOPE 2.0 BONDING METHODS 1.0 SCOPE 2.0 BONDING METHODS 2.1 Introduction 2.2 Design 2.3 Single-Point Bonding 2.4 Cross Bonding 2.5 Sheath Sectionalizing Joints 2.6 Sheath Standing Voltage 2.7 Sheath Voltage at Through Fault 2.8

More information

Recent Improvements in K-Factor Models dl

Recent Improvements in K-Factor Models dl 1 Recent Improvements in K-Factor Models dl Yixin Zhang NEETRAC, Georgia Institute of Technology 2014 IEEE PES Panel Session Discussions on IEEE Std.4 2013: High Voltage Testing Techniques 2 Related Standards

More information

Tab 2 Voltage Stresses Switching Transients

Tab 2 Voltage Stresses Switching Transients Tab 2 Voltage Stresses Switching Transients Distribution System Engineering Course Unit 10 2017 Industry, Inc. All rights reserved. Transient Overvoltages Decay with time, usually within one or two cycles

More information

Power Quality and Circuit Imbalances Northwest Electric Meter School Presented by: Chris Lindsay-Smith McAvoy & Markham Engineering/Itron

Power Quality and Circuit Imbalances Northwest Electric Meter School Presented by: Chris Lindsay-Smith McAvoy & Markham Engineering/Itron Power Quality and Circuit Imbalances 2015 Northwest Electric Meter School Presented by: Chris Lindsay-Smith McAvoy & Markham Engineering/Itron Summary of IEEE 1159 Terms Category Types Typical Duration

More information

A Review Comprehension: Guideline for Testing of HV, EHV and UHV Substation Equipment

A Review Comprehension: Guideline for Testing of HV, EHV and UHV Substation Equipment International Research Journal of Engineering and Technology (IRJET) eissn: 23 0056 Volume: 04 Issue: 02 Feb 2017 www.irjet.net pissn: 072 A Review Comprehension: Guideline for Testing of HV, EHV and UHV

More information

Current Transducer CTSR 1-P = 1A

Current Transducer CTSR 1-P = 1A Current Transducer CTSR 1-P I PRN = 1A For the electronic measurement of current: DC, AC, pulsed..., with galvanic isolation between the primary (high power) and the secondary circuit (electronic circuit).

More information

Australian Standard. Instrument transformers. Part 1: Current transformers (IEC Ed.1.2 (2003) MOD) AS AS

Australian Standard. Instrument transformers. Part 1: Current transformers (IEC Ed.1.2 (2003) MOD) AS AS AS 60044.1 2007 AS 60044.1 2007 Australian Standard Instrument transformers Part 1: Current transformers (IEC 60044-1 Ed.1.2 (2003) MOD) This Australian Standard was prepared by Committee EL-013, Measurement

More information

ANALYSIS OF VOLTAGE TRANSIENTS IN A MEDIUM VOLTAGE SYSTEM

ANALYSIS OF VOLTAGE TRANSIENTS IN A MEDIUM VOLTAGE SYSTEM ANALYSIS OF VOLTAGE TRANSIENTS IN A MEDIUM VOLTAGE SYSTEM Anna Tjäder Chalmers University of Technology anna.tjader@chalmers.se Math Bollen Luleå University of Technology math.bollen@stri.se ABSTRACT Power

More information

HIGH VOLTAGE ENGINEERING(FEEE6402) LECTURER-24

HIGH VOLTAGE ENGINEERING(FEEE6402) LECTURER-24 LECTURER-24 GENERATION OF HIGH ALTERNATING VOLTAGES When test voltage requirements are less than about 300kV, a single transformer can be used for test purposes. The impedance of the transformer should

More information

7. INSPECTION AND TEST PROCEDURES

7. INSPECTION AND TEST PROCEDURES 7.1 Switchgear and Switchboard Assemblies A. Visual and Mechanical Inspection 1. Compare equipment nameplate data with drawings and specifications. 2. Inspect physical and mechanical condition. 3. Inspect

More information

Insulation Level and Test Technology of. 1000kV Power Transformer

Insulation Level and Test Technology of. 1000kV Power Transformer Insulation Level and Test Technology of 1000kV Power Transformer Li Guangfan, Wang Xiaoning, Li Peng et al HIMALAYAL - SHANGHAI - CHINA Abstract: The insulation coordination for the first 1000kV UHVAC

More information

LOVAG GENERAL INSTRUCTION G2 MEASUREMENT UNCERTAINTY. This instruction of a general nature and does not relate to specific standards.

