Overview of ICRF Experiments on Alcator C-Mod*

Size: px
Start display at page:

Download "Overview of ICRF Experiments on Alcator C-Mod*"

Transcription

1 49 th annual APS-DPP meeting, Orlando, FL, Nov Overview of ICRF Experiments on Alcator C-Mod* Y. Lin, S. J. Wukitch, W. Beck, A. