GFZ Potsdam contributions to ELT

Size: px
Start display at page:

Download "GFZ Potsdam contributions to ELT"

Transcription

1 Aces workshop, Zürich, Switzerland, 29th 30th June GFZ Potsdam contributions to ELT S. Bauer 1, L. Grunwaldt 1, E.D. Hoffman 2 1 GFZ Potsdam, Brandenburg, Germany. 2 NASA GSFC, Greenbelt, Maryland, USA.

2 Slide 01 S. Bauer et al. GFZ Potsdam contributions to ELT Aces workshop, Zürich, Switzerland, 29th 30th June Content Two-way and one-way ranging to ELT/ACES GFZ Laser Retro Reflector (LRR) for ELT/ACES Calibration of the total, transmit (Tx) and the receive (Rx) delay Ground to space Time Transfer (TT) from GFZ SLR station to ELT/ACES GFZ SLR station accuracy and stability Summary

3 Slide 02 S. Bauer et al. GFZ Potsdam contributions to ELT Aces workshop, Zürich, Switzerland, 29th 30th June Two- and one-way ranging to ELT/ACES GFZ Potsdam SLR station ranging to ELT/ACES. ISS & Columbus module GFZ LRR ACES &ELT t Tof + t Tof t ReceiveTime t RxDelay ELT performance from Schlicht et al. (2011). ELT performance Accuracy GTS TT: 50 ps GTG TT: 50 ps Stability/Precision 4 ps over 300 s 7 ps over 10 days t TxDelay Tx Rx t RxDelay t FireTime t ReceiveTime Equation: t FireTime + t TxDelay + t Tof + t Tof + t RxDelay = t ReceiveTime Two-way: station station station station One-way: station station ELT ELT Frequently calibrated at SLR stations t TotalDelay =t TxDelay +t RxDelay

4 Slide 03 S. Bauer et al. GFZ Potsdam contributions to ELT Aces workshop, Zürich, Switzerland, 29th 30th June GFZ LRR for ELT/ACES Originally the GFZ Laser Retroreflector (LRR) was developed for CHAMP, same design was also used on GRACE, SWARM and TSX & TDX LRR developed, tested and manufactured by GFZ, prisms by Zeiss since SWARM Two-way ranging and GPS receiver calibration Small (100x100x48 mm), lightweight (400 gr) and passive Small number of prisms and with that reflections when ranging to the LRR which allows for a small signal precision (< 1 cm) Far field diffraction pattern is corrected for the velocity aberration of light GFZ LRR for ELT/ACES. GFZ LRR being mounted on the CHAMP satellite.

5 Slide 04 S. Bauer et al. GFZ Potsdam contributions to ELT Aces workshop, Zürich, Switzerland, 29th 30th June Two-way ranging to a satellite GFZ Potsdam SLR station two-way ranging to a target. t SDTx Tx IRP Rx t RxDe t ToF = t ET Stop t ET Start t Total SD ET De Laser t SDET t DeET Two-way ranging of the GFZ SLR station to a satellite Due to multistatic setup of the telescope, our Invariant Reference Point (IRP), to which the ranges are referenced, is in free space

6 Slide 05 S. Bauer et al. GFZ Potsdam contributions to ELT Aces workshop, Zürich, Switzerland, 29th 30th June Total delay calibration GFZ Potsdam SLR station performing calibration of the total system delay. t TxRx t Total = t ET Stop t ET Start t TxRx t SDTx Tx IRP Rx t RxDe t Total = t SDET + t SDTx + t RxDe + t DeET t Total = t Tx + t Rx SD ET De Laser t SDET t DeET Calibration of total system delay: pointing Tx&Rx on each other This covers all involved delays and references the measurements to the IRP Optical path is roughly constant but there are variations in the equipment and the cables Accuracy of the calibration depends on the used detector

7 Slide 06 S. Bauer et al. GFZ Potsdam contributions to ELT Aces workshop, Zürich, Switzerland, 29th 30th June Tx and Rx delay calibration GFZ Potsdam SLR station performing calibration of the transmit and receive system delay. Tx t TxRx t TxPD PD Rx t TotalPD = t ET Stop t ET Start t TotalPD = t SDET + t SDTx + t TxPD + t PDET t SDTx SD ET t PDET De t RxDe t TotalPD = t Tx + t TxPD + t PDET t Tx = t TotalPD t TxPD t PDET Laser t SDET t DeET t Rx = t Total t Tx t TxRx Calibration of Tx delay with a Photo Diode (PD) at the IRP and calibrated cables and calculation of Rx delay The accuracy and precision of the measurement is defined by the detector, the cable calibration and the position knowledge Application: ground to space TT to ELT/ACES and multistatic ranging to space debris

8 Slide 07 S. Bauer et al. GFZ Potsdam contributions to ELT Aces workshop, Zürich, Switzerland, 29th 30th June TT from GFZ SLR station to ELT/ACES GFZ SLR station has a GPS receiver and a cesium Check the difference of our epochs to UTC via ELT/ACES Idea: connecting GFZ SLR station and PTB via a fiber optical link Distance is 200 km, links were demonstrated over 1400 km Two options Forwarding frequency and creating time locally Forwarding both frequency and time For time, all delays in the fiber link would need to be known Ongoing discussion about: Realization of link (provider, path and delay calibration) Hardware Costs Would it be valuable for ACES and the community?

9 Slide 08 S. Bauer et al. GFZ Potsdam contributions to ELT Aces workshop, Zürich, Switzerland, 29th 30th June GFZ Potsdam SLR station accuracy Hardware wise the accuracy of the ranges is defined by the accuracy and precision of the calibration Calibration is carried out frequently (max. 2 hours) Total station delay is affected by Detector precision (PMT: 48 ps - 16 mm; SPAD: 18 ps - 6 mm) Change of laser amplitude ( 24 ps 8 mm directly after switch on)

10 Slide 09 S. Bauer et al. GFZ Potsdam contributions to ELT Aces workshop, Zürich, Switzerland, 29th 30th June GFZ Potsdam SLR station accuracy Hardware wise the accuracy of the ranges is defined by the accuracy and precision of the calibration Calibration is carried out frequently (max. 2 hours) Total station delay is affected by Detector precision (PMT: 48 ps - 16 mm; SPAD: 18 ps - 6 mm) Change of laser amplitude ( 24 ps 8 mm directly after switch on) Change of temperature ( 40 ps 13 mm over DOY 148 in 2017) Overall station accuracy is 10 mm ± 1 mm/h one-way Calibration of GFZ SLR station total system delay with the PMT. Detail during DOY 140 to 150 during A change of 40 ps can be observed during DOY 148.