LOVAG GENERAL INSTRUCTION G2 MEASUREMENT UNCERTAINTY. This instruction of a general nature and does not relate to specific standards. LTI-G2 LOVAG GENERAL INSTRUCTION G2 MEASUREMENT UNCERTAINTY This instruction of a general nature and does not relate to specific standards. It provides additional information ensuring a suitable degree

More information

HIGH VOLTAGE TESTING GENERATION AND MEASUREMENTS

HIGH VOLTAGE TESTING GENERATION AND MEASUREMENTS HIGH VOLTAGE TESTING GENERATION AND MEASUREMENTS 1. INTRODUCTION why high voltage test? 2. HIGH VOLTAGE GENERATION a) Generation of direct high voltages b) Generation of alternating high voltages c) Generation

More information

RCTrms Technical Notes

RCTrms Technical Notes RCTrms Technical Notes All measuring instruments are subject to limitations. The purpose of these technical notes is to explain some of those limitations and to help the engineer maximise the many advantages

More information

PANIMALAR ENGINEERING COLLEGE Department of Electrical and Electronics Engineering

PANIMALAR ENGINEERING COLLEGE Department of Electrical and Electronics Engineering PANIMALAR ENGINEERING COLLEGE Department of Electrical and Electronics Engineering 1. Write some applications of high voltage? High Voltage Engineering 2 mark Question with answers Unit I Overvoltages

More information

IDEAL INDUSTRIES, INC. TECHNICAL MANUAL MODEL: MODEL: Multimeter Service Information

IDEAL INDUSTRIES, INC. TECHNICAL MANUAL MODEL: MODEL: Multimeter Service Information IDEAL INDUSTRIES, INC. TECHNICAL MANUAL MODEL: 61-340 MODEL: 61-342 Multimeter Service Information The Service Information provides the following information: Precautions and safety information Specifications

More information

IEC/CIGRE UHV Symposium Beijing Paper 4.2. Challenges on the measuring and testing techniques for UHV AC and DC equipment

IEC/CIGRE UHV Symposium Beijing Paper 4.2. Challenges on the measuring and testing techniques for UHV AC and DC equipment IEC/CIGRE UHV Symposium Beijing 2007-07-23 Paper 4.2 Challenges on the measuring and testing techniques for UHV AC and DC equipment E. GOCKENBACH 1 ; W. HAUSCHILD 2, S. SCHIERIG 2, M. MUHR 3, W. LICK 3,

More information

Informations and comments on ECE-TRANS-WP.29-GRB e

Informations and comments on ECE-TRANS-WP.29-GRB e Transmitted by the expert from France Informal document GRB-63-16 (63rd GRB, 16-18 February 2016, agenda item 2) Informations and comments on ECE-TRANS-WP.29-GRB-2016-02e Louis-Ferdinand PARDO (France)

More information

(2) New Standard IEEE P (3) Core : (4) Windings :

(2) New Standard IEEE P (3) Core : (4) Windings : (d) Electrical characteristics (such as short-circuit withstand, commutating reactance, more number of windings, etc); (e) Longer life expectancy; (f) Energy efficiency; (g) more demanding environment.

More information

Insulation Test System

Insulation Test System Component Tests Insulation Test System Brief Overview of Phenomena............... 2 Applicable Standards................... 3 Test System Overview.................. 3 Generator Specifications.................

More information

2620 Modular Measurement and Control System

2620 Modular Measurement and Control System European Union (EU) Council Directive 89/336/EEC Electromagnetic Compatibility (EMC) Test Report 2620 Modular Measurement and Control System Sensoray March 31, 2006 April 4, 2006 Tests Conducted by: ElectroMagnetic

More information

Testing 320 kv HVDC XLPE Cable System

Testing 320 kv HVDC XLPE Cable System Testing 320 kv HVDC XLPE Cable System H. He, W. Sloot DNV GL, KEMA Laboratories Arnhem, The Netherlands Abstract Two unique test requirements in testing of a high- voltage direct- current (HVDC) cable

More information

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit. Current transducer CKSR series N = 6, 5, 25, 5 A Ref: CKSR 6-NP, CKSR 5-NP, CKSR 25-NP, CKSR 5-NP For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary

More information

Australian Standard. Electricity metering equipment (ac) Particular requirements. Part 23: Static meters for reactive energy (classes 2 and 3)

Australian Standard. Electricity metering equipment (ac) Particular requirements. Part 23: Static meters for reactive energy (classes 2 and 3) AS 62053.23 2006 IEC 62053-23, Ed.1.0 (2003) AS 62053.23 2006 Australian Standard Electricity metering equipment (ac) Particular requirements Part 23: Static meters for reactive energy (classes 2 and 3)

