Excitation of electrostatic, whistler, and electromagnetic waves at double layers and double-layer-like structures

Size: px
Start display at page:

Download "Excitation of electrostatic, whistler, and electromagnetic waves at double layers and double-layer-like structures"

Transcription

1 Excitation of electrostatic, whistler, and electromagnetic waves at double layers and double-layer-like structures Nils Brenning, Ingvar Axnäs, Michael Raadu, Mark Koepke*, and Einar Tennfors Space- and Plasma Physics, Royal Institute of Technology, Stockholm, Sweden *West Virginia University, Morgantown, USA U e?? e?? Double layer z (emitting) Cathode sheath

2 Overview 1. Electrostatic 2. Whistlers 3. (vacuum) Electromagnetic

3 Apparatus Electrostatic E-probe array

4 1. Electrostatic Spatial extent: a few cm where the elecron beam enters the high potential plasma Average potential profile of Double-Layer Average density profile E (kv/m) z (mm) z (mm) Maximum amplitude of electric field oscillation normalized to reference probe signal Potential profiles of a pic simulation, at 10 times during one half period

5 1. Electrostatic Frequency: about the local fpe. Monocromatic, with periods of multiple frequencies. [arb. units]

6 1. Electrostatic The zero crossing method gives instantaneous frequencies of the dominating mode at frequency f1. Jump structures sometimes inticate mode competition at the transitions.

7 1. Electrostatic When the amplitude of the dominating f1 it high, then the near frequency space is kept clear of competing modes. Amplitude of f1 (arb. units) + 20 MHz Arnold tongue? Important for whistler excitation!! f = f1 f2 (MHz)

8 1. Electrostatic, summary Always there Eigenmode(s) Gap around strongest mode Steady for microseconds Single modes and transitions

9 2. Whistlers SELECTED CASE During a mode transition between 380 MHz and 400 MHz, two strong eigenmodes co-exist for half a microsecond. During that time, a whistler wave packet is excited, satisfying fwhistler = f1 f2 = 20 MHz

10 2. Whistlers TYPICAL CASES Whistlers are excited when there are mixed modes present, as during eigenmode transitions. Little whistler signals are seen even when the transitio f does not match the 20 MHz resonance cone (on which the magnetic probe is placed). However, LARGE whistlers only arise when there are two matching f = 20 MHz eigenmodes present in the electrostatic oscillations.

11 2. Whistlers Temporal distribution: μs wave packets, a few % of the time - frequency 7 40 MHz fge A 12.5 MHz whistler wave packet passes over an array of dbz/dt probes, spaced 45 mm in the z direction

12 2. Whistlers Spatial distribution: - along group velocity resonance cones, and - along a central channel. group group = phase = arcsin 2 ge B

13 2. Whistlers Frequency: - strongest around half the local gyro frequency fge fge This experiment. Ljungberg, 1995.

14 2. Whistlers This experiment Mirror B field Cathode sheath Magnetic probe Ljungberg, 1995 Constant B field Double Layer E field probe

15 2. Whistlers, summary A few % of the full time Monocromatic burst, μs. Wings and a central channel Excited by the electrostatic eigenmodes Radiated power scales fast with input power

16 3. (vacuum) Electromagnetic Temporal: high amplitude bursts of about 1 μs duration, a few % of the time. Low amplitude radiation there most of the time. Frequency: same as the electrostatic oscillations (follows in phase). Emission: anticorrelated with whistlers. Strong radiation only for monocromatic electrostatic. Spatial: fills the vacuum tank outside the dense plasma where it it cutoff.

17 Space interest cartoon 2. Vacuum e-m (only into less dense plasma) 1. Ei W e waves E v e DL E w 3. Whistlers, ducted along flux tube B i 4. Whistlers, along resonance cones i DL s in space will emit characteristic radiation

18 Last slide Electrostatic Electromagnetic Whistlers

Experiment 12: Microwaves

Experiment 12: Microwaves MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 OBJECTIVES Experiment 12: Microwaves To observe the polarization and angular dependence of radiation from a microwave generator

More information

Sustainment and Additional Heating of High-Beta Field-Reversed Configuration Plasmas

Sustainment and Additional Heating of High-Beta Field-Reversed Configuration Plasmas 1 Sustainment and Additional Heating of High-Beta Field-Reversed Configuration Plasmas S. Okada, T. Fukuda, K. Kitano, H. Sumikura, T. Higashikozono, M. Inomoto, S. Yoshimura, M. Ohta and S. Goto Science

More information

The Cassini Radio and Plasma Wave Science Instrument

The Cassini Radio and Plasma Wave Science Instrument The Cassini Radio and Plasma Wave Science Instrument Roger Karlsson Space Research Institute of the Austrian Academy of Sciences, Graz Graz in Space, September 7, 2006 The Cassini Radio and Plasma Wave

More information

Helicon mode formation and rf power deposition in a helicon source

Helicon mode formation and rf power deposition in a helicon source Helicon mode formation and rf power deposition in a helicon source Michael Krämer & Kari Niemi Institut für Experimentalphysik II, Ruhr-Universität D-4478 Bochum, Germany Helicon Mini-Conference APS-DPP,