11 Slide 10 S. Bauer et al. GFZ Potsdam contributions to ELT Aces workshop, Zürich, Switzerland, 29th 30th June GFZ Potsdam SLR station stability Stability (TDEV) estimated from a calibration run over 2 hours Prochazka et al. (2010) shows the stability of the ELT SPAD recorded with the Graz 2 khz and the WETL 10 Hz laser system GFZ SLR and Graz station stability are in agreement GFZ SLR station meets the ELT detector performance ( 1 ps after 300 s) Prochazka et al. (2010). POT3 station system stability recorded with the PMT. Time deviation (TDEV) is given in seconds.

12 Slide 11 S. Bauer et al. GFZ Potsdam contributions to ELT Aces workshop, Zürich, Switzerland, 29th 30th June Summary Flight proven GFZ LRR will provide two-way ranges with a precision of better than 1 cm Two-way ranges enable the optical ground to space and ground to ground TT via ELT/ACES Calibration of the GFZ SLR station Tx delay Idea: transfer PTB frequency and time to GFZ SLR station via fiber optical link for transferring it to ELT/ACES Station range accuracy is 10 mm ± 1 mm/h one-way ( 30 ps ± 3 ps/h) and stability 1 ps after 300 s GFZ SLR station meets the ELT detector performance (50 ps ground to space TT and a stability of 4 ps after 300 s Schlicht et al., 2011)

13 S. Bauer et al. GFZ Potsdam contributions to ELT Aces workshop, Zürich, Switzerland, 29th 30th June Thank you for your attention! Literature Prochazka, I., et al., Development of the European Laser Timing instrumentation for the ACES time transfer using laser pulses. Proceedings of the EFTF th European Frequency and Time Forum, 13th-16th April, Noordwijk, Netherlands. Schlicht, A., et al., The European Laser Timing Experiment and Data Center. Proceedings of the 17th ILRS workshop, 16th-20th May, Bad Kötzting, Germany. Acknowledgements Thanks to Jens Steinborn and Andre Kloth from DiGOS Potsdam for software support.

Recent achievements in photon counting laser time transfer

Recent achievements in photon counting laser time transfer Recent achievements in photon counting laser time transfer I. Prochazka 1, J. Kodet 1,2, J. Blazej 1 Presented at ACES Workshop Fundamental and applied science with clocks and cold atoms in space University

More information

Advanced Ranging. and. Time & Frequency Transfer Techniques. for LISA. Noordwijk, The Netherlands, Jul 2004

Advanced Ranging. and. Time & Frequency Transfer Techniques. for LISA. Noordwijk, The Netherlands, Jul 2004 Advanced Ranging and Time & Frequency Transfer Techniques for LISA Noordwijk, The Netherlands, 12 15 Jul 2004 Page 1 of 47 Wolfgang Schäfer TimeTech GmbH Phone: 0049-711-678 08-0 Curiestrasse 2 Fax: 0049-711-678

More information

PoS(PhotoDet 2012)051

PoS(PhotoDet 2012)051 Optical to electrical detection delay in avalanche photodiode based detector and its interpretation Josef Blažej 1 E-mail: blazej@fjfi.cvut.cz Ivan Procházka Jan Kodet Technical University in Munich FSG,

More information

ACES ELT laser link performance and ps accuracy optical time transfer

ACES ELT laser link performance and ps accuracy optical time transfer ACES ELT laser link performance and ps accuracy optical time transfer Ivan Prochazka1 Luigi Cacciapuoti2, Ulrich Schreiber3, Wolfgang Schäfer4 Presented at the Conference From Quantum to Cosmos, Universite

More information

Co-location on Ground and in Space; GGOS Core Site

Co-location on Ground and in Space; GGOS Core Site Co-location on Ground and in Space; GGOS Core Site Michael Pearlman/CfA Harald Schuh/TUW Erricos Pavlis/UMBC Unified Analysis Workshop Zurich, Switzerland September 16 17, 2011 NRC Report Precise Geodetic

More information

T2L2 and beyond next generation time transfer schemes

T2L2 and beyond next generation time transfer schemes T2L2 and beyond next generation time transfer schemes Etienne Samain Patrick Vrancken (patrick.vrancken@oca.eu) Optical Clocks Workshop for ESA Cosmic Vision, Uni Düsseldorf, March 9, 2007 Toulouse, 13

More information

Review of Solid State Photon Counters for Laser Ranging to Orbital Space Debris

Review of Solid State Photon Counters for Laser Ranging to Orbital Space Debris Review of Solid State Photon Counters for Laser Ranging to Orbital Space Debris I. Prochazka 1, J. Kodet 1,2, J. Blazej 1 K.G. Kirchner 3, F. Koidl 3 Presented at 2015 ILRS Technical Workshop, Matera,

More information

Implementation of New Positioning System in Riga

Implementation of New Positioning System in Riga Implementation of New Positioning System in Riga M.Abele (1), J.Balodis (1), K.Balodis (1), M.Caunite (1), I.Janpaule (1), A.Rubans (1), G.Silabriedis (1,2), I.Mitrofanovs(2), A.arinsjh (1) (1) University

More information

NASA MOBLAS 4. Goddard Space Flight Center Greenbelt, MD

NASA MOBLAS 4. Goddard Space Flight Center Greenbelt, MD Annual HPWREN Users Meeting NASA MOBLAS 4 Goddard Space Flight Center Greenbelt, MD November 19, 2008 Howard Donovan Engineering and Operations Manager Ron Sebeny MOBLAS 4 Acting Station Manager NASA Satellite