More information

TD-100. HAEFELY HIPOTRONICS Technical Document

TD-100. HAEFELY HIPOTRONICS Technical Document HAEFELY HIPOTRONICS Technical Document Breaking the limit of power capacitor resonance frequency with help of PD pulse spectrum to check and setup PD measurement P. Treyer, P. Mraz, U. Hammer, S. Gonzalez

More information

TEST SUMMARY. Prüfbericht - Nr.: Test Report No.: Seite 2 von 25. Page 2 of 25

TEST SUMMARY. Prüfbericht - Nr.: Test Report No.: Seite 2 von 25. Page 2 of 25 15072259 001 Seite 2 von 25 Page 2 of 25 TEST SUMMARY 4.1.1 HARMONICS ON AC MAINS 4.1.2 VOLTAGE FLUCTUATIONS ON AC MAINS 4.1.3 MAINS TERMINAL CONTINUOUS DISTURBANCE VOLTAGE 4.1.4 DISCONTINUOUS INTERFERENCE

More information

Insulation Co-ordination For HVDC Station

Insulation Co-ordination For HVDC Station Insulation Co-ordination For HVDC Station Insulation Co-ordination Definitions As per IEC 60071 Insulation Coordination is defined as selection of dielectric strength of equipment in relation to the operating

More information

3MElectrical Markets Division

3MElectrical Markets Division 3MElectrical Markets Division Contents Summary 3 Purpose... 3 Test Specimen 3 Test Deviations... 4 Test Results 5 Impulse Test Oscillograms... 10 Specimen Photographs.. 11 Equipment Documentation: Impulse

More information

10. DISTURBANCE VOLTAGE WITHSTAND CAPABILITY

10. DISTURBANCE VOLTAGE WITHSTAND CAPABILITY 9. INTRODUCTION Control Cabling The protection and control equipment in power plants and substations is influenced by various of environmental conditions. One of the most significant environmental factor

More information

Generation of Sub-nanosecond Pulses

Generation of Sub-nanosecond Pulses Chapter - 6 Generation of Sub-nanosecond Pulses 6.1 Introduction principle of peaking circuit In certain applications like high power microwaves (HPM), pulsed laser drivers, etc., very fast rise times

More information

The development of the SA grid code on Power Quality emission. Dr. Gerhard Botha 2017/08/08

The development of the SA grid code on Power Quality emission. Dr. Gerhard Botha 2017/08/08 The development of the SA grid code on Power Quality emission Dr. Gerhard Botha 2017/08/08 Overview What is the Grid Code? What is Power Quality? Power Quality Management Principles Differences Challenges

More information

CVVOZE Power Laboratories (CVVOZEPowerLab)

CVVOZE Power Laboratories (CVVOZEPowerLab) CVVOZE Power Laboratories (CVVOZEPowerLab) BRNO, SEPTEMBER 2016 1 Centre for Research and Utilization of Renewable Energy Centre for Research and Utilization of Renewable Energy (CVVOZE) was established

More information

X-band Magnetron. Cooling (note 5) Water Output coupling (note 6) UG51/U Magnet (note 7) Integral, Permanent

X-band Magnetron. Cooling (note 5) Water Output coupling (note 6) UG51/U Magnet (note 7) Integral, Permanent X-band Magnetron GENERAL DESCRIPTION MX7637 is a tunable X-band pulsed type magnetron intended primarily for linear accelerator. It is cooled with water and has a UG51/U (WR112) output coupling. It is

More information

WIRELESS INSULATOR POLLUTION MONITORING SYSTEM

WIRELESS INSULATOR POLLUTION MONITORING SYSTEM SYSTEM OVERVIEW Pollution monitoring of high voltage insulators in electrical power transmission and distribution systems, switchyards and substations is essential in order to minimise the risk of power

More information

A Case Study on Selection and Application of Lightning Arrester and Designing its Suitable Grounding Grid

A Case Study on Selection and Application of Lightning Arrester and Designing its Suitable Grounding Grid A Case Study on Selection and Application of Lightning Arrester and Designing its Suitable Grounding Grid 1 Arpan K. Rathod, 2 Chaitanya H. Madhekar Students Electrical Engineering, VJTI, Mumbai, India

More information

Past CIGRE and Emerging IEEE Guide Documents on FCLs

Past CIGRE and Emerging IEEE Guide Documents on FCLs Past CIGRE and Emerging IEEE Guide Documents on FCLs Michael Mischa Steurer Leader Power Systems Research Group at FSU-CAPS Email: steurer@caps.fsu.edu, phone: 850-644-1629 Presented by W. Hassenzahl Advanced