More information

Practical Scaling of Multi-Frequency Capacitive Discharges for Etch Applications

Practical Scaling of Multi-Frequency Capacitive Discharges for Etch Applications Practical Scaling of Multi-Frequency Capacitive Discharges for Etch Applications Dan Hoffman, Valery Godyak, Jang Gyoo Yang, Steven Shannon Etch Product Business Group Applied Materials, Inc 2005 IEEE

More information

The SI unit of inductance is the henry, defined as:

The SI unit of inductance is the henry, defined as: Inductors A coil of wire, or solenoid, can be used in a circuit to store energy in the magnetic field. We define the inductance of a solenoid having N turns, length l and cross-section area A as: The SI

More information

Aurora - acceleration processes

Aurora - acceleration processes Aurora - acceleration processes S. L. G. Hess LATMOS IPSL/CNRS, Université Versailles St Quentin, France M. Kivelson's talk : Plasma moves in the magnetosphere. M. Galand's talk : This generates currents

More information

Experiment-4 Study of the characteristics of the Klystron tube

Experiment-4 Study of the characteristics of the Klystron tube Experiment-4 Study of the characteristics of the Klystron tube OBJECTIVE To study the characteristics of the reflex Klystron tube and to determine the its electronic tuning range EQUIPMENTS Klystron power

More information

Mechatronics Chapter Sensors 9-1

Mechatronics Chapter Sensors 9-1 MEMS1049 Mechatronics Chapter Sensors 9-1 Proximity sensors and Switches Proximity sensor o o o A proximity sensor is a sensor able to detect the presence of nearby objects without any physical contact.

More information

Excitation and Propagation of Low Frequency Waves in a FRC plasma

Excitation and Propagation of Low Frequency Waves in a FRC plasma 1 Excitation and Propagation of Low Frequency Waves in a FRC plasma S. Okada, K. Yamanaka, S. Yamamoto, T. Masumoto, K. Kitano, T. Asai, F. Kodera, M. Inomoto, S. Yoshimura, M. Okubo, S. Sugimoto, S. Ohi

More information

I( ) 1 P a g e. Estimation of modulation index of pulsar

I( ) 1 P a g e. Estimation of modulation index of pulsar 1. Aim of the experiment The aim of this experiment is to find out the pulse to pulse intensity modulation of the pulsar radio emission. ORT will be used to carry out observations of a select list of pulsars

More information

A. ABSORPTION OF X = 4880 A LASER BEAM BY ARGON IONS

A. ABSORPTION OF X = 4880 A LASER BEAM BY ARGON IONS V. GEOPHYSICS Prof. F. Bitter Prof. G. Fiocco Dr. T. Fohl Dr. W. D. Halverson Dr. J. F. Waymouth R. J. Breeding J. C. Chapman A. J. Cohen B. DeWolf W. Grams C. Koons Urbanek A. ABSORPTION OF X = 4880 A

More information

Precipitation of Energetic Protons from the Radiation Belts. using Lower Hybrid Waves

Precipitation of Energetic Protons from the Radiation Belts. using Lower Hybrid Waves Precipitation of Energetic Protons from the Radiation Belts using Lower Hybrid Waves Lower hybrid waves are quasi-electrostatic whistler mode waves whose wave normal direction is very close to the whistler

More information

Fast Electron Temperature Diagnostic Based on Langmuir Probe Current Harmonic Detection on D-IIID

Fast Electron Temperature Diagnostic Based on Langmuir Probe Current Harmonic Detection on D-IIID Fast Electron Temperature Diagnostic Based on Langmuir Probe Current Harmonic Detection on D-IIID D.L. Rudakov, J. A. Boedo, R. D. Lehmer*, R. A. Moyer, G. Gunner - University of California, San Diego

More information

Levitated Dipole Experiment

Levitated Dipole Experiment Microwave Interferometer Density Diagnostic for the Levitated Dipole Experiment Columbia University A. Boxer, J. Kesner MIT PSFC M.E. Mauel, D.T. Garnier, A.K. Hansen, Columbia University Presented at

More information

Ion Heating Arising from the Damping of Short Wavelength Fluctuations at the Edge of a Helicon Plasma Source

Ion Heating Arising from the Damping of Short Wavelength Fluctuations at the Edge of a Helicon Plasma Source Ion Heating Arising from the Damping of Short Wavelength Fluctuations at the Edge of a Helicon Plasma Source Division of Plasma Physics American Physical Society October 2012 Providence, RI Earl Scime,

More information

[4] (b) Fig. 6.1 shows a loudspeaker fixed near the end of a tube of length 0.6 m. tube m 0.4 m 0.6 m. Fig. 6.