More information

Further Improvements in Understanding Subtle Systematic Effects in Laser Ranging Observations

Further Improvements in Understanding Subtle Systematic Effects in Laser Ranging Observations Further Improvements in Understanding Subtle Systematic Effects in Laser Ranging Observations Graham Appleby 1, Toshi Otsubo 2 and Philip Gibbs 1 1: Space Geodesy Facility, Herstmonceux, UK; 2: Hitotsubashi

More information

Satellite Laser Retroreflectors for GNSS Satellites: ILRS Standard

Satellite Laser Retroreflectors for GNSS Satellites: ILRS Standard Satellite Laser Retroreflectors for GNSS Satellites: ILRS Standard Michael Pearlman Director Central Bureau International Laser Ranging Service Harvard-Smithsonian Center for Astrophysics Cambridge MA

More information

Sub-system and System Level Testing and Calibration of Space Altimeters and LIDARS.

Sub-system and System Level Testing and Calibration of Space Altimeters and LIDARS. Sub-system and System Level Testing and Calibration of Space Altimeters and LIDARS. Haris Riris, Pete Liiva, Xiaoli Sun, James Abshire Laser Remote Sensing Branch Goddard Space Flight Center, Greenbelt,

More information

National time scale UTC(SU) and GLONASS system time scale: current status and perspectives

National time scale UTC(SU) and GLONASS system time scale: current status and perspectives State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements National time scale UTC(SU) and GLONASS system time scale: current

More information

German Aerospace Center, Institute of Technical Physics, Pfaffenwaldring 38-40, Stuttgart, Germany

German Aerospace Center, Institute of Technical Physics, Pfaffenwaldring 38-40, Stuttgart, Germany Satellite Laser Ranging with a fibre-based transmitter Daniel Hampf *, Fabian Sproll, Paul Wagner, Leif Humbert, Thomas Hasenohr, Wolfgang Riede, Jens Rodmann German Aerospace Center, Institute of Technical

More information

Developing An Optical Ground Station For The CHOMPTT CubeSat Mission. Tyler Ritz

Developing An Optical Ground Station For The CHOMPTT CubeSat Mission. Tyler Ritz Developing An Optical Ground Station For The CHOMPTT CubeSat Mission Tyler Ritz tritz@ufl.edu Background and Motivation Application of precision time transfer to space Satellite navigation systems ( x

More information

GPS Geodetic Reference System WGS 84

GPS Geodetic Reference System WGS 84 GPS Geodetic Reference System WGS 84 International Committee on GNSS Working Group D Saint Petersburg, Russia 16 September 2009 Barbara Wiley National Geospatial-Intelligence Agency United States of America

More information

Optical Time Transfer for Future Disaggregated Small Satellite Navigation Systems

Optical Time Transfer for Future Disaggregated Small Satellite Navigation Systems Optical Time Transfer for Future Disaggregated Small Satellite Navigation Systems John W. Conklin*, Nathan Barnwell, Leopoldo Caro, Maria Carrascilla, Olivia Formoso, Seth Nydam, Paul Serra, Norman Fitz-Coy

More information

HIGH-PERFORMANCE RF OPTICAL LINKS

HIGH-PERFORMANCE RF OPTICAL LINKS HIGH-PERFORMANCE RF OPTICAL LINKS Scott Crane, Christopher R. Ekstrom, Paul A. Koppang, and Warren F. Walls U.S. Naval Observatory 3450 Massachusetts Ave., NW Washington, DC 20392, USA E-mail: scott.crane@usno.navy.mil

More information

TIME AND FREQUENCY ACTIVITIES AT THE CSIR NATIONAL METROLOGY LABORATORY

TIME AND FREQUENCY ACTIVITIES AT THE CSIR NATIONAL METROLOGY LABORATORY TIME AND FREQUENCY ACTIVITIES AT THE CSIR NATIONAL METROLOGY LABORATORY E. L. Marais and B. Theron CSIR National Metrology Laboratory PO Box 395, Pretoria, 0001, South Africa Tel: +27 12 841 3013; Fax:

More information

The RVS3000 rendezvous and docking sensor technology

The RVS3000 rendezvous and docking sensor technology The RVS3000 rendezvous and docking sensor technology ESA Clean Space Industry Days, 23 25 Oct 2018 Hans K. Raue, Sales Director, Jena-Optronik Dr. Sebastian Dochow, Director LIDAR Products, Jena-Optronik

More information

Time & Frequency Transfer

Time & Frequency Transfer Cold Atoms and Molecules & Applications in Metrology 16-21 March 2015, Carthage, Tunisia Time & Frequency Transfer Noël Dimarcq SYRTE Systèmes de Référence Temps-Espace, Paris Thanks to Anne Amy-Klein

More information

TanDEM-X SAR System Verification

TanDEM-X SAR System Verification TanDEM-X SAR System Verification Mathias Weigt, Ulrich Steinbrecher, Thomas Kraus, Johannes Böer, Benjamin Bräutigam 07-09 November 2011 Overview Monostatic Commissioning Phase Verification of Power/Thermal

More information

HOW TO HANDLE A SATELLITE CHANGE IN AN OPERATIONAL TWSTFT NETWORK?