More information

Simulation, Design and Construction of High Voltage DC Power Supply at 15 kv Output Using Voltage Multiplier Circuits

Simulation, Design and Construction of High Voltage DC Power Supply at 15 kv Output Using Voltage Multiplier Circuits American Journal of Applied Sciences 3 (12): 2178-2183, 2006 ISSN 1546-9239 2006 Science Publications Simulation, Design and Construction of High Voltage DC Power Supply at 15 kv Output Using Voltage Multiplier

More information

RTU560. Multimeter 560CVD03. Power Measuring Display. Characteristics. Application. Data Sheet Multimeter 560CVD03

RTU560. Multimeter 560CVD03. Power Measuring Display. Characteristics. Application. Data Sheet Multimeter 560CVD03 Multimeter 560CVD03 Without LCD Display There are several versions available: With LCD Display Figure 1 Type Display LO HI 1A 5A Versions R0031 3U3I x x x R0035 3U3I x x x R0051 3U3I x x x R0055 3U3I x

More information

Fundamentals of Power Quality

Fundamentals of Power Quality NWEMS Fundamentals of Power Quality August 20 24, 2018 Seattle, WA Track D Anaisha Jaykumar (SEL) Class Content» Introduction to power quality (PQ)» Causes of poor PQ and impact of application» PQ characteristics»

More information

Electric Stresses on Surge Arrester Insulation under Standard and

Electric Stresses on Surge Arrester Insulation under Standard and Chapter 5 Electric Stresses on Surge Arrester Insulation under Standard and Non-standard Impulse Voltages 5.1 Introduction Metal oxide surge arresters are used to protect medium and high voltage systems

More information

ETSI EN V1.2.1 ( )

ETSI EN V1.2.1 ( ) EN 300 132-3 V1.2.1 (2003-08) European Standard (Telecommunications series) Environmental Engineering (EE); Power supply interface at the input to telecommunications equipment; Part 3: Operated by rectified

More information

PROXIMITY SENSOR TERMINOLOGY

PROXIMITY SENSOR TERMINOLOGY Never use this desk reference for installation or operation of equipment. Refer to manual for installation and operation instructions. The following descriptions refer to the European standard EN 60947-5-2.

More information

GIS Disconnector Switching Operation VFTO Study

GIS Disconnector Switching Operation VFTO Study GIS Disconnector Switching Operation VFTO Study Mariusz Stosur, Marcin Szewczyk, Wojciech Piasecki, Marek Florkowski, Marek Fulczyk ABB Corporate Research Center in Krakow Starowislna 13A, 31-038 Krakow,

More information

TEST SUMMARY. Prüfbericht - Nr.: Test Report No.: Seite 2 von 27. Page 2 of 27

TEST SUMMARY. Prüfbericht - Nr.: Test Report No.: Seite 2 von 27. Page 2 of 27 15072768 001 Seite 2 von 27 Page 2 of 27 TEST SUMMARY 4.1.1 HARMONICS ON AC MAINS 4.1.2 VOLTAGE CHANGES, VOLTAGE FLUCTUATIONS AND FLICKER ON AC MAINS 4.1.3 MAINS TERMINAL CONTINUOUS DISTURBANCE VOLTAGE

More information

Interference Suppression Film Capacitor - Class X2 Axial MKT 253 V AC - Continuous Across the Line

Interference Suppression Film Capacitor - Class X2 Axial MKT 253 V AC - Continuous Across the Line Interference Suppression Film Capacitor - Class X2 Axial MKT 253 V AC - Continuous Across the Line FEATURES Axial mounting Low building height Material categorization: for definitions of compliance please

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 60071-2 Third edition 1996-12 Insulation co-ordination Part 2: Application guide This English-language version is derived from the original bilingual publication by leaving out

More information

T-68 Protecting Your Equipment through Power Quality Solutions

T-68 Protecting Your Equipment through Power Quality Solutions T-68 Protecting Your Equipment through Power Quality Solutions Dr. Bill Brumsickle Vice President, Engineering Nov. 7-8, 2012 Copyright 2012 Rockwell Automation, Inc. All rights reserved. 2 Agenda What

More information

Analysis of MOV Surge Arrester Models by using Alternative Transient Program ATP/EMTP

Analysis of MOV Surge Arrester Models by using Alternative Transient Program ATP/EMTP IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 2 August 216 ISSN (online): 2349-784X Analysis of MOV Surge Arrester Models by using Alternative Transient Program ATP/EMTP