[4] (b) Fig. 6.1 shows a loudspeaker fixed near the end of a tube of length 0.6 m. tube m 0.4 m 0.6 m. Fig. 6. 1 (a) Describe, in terms of vibrations, the difference between a longitudinal and a transverse wave. Give one example of each wave.................... [4] (b) Fig. 6.1 shows a loudspeaker fixed near the

More information

Introduction 1. The Experimental Method

Introduction 1. The Experimental Method 8.02 Fall 2001 A Microwave Generator, Receiver, and Reflector 1 Introduction 1 Hertz first generated electromagnetic waves in 1888, and we replicate Hertz s original experiment here. The method he used

More information

Development Status of KSTAR LHCD System

Development Status of KSTAR LHCD System Development Status of KSTAR LHCD System September 24, 2004 Y. S. Bae,, M. H. Cho, W. Namkung Plasma Sheath Lab. Department of Physics, Pohang University of Science and Technology LHCD system overview Objectives

More information

Long Pulse Operation of a High Power Microwave Source with a Metamaterial Loaded Waveguide

Long Pulse Operation of a High Power Microwave Source with a Metamaterial Loaded Waveguide MURI Grad Student Teleseminar Long Pulse Operation of a High Power Microwave Source with a Metamaterial Loaded Waveguide Xueying Lu MIT 02/03/2016 Outline Review of Stage I experiment Jason Hummelt thesis

More information

Chapter 4. Pulse Echo Imaging. where: d = distance v = velocity t = time

Chapter 4. Pulse Echo Imaging. where: d = distance v = velocity t = time Chapter 4 Pulse Echo Imaging Ultrasound imaging systems are based on the principle of pulse echo imaging. These systems require the use of short pulses of ultrasound to create two-dimensional, sectional

More information

Interdependence of Magnetic Islands, Halo Current and Runaway Electrons in T-10 Tokamak

Interdependence of Magnetic Islands, Halo Current and Runaway Electrons in T-10 Tokamak IAEA-CN-77/EXP2/02 Interdependence of Magnetic Islands, Halo Current and Runaway Electrons in T-10 Tokamak N.V. Ivanov, A.M. Kakurin, V.A. Kochin, P.E. Kovrov, I.I. Orlovski, Yu.D.Pavlov, V.V. Volkov Nuclear

More information

OPERATING THE HIPIMS DISCHARGE WITH ULTRA-SHORT PULSES: A SOLUTION TO OVERCOME THE DEPOSITION RATE LIMITATION

OPERATING THE HIPIMS DISCHARGE WITH ULTRA-SHORT PULSES: A SOLUTION TO OVERCOME THE DEPOSITION RATE LIMITATION Romanian Reports in Physics 69, 411 (2017) OPERATING THE HIPIMS DISCHARGE WITH ULTRA-SHORT PULSES: A SOLUTION TO OVERCOME THE DEPOSITION RATE LIMITATION I.-L. VELICU 1, I. MIHAILA 2, G. POPA 1 1 Alexandru

More information

A proposal for the measurement of the non-stationary Casimir effect

A proposal for the measurement of the non-stationary Casimir effect A proposal for the measurement of the non-stationary Casimir effect Giuseppe Ruoso INFN - Laboratori Nazionali di Legnaro - aim of the experiment - mechanical and effective motion - experimental set-up

More information

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE*

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* Y. Owadano, E. Takahashi, I. Okuda, I. Matsushima, Y. Matsumoto, S. Kato, E. Miura and H.Yashiro 1), K. Kuwahara 2)

More information

Study of Ion Cyclotron Emissions due to DD Fusion Product Ions on JT-60U

Study of Ion Cyclotron Emissions due to DD Fusion Product Ions on JT-60U 1 Study of Ion Cyclotron Emissions due to DD Fusion Product Ions on JT-6U M. Ichimura 1), M. Katano 1), Y. Yamaguchi 1), S. Sato 1), Y. Motegi 1), H. Muro 1), T. Ouchi 1), S. Moriyama 2), M. Ishikawa 2),

More information

AGF-216. The Earth s Ionosphere & Radars on Svalbard

AGF-216. The Earth s Ionosphere & Radars on Svalbard AGF-216 The Earth s Ionosphere & Radars on Svalbard Katie Herlingshaw 07/02/2018 1 Overview Radar basics what, how, where, why? How do we use radars on Svalbard? What is EISCAT and what does it measure?

More information

TESTING OF ELECTROMAGNETIC RADIATION RESONATOR-CONVERTER PROTOTYPE

TESTING OF ELECTROMAGNETIC RADIATION RESONATOR-CONVERTER PROTOTYPE TESTING OF ELECTROMAGNETIC RADIATION RESONATOR-CONVERTER PROTOTYPE Phase II Report Customer UAB AIRESLITA Vilniaus str. 31, LT-01119 Vilnius, Lithuania Contact person Director Darius Višinskas Tests conducted

More information

Electromagnetic Field Simulation for ICRF Antenna and Comparison with Experimental Results in LHD

Electromagnetic Field Simulation for ICRF Antenna and Comparison with Experimental Results in LHD Electromagnetic Field Simulation for ICRF Antenna and Comparison with Experimental Results in LHD Takashi MUTOH, Hiroshi KASAHARA, Tetsuo SEKI, Kenji SAITO, Ryuhei KUMAZAWA, Fujio SHIMPO and Goro NOMURA

More information

HAARP Generated ELF/VLF Waves for Magnetospheric Probing. Mark Gołkowski

HAARP Generated ELF/VLF Waves for Magnetospheric Probing. Mark Gołkowski HAARP Generated ELF/VLF Waves for Magnetospheric Probing Mark Gołkowski University of Colorado Denver M.B. Cohen, U. S. Inan, D. Piddyachiy Stanford University RF Ionospheric Workshop 20 April 2010 Outline

More information

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations.