HOW TO HANDLE A SATELLITE CHANGE IN AN OPERATIONAL TWSTFT NETWORK? HOW TO HANDLE A SATELLITE CHANGE IN AN OPERATIONAL TWSTFT NETWORK? Kun Liang National Institute of Metrology (NIM) Bei San Huan Dong Lu 18, 100013 Beijing, P.R. China E-mail: liangk@nim.ac.cn Thorsten

More information

A Low Power Optical Communication Instrument for Deep-Space CubeSats. Paul Serra, CubeSat Developers Workshop, 2015 v1.5

A Low Power Optical Communication Instrument for Deep-Space CubeSats. Paul Serra, CubeSat Developers Workshop, 2015 v1.5 A Low Power Optical Communication Instrument for Deep-Space CubeSats Paul Serra, Nathan Barnwell, John W. Conklin Paul Serra, CubeSat Developers Workshop, 2015 v1.5 Motivation and Objectives Objectives:

More information

Reference Distribution

Reference Distribution EPAC 08, Genoa, Italy RF Reference Signal Distribution System for FAIR M. Bousonville, GSI, Darmstadt, Germany P. Meissner, Technical University Darmstadt, Germany Dipl.-Ing. Michael Bousonville Page 1

More information

THE OPS-SAT NANOSATELLITE MISSION

THE OPS-SAT NANOSATELLITE MISSION THE OPS-SAT NANOSATELLITE MISSION Aerospace O.Koudelka, TU Graz M.Wittig MEW Aerospace D.Evans ESA 1 Contents 1) Introduction 2) ESA s OPS-SAT Mission 3) System Design 4) Communications Experiments 5)

More information

Microwave Transponders and Links ACES MWL and beyond

Microwave Transponders and Links ACES MWL and beyond Workshop on Optical Clocks Düsseldorf, 08 / 09 Mar 2007 Microwave Transponders and Links ACES MWL and beyond W. SCHÄFER 1, M.P. HESS 2, 1 TimeTech GmbH, Stuttgart, Germany Wolfgang.Schaefer@timetech.de

More information

Brazil and Russia space cooperation: recent projects and future perspectives in the field of GNSS monitoring and SLR stations

Brazil and Russia space cooperation: recent projects and future perspectives in the field of GNSS monitoring and SLR stations Brazil and Russia space cooperation: recent projects and future perspectives in the field of GNSS monitoring and SLR stations Renato A. Borges (UnB) and Geovany A. Borges (UnB) Emails: raborges@ene.unb.br

More information

Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections Xiaoli Sun and James B. Abshire NASA Goddard Space Flight Center Solar System Division,

More information

CALIBRATION OF THE BEV GPS RECEIVER BY USING TWSTFT

CALIBRATION OF THE BEV GPS RECEIVER BY USING TWSTFT CALIBRATION OF THE BEV GPS RECEIVER BY USING TWSTFT A. Niessner 1, W. Mache 1, B. Blanzano, O. Koudelka, J. Becker 3, D. Piester 3, Z. Jiang 4, and F. Arias 4 1 Bundesamt für Eich- und Vermessungswesen,

More information

Performance of the Prototype NLC RF Phase and Timing Distribution System *

Performance of the Prototype NLC RF Phase and Timing Distribution System * SLAC PUB 8458 June 2000 Performance of the Prototype NLC RF Phase and Timing Distribution System * Josef Frisch, David G. Brown, Eugene Cisneros Stanford Linear Accelerator Center, Stanford University,

More information

About compliance of GLONASS S/C retroreflectors system with the requirements of International Laser Ranging Service standard

About compliance of GLONASS S/C retroreflectors system with the requirements of International Laser Ranging Service standard FEDERAL SPACE AGENCY FGUP «Science-Research Institute for Precise Instrument Engineering» About compliance of GLONASS S/C retroreflectors system with the requirements of International Laser Ranging Service

More information

ANALYSIS OF ONE YEAR OF ZERO-BASELINE GPS COMMON-VIEW TIME TRANSFER AND DIRECT MEASUREMENT USING TWO CO-LOCATED CLOCKS

ANALYSIS OF ONE YEAR OF ZERO-BASELINE GPS COMMON-VIEW TIME TRANSFER AND DIRECT MEASUREMENT USING TWO CO-LOCATED CLOCKS ANALYSIS OF ONE YEAR OF ZERO-BASELINE GPS COMMON-VIEW TIME TRANSFER AND DIRECT MEASUREMENT USING TWO CO-LOCATED CLOCKS Gerrit de Jong and Erik Kroon NMi Van Swinden Laboratorium P.O. Box 654, 2600 AR Delft,

More information

Status of the ACES mission

Status of the ACES mission Moriond Workshop, March 2003 «Gravitational Waves and Experimental Gravity» Status of the ACES mission The ACES system The ACES payload : - space clocks : PHARAO and SHM - on-board comparisons - space-ground

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Summary of Last class Finish up some aspects of estimation Propagation of variances for derived quantities Sequential estimation Error ellipses Discuss correlations:

More information

GPS CARRIER-PHASE TIME AND FREQUENCY TRANSFER WITH DIFFERENT VERSIONS OF PRECISE POINT POSITIONING SOFTWARE

GPS CARRIER-PHASE TIME AND FREQUENCY TRANSFER WITH DIFFERENT VERSIONS OF PRECISE POINT POSITIONING SOFTWARE GPS CARRIER-PHASE TIME AND FREQUENCY TRANSFER WITH DIFFERENT VERSIONS OF PRECISE POINT POSITIONING SOFTWARE T. Feldmann, D. Piester, A. Bauch Physikalisch-Technische Bundesanstalt (PTB) Braunschweig, Germany

More information

Measuring the speed of light

Measuring the speed of light 1 Purpose and comments Determine the speed of light by sending a laser beam through various mediums. Unless you want to see like Helen Keller, do not place your eyes in the beam path. Also, Switch the

More information

Time and Frequency Activities at KRISS

Time and Frequency Activities at KRISS Time and Frequency Activities at KRISS Dai-Hyuk Yu Center for Time and Frequency Metrology, Division of Physical Metrology Korea Research Institute of Standards and Science (KRISS) dhyu@kriss.re.kr Time

More information

Chapter-15. Communication systems -1 mark Questions

Chapter-15. Communication systems -1 mark Questions Chapter-15 Communication systems -1 mark Questions 1) What are the three main units of a Communication System? 2) What is meant by Bandwidth of transmission? 3) What is a transducer? Give an example. 4)

More information

STEERING UTC (AOS) AND UTC (PL) BY TA (PL)

STEERING UTC (AOS) AND UTC (PL) BY TA (PL) STEERING UTC (AOS) AND UTC (PL) BY TA (PL) J. Nawrocki 1, Z. Rau 2, W. Lewandowski 3, M. Małkowski 1, M. Marszalec 2, and D. Nerkowski 2 1 Astrogeodynamical Observatory (AOS), Borowiec, Poland, nawrocki@cbk.poznan.pl

More information

NGSLR's measurement of the retro-reflector array response of various LEO to GNSS satellites

NGSLR's measurement of the retro-reflector array response of various LEO to GNSS satellites NGSLR's measurement of the retro-reflector array response of various LEO to GNSS satellites Jan McGarry Christopher Clarke, John Degnan, Howard Donovan, Benjamin Han, Julie Horvath, Thomas Zagwodzki NASA/GSFC

More information

System description 4. SERVICES ONSITE INSTALLATION AND TRAINING SYSTEM ACCEPTANCE MAINTENANCE... 7

System description 4. SERVICES ONSITE INSTALLATION AND TRAINING SYSTEM ACCEPTANCE MAINTENANCE... 7 Ultra Wide Band test setup System description 1. UWB TEST SYSTEM DESCRIPTION... 2 2. SYSTEM MONITORING... 5 3. OTHER MEASUREMENT SYSTEMS & ACCESSORIES... 6 3.1 OSCILLOSCOPE & SHIELDED ENCLOSURE... 6 3.2

More information

Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager)

Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager) Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager) Tadashi IMAI, Daisuke SAKAIZAWA, Jumpei MUROOKA and Toshiyoshi KIMURA JAXA 1 Outline of This Presentation 1. Overview of MOLI

More information

Infrared Channels. Infrared Channels

Infrared Channels. Infrared Channels Infrared Channels Prof. David Johns (johns@eecg.toronto.edu) (www.eecg.toronto.edu/~johns) slide 1 of 12 Infrared Channels Advantages Free from regulation, low cost Blocked by walls reduces eavesdropping

More information

TanDEM-X Mission Status & Commissioning Phase Overview

TanDEM-X Mission Status & Commissioning Phase Overview TanDEM-X Mission Status & Commissioning Phase Overview M. Zink TanDEM-X Ground Segment Manager 17-February-2011 TanDEM-X Science Team Meeting 17-Feb-2011 - OP TerraSAR-X-Add-on for Digital Elevation Measurements

More information

The CHOMPTT Precision Time Transfer CubeSat Mission

The CHOMPTT Precision Time Transfer CubeSat Mission The CHOMPTT Precision Time Transfer CubeSat Mission John W. Conklin*, Paul Serra, Nathan Barnwell, Seth Nydam, Maria Carrascilla, Leopoldo Caro, Norman Fitz-Coy *jwconklin@ufl.edu Background and Motivation

More information

Practical aspects of PD localization for long length Power Cables

Practical aspects of PD localization for long length Power Cables Practical aspects of PD localization for long length Power Cables M. Wild, S. Tenbohlen University of Stuttgart Stuttgart, Germany manuel.wild@ieh.uni-stuttgart.de E. Gulski, R. Jongen onsite hv technology

More information

DEFINITIONS AND FUNDAMENTAL PRINCIPLES IDC

DEFINITIONS AND FUNDAMENTAL PRINCIPLES IDC DEFINITIONS AND FUNDAMENTAL PRINCIPLES Data Communications Information is transmitted between two points in the form of data. Analog» Varying amplitude, phase and frequency Digital» In copper systems represented

More information

TIME STABILITY AND ELECTRICAL DELAY COMPARISON OF DUAL- FREQUENCY GPS RECEIVERS

TIME STABILITY AND ELECTRICAL DELAY COMPARISON OF DUAL- FREQUENCY GPS RECEIVERS TIME STABILITY AND ELECTRICAL DELAY COMPARISON OF DUAL- FREQUENCY GPS RECEIVERS A. Proia 1,2, G. Cibiel 1, and L. Yaigre 3 1 Centre National d Etudes Spatiales 18 Avenue Edouard Belin, 31401 Toulouse,

More information

Relative calibration of the GPS time link between CERN and LNGS

Relative calibration of the GPS time link between CERN and LNGS Report calibration CERN-LNGS 2011 Physikalisch-Technische Bundesanstalt Fachbereich 4.4 Bundesallee 100, 38116 Braunschweig thorsten.feldmann@ptb.de Relative calibration of the GPS time link between CERN

More information

echo-based range sensing L06Ua echo-based range sensing 1

echo-based range sensing L06Ua echo-based range sensing 1 echo-based range sensing mws@cmu.edu 16722 20080228 L06Ua echo-based range sensing 1 example: low-cost radar automotive DC in / digital radar signal out applications include pedestrians / bicycles in urban

More information

A high resolution bunch arrival time monitor system for FLASH / XFEL

A high resolution bunch arrival time monitor system for FLASH / XFEL A high resolution bunch arrival time monitor system for FLASH / XFEL K. Hacker, F. Löhl, F. Ludwig, K.H. Matthiesen, H. Schlarb, B. Schmidt, A. Winter October 24 th Principle of the arrival time detection

More information

Electronics Design Laboratory Lecture #10. ECEN 2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #10. ECEN 2270 Electronics Design Laboratory Electronics Design Laboratory Lecture #10 Electronics Design Laboratory 1 Lessons from Experiment 4 Code debugging: use print statements and serial monitor window Circuit debugging: Re check operation

More information

ABSOLUTE CALIBRATION OF TIME RECEIVERS WITH DLR'S GPS/GALILEO HW SIMULATOR

ABSOLUTE CALIBRATION OF TIME RECEIVERS WITH DLR'S GPS/GALILEO HW SIMULATOR ABSOLUTE CALIBRATION OF TIME RECEIVERS WITH DLR'S GPS/GALILEO HW SIMULATOR S. Thölert, U. Grunert, H. Denks, and J. Furthner German Aerospace Centre (DLR), Institute of Communications and Navigation, Oberpfaffenhofen,