More information

Analysis of Major Changes to Arrester Standards IEC STEVE BREWER

Analysis of Major Changes to Arrester Standards IEC STEVE BREWER Analysis of Major Changes to Arrester Standards IEC 60099-4 STEVE BREWER Analysis of Major Changes to Arrester Standard IEC 60099-4 Steve Brewer- Senior Product Manager - HPS Arrester Business Unit Agenda

More information

MSP5.0A. Surface Mount TRANSZORB Transient Voltage Suppressors. Vishay General Semiconductor. New Product

MSP5.0A. Surface Mount TRANSZORB Transient Voltage Suppressors. Vishay General Semiconductor. New Product MSP5.A Surface Mount TRANSZORB Transient Voltage Suppressors esmp TM Series Top View Bottom View MicroSMP PRIMARY CHARACTERISTICS V WM 5. V P PPM W I FSM 25 A T J max. 5 C FEATURES Very low profile - typical

More information

Discipline Electrical Testing Issue Date Certificate Number T-2837 Valid Until Last Amended on - Page 1 of 6 LOCATION 1

Discipline Electrical Testing Issue Date Certificate Number T-2837 Valid Until Last Amended on - Page 1 of 6 LOCATION 1 Post: Last Amended on - Page 1 of 6 LOCATION 1 I. TRANSFORMERS AND REACTORS 1. 500 MVA, 765 kv 500 MVA, 400 kv Ratio & Polarity Check Magnetic Balance & Magnetizing Current Measurement at Low Voltage Vector

More information

The Testing Of High Voltage Silicon Carbide Lightning Arresters

The Testing Of High Voltage Silicon Carbide Lightning Arresters The Testing Of High Voltage Silicon Carbide Lightning Arresters Ass Lect. Arkan A. Hussein University Of Tikrit / Engineering College / Electrical Engineering Department ABSTRACT The majority of high voltage

More information

Transmission of Electrical Energy

Transmission of Electrical Energy Transmission of Electrical Energy Electrical energy is carries by conductors such as overhead transmission lines and underground cables. The conductors are usually aluminum cable steel reinforced (ACSR),

More information

PQ Monitoring Standards

PQ Monitoring Standards Characterization of Power Quality Events Charles Perry, EPRI Chair, Task Force for PQ Characterization E. R. Randy Collins, Clemson University Chair, Working Group for Monitoring Electric Power Quality

More information

138 kv and 345 kv Wide-Band SF 6 -Free Optical Voltage Transducers

138 kv and 345 kv Wide-Band SF 6 -Free Optical Voltage Transducers 138 kv and 345 kv Wide-Band SF 6 -Free Optical Voltage Transducers Farnoosh Rahmatian, Member, IEEE, Patrick P. Chavez, and Nicolas A. F. Jaeger, Member, IEEE Abstract--This paper describes the design

More information

HARMONIC FILTERS Design for IEC compliance

HARMONIC FILTERS Design for IEC compliance HARMONIC FILTERS Design for IEC 61000 compliance Marius Jansen February 2011 GRID Overview What is a filter Types of harmonic filters What is harmonic compliance Designing for compliance Designing for

More information

S-band Magnetron. Tuner revolutions to cover frequency range 4.75 (note 3) Mounting position (note 4) Any Cooling (note 5) Water

S-band Magnetron. Tuner revolutions to cover frequency range 4.75 (note 3) Mounting position (note 4) Any Cooling (note 5) Water S-band Magnetron GENERAL DESCRIPTION is a mechanical tuned pulsed type S-band magnetron intended primarily for linear accelerator. It is water cooled and has circle waveguide output type. It is designed

More information

Metallized Polypropylene Film Capacitor AC Filtering Radial Type

Metallized Polypropylene Film Capacitor AC Filtering Radial Type Metallized Polypropylene Film Capacitor AC Filtering Radial Type FEATURES High peak current capabilities Long lifetime Material categorization: for definitions of compliance please see www.vishay.com/doc?999

More information

Effective February 2017 Supersedes January 2012 (CP1122)

Effective February 2017 Supersedes January 2012 (CP1122) File Ref: Cat. Sec. CA235013EN CT235003EN Supersedes January 2012 (CP1122) COOPER POWER SERIES UltraSIL Polymer-Housed VariSTAR Type US, UH, and UX Station Class Surge Arresters Certified Test Report Certification

More information

Insulation Coordination Fundamentals Where Arrester and Insulator Characteristics Meet

Insulation Coordination Fundamentals Where Arrester and Insulator Characteristics Meet ArresterWorks Insulation Coordination Fundamentals Where Arrester and Insulator Characteristics Meet 6/23/2012 Jonathan Woodworth Transient overvoltages are a fact of life on power systems. Arresters can

More information