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations. Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION SUBJECT- MICROWAVE ENGINEERING(EEC-603) Unit-III 1. What are the high frequency limitations of conventional tubes? Explain clearly. 2. Explain

More information

Module IV, Lecture 2 DNP experiments and hardware

Module IV, Lecture 2 DNP experiments and hardware Module IV, Lecture 2 DNP experiments and hardware tunnel diodes, Gunn diodes, magnetrons, traveling-wave tubes, klystrons, gyrotrons Dr Ilya Kuprov, University of Southampton, 2013 (for all lecture notes

More information

Stability Analysis of C-band 500-kW Klystron with Multi-cell. Output cavity

Stability Analysis of C-band 500-kW Klystron with Multi-cell. Output cavity Stability Analysis of C-band 5-kW Klystron with Multi-cell Output cavity Jihyun Hwang Department of Physics, POSTECH, Pohang 37673 Sung-Ju Park and Won Namkung Pohang Accelerator Laboratory, Pohang 37874

More information

PRINCIPLES OF RADAR. By Members of the Staff of the Radar School Massachusetts Institute of Technology. Third Edition by J.

PRINCIPLES OF RADAR. By Members of the Staff of the Radar School Massachusetts Institute of Technology. Third Edition by J. PRINCIPLES OF RADAR By Members of the Staff of the Radar School Massachusetts Institute of Technology Third Edition by J. Francis Reintjes ASSISTANT PBOFESSOR OF COMMUNICATIONS MASSACHUSETTS INSTITUTE

More information

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit.

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit. I.E.S-(Conv.)-1995 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Some useful data: Electron charge: 1.6 10 19 Coulomb Free space permeability: 4 10 7 H/m Free space permittivity: 8.85 pf/m Velocity

More information

SCCH 4: 211: 2015 SCCH

SCCH 4: 211: 2015 SCCH SCCH 211: Analytical Chemistry I Analytical Techniques Based on Optical Spectroscopy Atitaya Siripinyanond Office Room: C218B Email: atitaya.sir@mahidol.ac.th Course Details October 19 November 30 Topic

More information

Density and temperature maxima at specific? and B

Density and temperature maxima at specific? and B Density and temperature maxima at specific? and B Matthew M. Balkey, Earl E. Scime, John L. Kline, Paul Keiter, and Robert Boivin 11/15/2007 1 Slide 1 Abstract We report measurements of electron density

More information

Summary of Research Activities on Microwave Discharge Phenomena involving Chalmers (Sweden), Institute of Applied Physics (Russia) and CNES (France)

Summary of Research Activities on Microwave Discharge Phenomena involving Chalmers (Sweden), Institute of Applied Physics (Russia) and CNES (France) Summary of Research Activities on Microwave Discharge Phenomena involving Chalmers (Sweden), Institute of Applied Physics (Russia) and CNES (France) J. Puech (1), D. Anderson (2), M.Lisak (2), E.I. Rakova

More information

High Power Antenna Design for Lower Hybrid Current Drive in MST

High Power Antenna Design for Lower Hybrid Current Drive in MST High Power Antenna Design for Lower Hybrid Current Drive in MST M.A. Thomas, J.A. Goetz, M.C. Kaufman, S.P. Oliva University of WisconsinMadison J.B.O. Caughman, P.M. Ryan Oak Ridge National Laboratory

More information

Tutorial: designing a converging-beam electron gun and focusing solenoid with Trak and PerMag

Tutorial: designing a converging-beam electron gun and focusing solenoid with Trak and PerMag Tutorial: designing a converging-beam electron gun and focusing solenoid with Trak and PerMag Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975

More information

Physics 102: Lecture 14 Electromagnetic Waves

Physics 102: Lecture 14 Electromagnetic Waves Physics 102: Lecture 14 Electromagnetic Waves Physics 102: Lecture 14, Slide 1 Review: Phasors & Resonance At resonance Z is minimum (=R) I max is maximum (=V gen,max /R) V gen is in phase with I X L =

More information

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser P. Castro for the TTF-FEL team 100 nm 1 Å FEL radiation TESLA Test Facility at DESY

More information

LECTURE 20 ELECTROMAGNETIC WAVES. Instructor: Kazumi Tolich

LECTURE 20 ELECTROMAGNETIC WAVES. Instructor: Kazumi Tolich LECTURE 20 ELECTROMAGNETIC WAVES Instructor: Kazumi Tolich Lecture 20 2 25.6 The photon model of electromagnetic waves 25.7 The electromagnetic spectrum Radio waves and microwaves Infrared, visible light,

More information

SIMULATION OF A MAGNETRON USING DISCRETE MODULATED CURRENT SOURCES. Sulmer A. Fernández Gutierrez. A dissertation. submitted in partial fulfillment

SIMULATION OF A MAGNETRON USING DISCRETE MODULATED CURRENT SOURCES. Sulmer A. Fernández Gutierrez. A dissertation. submitted in partial fulfillment SIMULATION OF A MAGNETRON USING DISCRETE MODULATED CURRENT SOURCES by Sulmer A. Fernández Gutierrez A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging Medical Imaging X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging From: Physics for the IB Diploma Coursebook 6th Edition by Tsokos, Hoeben and Headlee And Higher Level Physics 2 nd Edition

More information

Lesson 02: Sound Wave Production. This lesson contains 24 slides plus 11 multiple-choice questions.

Lesson 02: Sound Wave Production. This lesson contains 24 slides plus 11 multiple-choice questions. Lesson 02: Sound Wave Production This lesson contains 24 slides plus 11 multiple-choice questions. Accompanying text for the slides in this lesson can be found on pages 2 through 7 in the textbook: ULTRASOUND

More information

16.3 Standing Waves on a String.notebook February 16, 2018

16.3 Standing Waves on a String.notebook February 16, 2018 Section 16.3 Standing Waves on a String A wave pulse traveling along a string attached to a wall will be reflected when it reaches the wall, or the boundary. All of the wave s energy is reflected; hence

More information

Normal-conducting high-gradient rf systems

Normal-conducting high-gradient rf systems Normal-conducting high-gradient rf systems Introduction Motivation for high gradient Order of 100 GeV/km Operational and state-of-the-art SwissFEL C-band linac: Just under 30 MV/m CLIC prototypes: Over

More information

What Are Electromagnetic Waves?

What Are Electromagnetic Waves? What Are Electromagnetic Waves? How are electromagnetic waves different from mechanical waves? Electromagnetic waves are produced when an electric charge vibrates or accelerates. Electromagnetic waves

More information

3. (a) Derive an expression for the Hull cut off condition for cylindrical magnetron oscillator. (b) Write short notes on 8 cavity magnetron [8+8]

3. (a) Derive an expression for the Hull cut off condition for cylindrical magnetron oscillator. (b) Write short notes on 8 cavity magnetron [8+8] Code No: RR320404 Set No. 1 1. (a) Compare Drift space bunching and Reflector bunching with the help of Applegate diagrams. (b) A reflex Klystron operates at the peak of n=1 or 3 / 4 mode. The dc power

More information

Determining The Size Of Cabinet Apertures For Effectively Mitigating Radiated Emissions. By David Norte Thursday, April 7 th, 2005

Determining The Size Of Cabinet Apertures For Effectively Mitigating Radiated Emissions. By David Norte Thursday, April 7 th, 2005 The EMC, Signal And Power Integrity Institute Presents Determining The Size Of Cabinet Apertures For Effectively Mitigating Radiated Emissions By David Norte Thursday, April 7 th, 2005 1 Motivation For

More information

Light waves. VCE Physics.com. Light waves - 2

Light waves. VCE Physics.com. Light waves - 2 Light waves What is light? The electromagnetic spectrum Waves Wave equations Light as electromagnetic radiation Polarisation Colour Colour addition Colour subtraction Interference & structural colour Light

More information

Safety Code 6 (SC6) Measurement Procedures (Uncontrolled Environment)

Safety Code 6 (SC6) Measurement Procedures (Uncontrolled Environment) February 2011 Spectrum Management and Telecommunications Technical Note Safety Code 6 (SC6) Measurement Procedures (Uncontrolled Environment) Aussi disponible en français NT-329 Contents 1.0 Purpose...1

More information

THE ELECTROMAGNETIC FIELD THEORY. Dr. A. Bhattacharya

THE ELECTROMAGNETIC FIELD THEORY. Dr. A. Bhattacharya 1 THE ELECTROMAGNETIC FIELD THEORY Dr. A. Bhattacharya The Underlying EM Fields The development of radar as an imaging modality has been based on power and power density It is important to understand some

More information

MAGNETRON DEVELOPMENT. R.R.Moats

MAGNETRON DEVELOPMENT. R.R.Moats VI. MAGNETRON DEVELOPMENT Prof. S.T.Martin D.L.Eckhardt S.Goldberg V.Mayper R.R.Moats R.Q.Twiss(guest). INTRODUCTION Progress is reported on the following subjects: 1. Results of testing the high-power

More information

Lower Hybrid. Ron Parker Alcator C-Mod PAC Meeting January January 2006 Alcator C-Mod PAC Meeting 1

Lower Hybrid. Ron Parker Alcator C-Mod PAC Meeting January January 2006 Alcator C-Mod PAC Meeting 1 Lower Hybrid Ron Parker Alcator C-Mod PAC Meeting 25-27 January 2006 25-27 January 2006 Alcator C-Mod PAC Meeting 1 Goal of Lower Hybrid Current Drive Experiments Use Lower Hybrid Current Drive to supplement

More information

QPR No SPONTANEOUS RADIOFREQUENCY EMISSION FROM HOT-ELECTRON PLASMAS XIII. Academic and Research Staff. Prof. A. Bers.

QPR No SPONTANEOUS RADIOFREQUENCY EMISSION FROM HOT-ELECTRON PLASMAS XIII. Academic and Research Staff. Prof. A. Bers. XIII. SPONTANEOUS RADIOFREQUENCY EMISSION FROM HOT-ELECTRON PLASMAS Academic and Research Staff Prof. A. Bers Graduate Students C. E. Speck A. EXPERIMENTAL STUDY OF ENHANCED CYCLOTRON RADIATION FROM AN

More information

First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP

First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP Carl L. Siefring, Paul A. Bernhardt, Stanley J. Briczinski, and Michael McCarrick Naval Research Laboratory Matthew

More information

Overview of ICRF Experiments on Alcator C-Mod*

Overview of ICRF Experiments on Alcator C-Mod* 49 th annual APS-DPP meeting, Orlando, FL, Nov. 2007 Overview of ICRF Experiments on Alcator C-Mod* Y. Lin, S. J. Wukitch, W. Beck, A. Binus, P. Koert, A. Parisot, M. Reinke and the Alcator C-Mod team

More information

Explain what is meant by a photon and state one of its main properties [2]

Explain what is meant by a photon and state one of its main properties [2] 1 (a) A patient has an X-ray scan taken in hospital. The high-energy X-ray photons interact with the atoms inside the body of the patient. Explain what is meant by a photon and state one of its main properties....

More information

DOE/ET PFC/RR-87-10

DOE/ET PFC/RR-87-10 PFC/RR-87-10 DOE/ET-51013-227 Concepts of Millimeter/Submillimeter Wave Cavities, Mode Converters and Waveguides Using High Temperature Superconducting Material D.R Chon; L. Bromberg; W. Halverson* B.

More information

Auroral particle acceleration by strong double layers: The upward current region

Auroral particle acceleration by strong double layers: The upward current region JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2004ja010545, 2004 Auroral particle acceleration by strong double layers: The upward current region R. E. Ergun, 1 L. Andersson, D. Main, and Y.-J.

More information

... frequency, f speed, v......

... frequency, f speed, v...... PhysicsAndMathsTutor.com 1 1. Define the terms wavelength, frequency and speed used to describe a progressive wave. wavelength, λ... frequency, f... speed, v... Hence derive the wave equation v = fλ which

More information

Multi-pass Slab CO 2 Amplifiers for Application in EUV Lithography

Multi-pass Slab CO 2 Amplifiers for Application in EUV Lithography Multi-pass Slab CO 2 Amplifiers for Application in EUV Lithography V. Sherstobitov*, A. Rodionov**, D. Goryachkin*, N. Romanov*, L. Kovalchuk*, A. Endo***, K. Nowak*** *JSC Laser Physics, St. Petersburg,

More information

Full-wave feasibility study of magnetic diagnostic based on O-X mode conversion and oblique reflectometry imaging

Full-wave feasibility study of magnetic diagnostic based on O-X mode conversion and oblique reflectometry imaging Full-wave feasibility study of magnetic diagnostic based on O-X mode conversion and oblique reflectometry imaging 20 th topical conference on radio frequency power in plasmas Orso Meneghini, M. Choi #,

More information

SOL Reflectometer for Alcator C-Mod

SOL Reflectometer for Alcator C-Mod Alcator C-Mod SOL Reflectometer for Alcator C-Mod C. Lau 1 G. Hanson 2, J. B. Wilgen 2, Y. Lin 1, G. Wallace 1, and S. J. Wukitch 1 1 MIT Plasma Science and Fusion Center, Cambridge, MA 02139 2 Oak Ridge

More information

6 Experiment II: Law of Reflection

6 Experiment II: Law of Reflection Lab 6: Microwaves 3 Suggested Reading Refer to the relevant chapters, 1 Introduction Refer to Appendix D for photos of the apparatus This lab allows you to test the laws of reflection, refraction and diffraction

More information

Improved Performance of Magnetrons using the Transparent Cathode 1

Improved Performance of Magnetrons using the Transparent Cathode 1 High power microwaves Improved Performance of Magnetrons using the Transparent Cathode 1 H. Bosman, S. Prasad, M. Fuks, and E. Schamiloglu Department of Electrical & Computer Engineering MSC01 1100, 1

More information

Introduction to the Physics of Free-Electron Lasers

Introduction to the Physics of Free-Electron Lasers Introduction to the Physics of Free-Electron Lasers 1 Outline Undulator Radiation Radiation from many particles The FEL Instability Advanced FEL concepts The X-Ray Free-Electron Laser For Angstrom level

More information

Photoresist erosion studied in an inductively coupled plasma reactor employing CHF 3

Photoresist erosion studied in an inductively coupled plasma reactor employing CHF 3 Photoresist erosion studied in an inductively coupled plasma reactor employing CHF 3 M. F. Doemling, N. R. Rueger, and G. S. Oehrlein a) Department of Physics, University at Albany, State University of

More information

SECOND HARMONIC GENERATION AND Q-SWITCHING

SECOND HARMONIC GENERATION AND Q-SWITCHING SECOND HARMONIC GENERATION AND Q-SWITCHING INTRODUCTION In this experiment, the following learning subjects will be worked out: 1) Characteristics of a semiconductor diode laser. 2) Optical pumping on

More information

Artificial Ionospheric Perturbations Studied During НААRP May-June 2014 campaign

Artificial Ionospheric Perturbations Studied During НААRP May-June 2014 campaign Artificial Ionospheric Perturbations Studied During НААRP May-June 2014 campaign E.N. Sergeev 1,2, A.V. Shindin 1, S.M. Grach 1, G.M. Milikh 3 1 Lobachevsky State University of Nizhni Novgorod, Gagarin