More information

TIME TRANSFER EXPERIMENT BY TCE ON THE ETS-VIII SATELLITE

TIME TRANSFER EXPERIMENT BY TCE ON THE ETS-VIII SATELLITE TIME TRANSFER EXPERIMENT BY TCE ON THE ETS-VIII SATELLITE Fumimaru Nakagawa, Yasuhiro Takahashi, Jun Amagai, Ryo Tabuchi, Shin ichi Hama, and Mizuhiko Hosokawa National Institute of Information and Communications

More information

Experiment 10. The Speed of Light c Introduction Apparatus

Experiment 10. The Speed of Light c Introduction Apparatus Experiment 10 The Speed of Light c 10.1 Introduction In this experiment you will measure the speed of light, c. This is one of the most fundamental constants in physics, and at the same time the fastest

More information

Status of Primex Beam Position Monitor July 29 th, 2010

Status of Primex Beam Position Monitor July 29 th, 2010 Status of Primex Beam Position Monitor July 29 th, 2010 Anthony Tatum University of North Carolina at Wilmington The Beam Position Monitor (BPM) is used to determine the vertical and horizontal position

More information

Modulating Retro-reflector Links for High Bandwidth Free-Space Lasercomm. Dr. William Rabinovich US Naval Research Laboratory,

Modulating Retro-reflector Links for High Bandwidth Free-Space Lasercomm. Dr. William Rabinovich US Naval Research Laboratory, Modulating Retro-reflector Links for High Bandwidth Free-Space Lasercomm Dr. William Rabinovich US Naval Research Laboratory, MRRs in ONR BAA 09-18 Product 2 Modulating retro-reflector (MRR) communications

More information

Space Frequency Coordination Group

Space Frequency Coordination Group Space Frequency Coordination Group Report SFCG 38-1 POTENTIAL RFI TO EESS (ACTIVE) CLOUD PROFILE RADARS IN 94.0-94.1 GHZ FREQUENCY BAND FROM OTHER SERVICES Abstract This new SFCG report analyzes potential

More information

ADALAM Sensor based adaptive laser micromachining using ultrashort pulse lasers for zero-failure manufacturing D2.2. Ger Folkersma (Demcon)

ADALAM Sensor based adaptive laser micromachining using ultrashort pulse lasers for zero-failure manufacturing D2.2. Ger Folkersma (Demcon) D2.2 Automatic adjustable reference path system Document Coordinator: Contributors: Dissemination: Keywords: Ger Folkersma (Demcon) Ger Folkersma, Kevin Voss, Marvin Klein (Demcon) Public Reference path,

More information

Relative Calibration of the Time Transfer Link between CERN and LNGS for Precise Neutrino Time of Flight Measurements

Relative Calibration of the Time Transfer Link between CERN and LNGS for Precise Neutrino Time of Flight Measurements Relative Calibration of the Time Transfer Link between CERN and LNGS for Precise Neutrino Time of Flight Measurements Thorsten Feldmann 1,*, A. Bauch 1, D. Piester 1, P. Alvarez 2, D. Autiero 2, J. Serrano

More information

White Rabbit for long-haul fiber-optic distribution of high-precision clocks for VLBI

White Rabbit for long-haul fiber-optic distribution of high-precision clocks for VLBI White Rabbit for long-haul fiber-optic distribution of high-precision clocks for VLBI Tjeerd J. Pinkert (VU) Henk Peek (Nikhef) Peter Janswijer (Nikhef) Paul Boven (JIVE) Arpad Szomoru (JIVE) Erik Dierikx

More information

A new multi-purpose Mobile Satellite Laser Ranging (MSLR) system

A new multi-purpose Mobile Satellite Laser Ranging (MSLR) system A new multi-purpose Mobile Satellite Laser Ranging (MSLR) system Andris Treijs HEE Photonic Labs Ltd. andris.treijs@heephotonic.eu Jānis Vjaters HEE Photonic Labs Ltd. jv@heephotonic.eu 20.02. 2012 Features

More information

PERFORMANCE IMPROVEMENT OF INTERSATELLITE OPTICAL WIRELESS COMMUNICATION WITH MULTIPLE TRANSMITTER AND RECEIVERS

PERFORMANCE IMPROVEMENT OF INTERSATELLITE OPTICAL WIRELESS COMMUNICATION WITH MULTIPLE TRANSMITTER AND RECEIVERS PERFORMANCE IMPROVEMENT OF INTERSATELLITE OPTICAL WIRELESS COMMUNICATION WITH MULTIPLE TRANSMITTER AND RECEIVERS Kuldeepak Singh*, Dr. Manjeet Singh** Student*, Professor** Abstract Multiple transmitters/receivers

More information

Processing 20 years of SLR observations to GNSS satellites

Processing 20 years of SLR observations to GNSS satellites Processing 20 years of SLR observations to GNSS satellites K. Sośnica (1, 2), R. Dach (1), D. Thaller (3), A. Jäggi (1), G. Beutler (1), D. Arnold (1) (1) Astronomical Institute, University of Bern, Sidlerstrasse

More information

A CubeSat-Based Optical Communication Network for Low Earth Orbit

A CubeSat-Based Optical Communication Network for Low Earth Orbit A CubeSat-Based Optical Communication Network for Low Earth Orbit Richard Welle, Alexander Utter, Todd Rose, Jerry Fuller, Kristin Gates, Benjamin Oakes, and Siegfried Janson The Aerospace Corporation

More information

EARLY DEVELOPMENT IN SYNTHETIC APERTURE LIDAR SENSING FOR ON-DEMAND HIGH RESOLUTION IMAGING

EARLY DEVELOPMENT IN SYNTHETIC APERTURE LIDAR SENSING FOR ON-DEMAND HIGH RESOLUTION IMAGING EARLY DEVELOPMENT IN SYNTHETIC APERTURE LIDAR SENSING FOR ON-DEMAND HIGH RESOLUTION IMAGING ICSO 2012 Ajaccio, Corse, France, October 11th, 2012 Alain Bergeron, Simon Turbide, Marc Terroux, Bernd Harnisch*,

More information

Jaringan Komputer. Outline. The Physical Layer

Jaringan Komputer. Outline. The Physical Layer Jaringan Komputer The Physical Layer Outline Defines the mechanical, electrical, and timing interfaces to the network Theoretical analysis of data transmission Kinds of transmission media Examples: the

More information

PCS-150 / PCI-200 High Speed Boxcar Modules

PCS-150 / PCI-200 High Speed Boxcar Modules Becker & Hickl GmbH Kolonnenstr. 29 10829 Berlin Tel. 030 / 787 56 32 Fax. 030 / 787 57 34 email: info@becker-hickl.de http://www.becker-hickl.de PCSAPP.DOC PCS-150 / PCI-200 High Speed Boxcar Modules

More information

TIME TRANSFER BY LASER LINK T2L2: AN OPPORTUNITY TO CALIBRATE RF LINKS

TIME TRANSFER BY LASER LINK T2L2: AN OPPORTUNITY TO CALIBRATE RF LINKS TIME TRANSFER BY LASER LINK T2L2: AN OPPORTUNITY TO CALIBRATE RF LINKS Philippe Guillemot CNES French Space Agency, Toulouse, France E-mail: philippe.guillemot@cnes.fr Etienne Samain, Patrick Vrancken,

More information

TIME TRANSFER THROUGH OPTICAL FIBERS (TTTOF): FIRST RESULTS OF CALIBRATED CLOCK COMPARISONS

TIME TRANSFER THROUGH OPTICAL FIBERS (TTTOF): FIRST RESULTS OF CALIBRATED CLOCK COMPARISONS TIME TRANSFER THROUGH OPTICAL FIBERS (TTTOF): FIRST RESULTS OF CALIBRATED CLOCK COMPARISONS Dirk Piester 1, Miho Fujieda 2, Michael Rost 1, and Andreas Bauch 1 1 Physikalisch-Technische Bundesanstalt (PTB)

More information

Report of the TC Time and Frequency. Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey

Report of the TC Time and Frequency. Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey Report of the TC Time and Frequency Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey Contents TC-TF meeting and T&F strategy EMRP Projects and future optical redefinition of the second Time scale generation

More information

Optoelectronic Components Testing with a VNA(Vector Network Analyzer) VNA Roadshow Budapest 17/05/2016

Optoelectronic Components Testing with a VNA(Vector Network Analyzer) VNA Roadshow Budapest 17/05/2016 Optoelectronic Components Testing with a VNA(Vector Network Analyzer) VNA Roadshow Budapest 17/05/2016 Content Introduction Photonics & Optoelectronics components Optical Measurements VNA (Vector Network

More information

CALIBRATION OF THE BEV GPS RECEIVER BY USING TWSTFT

CALIBRATION OF THE BEV GPS RECEIVER BY USING TWSTFT CALIBRATION OF THE BEV GPS RECEIVER BY USING TWSTFT A. Niessner 1, W. Mache 1, B. Blanzano, O. Koudelka, J. Becker 3, D. Piester 3, Z. Jiang 4, and F. Arias 4 1 Bundesamt für Eich- und Vermessungswesen,

More information

ESTIMATING THE RECEIVER DELAY FOR IONOSPHERE-FREE CODE (P3) GPS TIME TRANSFER

ESTIMATING THE RECEIVER DELAY FOR IONOSPHERE-FREE CODE (P3) GPS TIME TRANSFER ESTIMATING THE RECEIVER DELAY FOR IONOSPHERE-FREE CODE (P3) GPS TIME TRANSFER Victor Zhang Time and Frequency Division National Institute of Standards and Technology Boulder, CO 80305, USA E-mail: vzhang@boulder.nist.gov

More information

Passive optical link budget for LEO space surveillance

Passive optical link budget for LEO space surveillance Passive optical link budget for LEO space surveillance Paul Wagner, Thomas Hasenohr, Daniel Hampf, Fabian Sproll, Leif Humbert, Jens Rodmann, Wolfgang Riede German Aerospace Center, Institute of Technical

More information

Range Sensing strategies

Range Sensing strategies Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart and Nourbakhsh 4.1.6 Range Sensors (time of flight) (1) Large range distance measurement -> called

More information

GPS based link calibration between BKG Wettzell and PTB

GPS based link calibration between BKG Wettzell and PTB Report calibration BKG-PTB 2011 Physikalisch-Technische Bundesanstalt Fachbereich 4.4 Bundesallee 100, 38116 Braunschweig GPS based link calibration between BKG Wettzell and PTB October 2011 Thorsten Feldmann,

More information

Red Box. and Flarm interface for LX User manual Draft

Red Box. and Flarm interface for LX User manual Draft LX Red Box and Flarm interface for LX 5000 User manual Draft 1 Introduction Flarm is a collision avoidance system developed by Flarm Technologies from Switzerland. LX Navigation and Flarm Technologies

More information

White Rabbit in Time & Frequency Metrology

White Rabbit in Time & Frequency Metrology VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD White Rabbit in Time & Frequency Metrology Anders Wallin White Rabbit Workshop 2016-03-15, Amsterdam Long(est?) WR link Fiber asymmetry and calibration Stability

More information

Space Situational Awareness 2015: GPS Applications in Space

Space Situational Awareness 2015: GPS Applications in Space Space Situational Awareness 2015: GPS Applications in Space James J. Miller, Deputy Director Policy & Strategic Communications Division May 13, 2015 GPS Extends the Reach of NASA Networks to Enable New

More information

MONITORING SEA LEVEL USING GPS

MONITORING SEA LEVEL USING GPS 38 MONITORING SEA LEVEL USING GPS Hasanuddin Z. Abidin* Abstract GPS (Global Positioning System) is a passive, all-weather satellite-based navigation and positioning system, which is designed to provide

More information

A Multiwavelength Interferometer for Geodetic Lengths

A Multiwavelength Interferometer for Geodetic Lengths A Multiwavelength Interferometer for Geodetic Lengths K. Meiners-Hagen, P. Köchert, A. Abou-Zeid, Physikalisch-Technische Bundesanstalt, Braunschweig Abstract: Within the EURAMET joint research project

More information

Status of Free Space Optical Communications Technology at the Jet Propulsion Laboratory