More information

Particle Simulation of Radio Frequency Waves in Fusion Plasmas

Particle Simulation of Radio Frequency Waves in Fusion Plasmas 1 TH/P2-10 Particle Simulation of Radio Frequency Waves in Fusion Plasmas Animesh Kuley, 1 Jian Bao, 2,1 Zhixuan Wang, 1 Zhihong Lin, 1 Zhixin Lu, 3 and Frank Wessel 4 1 Department of Physics and Astronomy,

More information

Module 3: Velocity Measurement Lecture 13: Two wire hotwire measurement. The Lecture Contains: Hotwire Anemometry. Electromagnetic Actuator

Module 3: Velocity Measurement Lecture 13: Two wire hotwire measurement. The Lecture Contains: Hotwire Anemometry. Electromagnetic Actuator The Lecture Contains: Hotwire Anemometry Hotwire Probes CTA Bridge and Accessories Data Acquisition System Electromagnetic Actuator Auxiliary Instruments Digital Micromanometer Digital Multimeter Spectrum

More information

Magnetron. Physical construction of a magnetron

Magnetron. Physical construction of a magnetron anode block interaction space cathode filament leads Magnetron The magnetron is a high-powered vacuum tube that works as self-excited microwave oscillator. Crossed electron and magnetic fields are used

More information

High frequency electomagnetic field irradiation. Andrea Contin

High frequency electomagnetic field irradiation. Andrea Contin High frequency electomagnetic field irradiation Andrea Contin 2005 Outline GSM signal e.m. waves resonant cavities ETHZ apparatus SAR analysis 2 e.m. spectrum 3 High frequency irradiation High frequency

More information

Artificial Ionospheric Perturbations Studied During НААRP May-June 2014 campaign

Artificial Ionospheric Perturbations Studied During НААRP May-June 2014 campaign Artificial Ionospheric Perturbations Studied During НААRP May-June 2014 campaign E.N. Sergeev 1,2, A.V. Shindin 1, S.M. Grach 1, G.M. Milikh 3 1 Lobachevsky State University of Nizhni Novgorod, Gagarin

More information

2. Achievement of reliable long pulse operation of 1 MW 170 GHz gyrotron

2. Achievement of reliable long pulse operation of 1 MW 170 GHz gyrotron Demonstration of 1 MW quasi-cw operation of 170 GHz Gyrotron and Progress of EC Technology for ITER A.Kasugai, K.Sakamoto, K.Takahashi, K.Kajiwara, Y.Oda, N.Kobayashi Fusion Research and Development Directorate,

More information

Ground Penetrating Radar

Ground Penetrating Radar Ground Penetrating Radar Begin a new section: Electromagnetics First EM survey: GPR (Ground Penetrating Radar) Physical Property: Dielectric constant Electrical Permittivity EOSC 350 06 Slide Di-electric

More information

Whistler Wave Generation by Continuous HF Heating of the F-region Ionosphere

Whistler Wave Generation by Continuous HF Heating of the F-region Ionosphere Whistler Wave Generation by Continuous HF Heating of the F-region Ionosphere Aram Vartanyan 1 G. M. Milikh 1, B. Eliasson 1,2, A. C. Najmi 1, M. Parrot 3, K. Papadopoulos 1 1 Departments of Physics and

More information

Status of the rf Current Drive Systems on MST

Status of the rf Current Drive Systems on MST Status of the rf Current Drive Systems on MST John A. Goetz for A. Almagri, J.K. Anderson, D.R. Burke, M.M. Clark, W.A. Cox, C.B. Forest, R. Ganch, M.C. Kaufman, J.G. Kulpin, P. Nonn, R. O Connell, S.P.

More information

S-band Magnetron. Tuner revolutions to cover frequency range 4.75 (note 3) Mounting position (note 4) Any Cooling (note 5) Water

S-band Magnetron. Tuner revolutions to cover frequency range 4.75 (note 3) Mounting position (note 4) Any Cooling (note 5) Water S-band Magnetron GENERAL DESCRIPTION is a mechanical tuned pulsed type S-band magnetron intended primarily for linear accelerator. It is water cooled and has circle waveguide output type. It is designed

More information

Investigating High Frequency Magnetic Activity During Local Helicity Injection on the PEGASUS Toroidal Experiment

Investigating High Frequency Magnetic Activity During Local Helicity Injection on the PEGASUS Toroidal Experiment Investigating High Frequency Magnetic Activity During Local Helicity Injection on the PEGASUS Toroidal Experiment Nathan J. Richner M.W. Bongard, R.J. Fonck, J.L. Pachicano, J.M. Perry, J.A. Reusch 59

More information

Microwave Imaging in the Large Helical Device

Microwave Imaging in the Large Helical Device Microwave Imaging in the Large Helical Device T. Yoshinaga 1), D. Kuwahara 2), K. Akaki 3), Z.B. Shi 4), H. Tsuchiya 1), S. Yamaguchi 5), Y. Kogi 6), S. Tsuji-Iio 2), Y. Nagayama 1), A. Mase 3), H. Hojo

More information

The Largest Ionospheric Disturbances Produced by the HAARP HF Facility

The Largest Ionospheric Disturbances Produced by the HAARP HF Facility The Largest Ionospheric Disturbances Produced by the HAARP HF Facility Paul A. Bernhardt 1, Carl L. Seifring 1, Stanley J. Briczinski 2, Elizabeth A. kendall 3, Brenton J. Watkins 4, William Bristow 4,

More information

The effect of phase difference between powered electrodes on RF plasmas

The effect of phase difference between powered electrodes on RF plasmas INSTITUTE OF PHYSICS PUBLISHING Plasma Sources Sci. Technol. 14 (2005) 407 411 PLASMA SOURCES SCIENCE AND TECHNOLOGY doi:10.1088/0963-0252/14/3/001 The effect of phase difference between powered electrodes

More information

RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere. Anatoly Petrukovich and Resonance team

RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere. Anatoly Petrukovich and Resonance team RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere Ω Anatoly Petrukovich and Resonance team РЕЗОНАНС RESONANCE Resonance Inner magnetospheric mission Space weather Ring

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas Z. Yan1, G.R. McKee1, R.J. Groebner2, P.B. Snyder2, T.H. Osborne2, M.N.A. Beurskens3, K.H. Burrell2, T.E. Evans2, R.A. Moyer4, H. Reimerdes5

More information

Tendencies in the Development of High-Power Gyrotrons

Tendencies in the Development of High-Power Gyrotrons Tendencies in the Development of High-Power Gyrotrons G.G.Denisov Institute of Applied Physics Russian Academy of Sciences Ltd. Nizhny Novgorod, Russia JAERI/TOSHIBA / FZK/THALES CPI/GA Gyro-devices Extraordinary

More information

Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 4 Part A

Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 4 Part A Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 4 Part A 1. What is magnetron? [N/D-16] an electron tube for amplifying or generating microwaves, with the

More information

SIMULATION OF A MAGNETRON USING DISCRETE MODULATED CURRENT SOURCES. Sulmer A. Fernández-Gutierrez. A dissertation. submitted in partial fulfillment

SIMULATION OF A MAGNETRON USING DISCRETE MODULATED CURRENT SOURCES. Sulmer A. Fernández-Gutierrez. A dissertation. submitted in partial fulfillment SIMULATION OF A MAGNETRON USING DISCRETE MODULATED CURRENT SOURCES by Sulmer A. Fernández-Gutierrez A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Microwave reflectometry for plasma density profile. measurements on HL-2A tokamak

Microwave reflectometry for plasma density profile. measurements on HL-2A tokamak Microwave reflectometry for plasma density profile measurements on HL-A tokamak Xiao Weiwen, Liu Zetian, Ding Xuantong, Shi Zhongbin Southwestern Institute of Physics, Chengdu, 610041, China Vladimir Zhuravlev

More information

Second-Harmonic Fundamental Mode Slotted Peniotron

Second-Harmonic Fundamental Mode Slotted Peniotron Second-Harmonic Fundamental Mode Slotted Peniotron L.J. Dressman*, D.B. McDermott, and N.C. Luhmann, Jr. University of California, Davis *Also NAVSEA, Crane D.A. Gallagher Northrop Grumman Corp. T.A. Spencer

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 18.

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 18. FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 18 Optical Sources- Introduction to LASER Diodes Fiber Optics, Prof. R.K. Shevgaonkar,

More information

Power Quality Issues from an EMC Point of View

Power Quality Issues from an EMC Point of View Power Quality Issues from an EMC Point of View Brian Jones BSc (Hons) C Eng MIEE MIEEE Overview What is EMC? How does it apply to power quality? The effects of equipment on power quality The effects of

More information

Highly efficient water heaters using magnetron effects

Highly efficient water heaters using magnetron effects Highly efficient water heaters using magnetron effects Technical task of this project is maximum heat output and minimum electric input of power. This research project has several stages of development.

More information

"Natural" Antennas. Mr. Robert Marcus, PE, NCE Dr. Bruce C. Gabrielson, NCE. Security Engineering Services, Inc. PO Box 550 Chesapeake Beach, MD 20732

Natural Antennas. Mr. Robert Marcus, PE, NCE Dr. Bruce C. Gabrielson, NCE. Security Engineering Services, Inc. PO Box 550 Chesapeake Beach, MD 20732 Published and presented: AFCEA TEMPEST Training Course, Burke, VA, 1992 Introduction "Natural" Antennas Mr. Robert Marcus, PE, NCE Dr. Bruce C. Gabrielson, NCE Security Engineering Services, Inc. PO Box

More information

EXTRACTING ELECTRON ENERGY DISTRIBUTIONS FROM PFRC X-RAY SPECTRA: PREPARING FOR HIGH-POWER, HIGH-FIELD OPERATION OF THE ROTATING MAGNETIC FIELD

EXTRACTING ELECTRON ENERGY DISTRIBUTIONS FROM PFRC X-RAY SPECTRA: PREPARING FOR HIGH-POWER, HIGH-FIELD OPERATION OF THE ROTATING MAGNETIC FIELD EXTRACTING ELECTRON ENERGY DISTRIBUTIONS FROM PFRC X-RAY SPECTRA: PREPARING FOR HIGH-POWER, HIGH-FIELD OPERATION OF THE ROTATING MAGNETIC FIELD Presentation to the US-Japan CT Workshop August 24, 2016

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information