Status of Free Space Optical Communications Technology at the Jet Propulsion Laboratory Status of Free Space Optical Communications Technology at the Jet Propulsion Laboratory National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Deep Space

More information

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Albert Töws and Alfred Kurtz Cologne University of Applied Sciences Steinmüllerallee 1, 51643 Gummersbach, Germany

More information

The rangefinder can be configured using an I2C machine interface. Settings control the

The rangefinder can be configured using an I2C machine interface. Settings control the Detailed Register Definitions The rangefinder can be configured using an I2C machine interface. Settings control the acquisition and processing of ranging data. The I2C interface supports a transfer rate

More information

An Approach to Enhancing the Design of Analog-to-Event Converters

An Approach to Enhancing the Design of Analog-to-Event Converters Baltic J. Modern Computing, Vol. 2 (24), No. 4, 25-226 An Approach to Enhancing the Design of Analog-to-Event Converters Ivars BILINSKIS, Eugene BOOLE, Armands MEZERINS, Vadim VEDIN Institute of Electronics

More information

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

SUPPLEMENTARY INFORMATION DOI: /NPHOTON Supplementary Methods and Data 1. Apparatus Design The time-of-flight measurement apparatus built in this study is shown in Supplementary Figure 1. An erbium-doped femtosecond fibre oscillator (C-Fiber,

More information

Data sheet for TDS 10XX system THz Time Domain Spectrometer TDS 10XX

Data sheet for TDS 10XX system THz Time Domain Spectrometer TDS 10XX THz Time Domain Spectrometer TDS 10XX TDS10XX 16/02/2018 www.batop.de Page 1 of 11 Table of contents 0. The TDS10XX family... 3 1. Basic TDS system... 3 1.1 Option SHR - Sample Holder Reflection... 4 1.2

More information

Meeting Measurement Challenges For Low-Power, Pulsed, Or Modulated Light Sources

Meeting Measurement Challenges For Low-Power, Pulsed, Or Modulated Light Sources Meeting Measurement Challenges For Low-Power, Pulsed, Or Modulated Light Sources By Denise Ullery, Sylvia Tan, and Jay Jeong, Newport Corporation (www.newport.com) Traditionally, power meters have been

More information

Other Space Geodetic Techniques. E. Calais Purdue University - EAS Department Civil 3273

Other Space Geodetic Techniques. E. Calais Purdue University - EAS Department Civil 3273 Other Space Geodetic Techniques E. Calais Purdue University - EAS Department Civil 3273 ecalais@purdue.edu Satellite Laser Ranging = SLR Measurement of distance (=range) between a ground station and a

More information

Activity report from NICT

Activity report from NICT Activity report from NICT APMP 2013 / TCTF meeting 25-26 November, 2013 National Institute of Information and Communications Technology (NICT) Japan 1 1 Activities of our laboratory Atomic Frequency Standards

More information

A phase coherent optical link through the turbulent atmosphere

A phase coherent optical link through the turbulent atmosphere A phase coherent optical link through the turbulent atmosphere Mini-DOLL : Deep Space Optical Laser Link Presented by : Khelifa DJERROUD people involved : Acef Ouali (SYRTE) Clairon André(SYRTE) Lemonde

More information

Receiver Signal to Noise Ratios for IPDA Lidars Using Sinewave and Pulsed Laser Modulation and Direct Detections

Receiver Signal to Noise Ratios for IPDA Lidars Using Sinewave and Pulsed Laser Modulation and Direct Detections Receiver Signal to Noise Ratios for IPDA Lidars Using Sinewave and Pulsed Laser Modulation and Direct Detections Xiaoli Sun and James B. Abshire NASA Goddard Space Flight Center Solar System Division,

More information

Other Space Geodetic Techniques. E. Calais Purdue University - EAS Department Civil 3273

Other Space Geodetic Techniques. E. Calais Purdue University - EAS Department Civil 3273 Other Space Geodetic Techniques E. Calais Purdue University - EAS Department Civil 3273 ecalais@purdue.edu Satellite Laser Ranging Measurement of distance (=range) between a ground station and a satellite

More information

Research Article Backup Hydrogen Maser Steering System for Galileo Precise Timing Facility

Research Article Backup Hydrogen Maser Steering System for Galileo Precise Timing Facility Hindawi Publishing Corporation International Journal of Navigation and Observation Volume 8, Article ID 784, 6 pages doi:.55/8/784 Research Article Backup Hydrogen Maser Steering System for Galileo Precise

More information

Saudi Space Geodesy (SSG): Road Map for Fundamental Station

Saudi Space Geodesy (SSG): Road Map for Fundamental Station 12 years Saudi Space Geodesy (SSG): Road Map for Fundamental Station Riyadh-SLR Saudi Arabia By: Attieh Alghamdi King Abdulaziz City for Science and Technology (KACST), Riyadh Saudi Arabia Presented in

More information

CubeSat Demonstration of Sub-nanosecond Optical Time Transfer

CubeSat Demonstration of Sub-nanosecond Optical Time Transfer CubeSat Demonstration of Sub-nanosecond Optical Time Transfer Anh N. Nguyen 1 (anh.n.nguyen@nasa.gov), Watson Attai 1, Nathan Barnwell 2, Maria Carrasquilla 2, Jonathan Chavez 2, Olivia Formoso 1, John

More information

Oscilloscope Calibration Options for 55XX Series Multi-Product Calibrators

Oscilloscope Calibration Options for 55XX Series Multi-Product Calibrators Oscilloscope Calibration Options for 55XX Series Multi-Product Calibrators Extended Specifications These specifications apply to the 5520A-SC1100, 5500A- SC600 and 5500A-SC300 Oscilloscope Calibration

More information

CALIBRATION OF LASER VIBROMETER STANDARDS ACCORDING TO ISO

CALIBRATION OF LASER VIBROMETER STANDARDS ACCORDING TO ISO XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development September, 17 22, 2006, Rio de Janeiro, Brazil CALIBRATION OF LASER VIBROMETER STANDARDS ACCORDING TO ISO 16063-41 Dr.-Ing. Uwe Buehn

More information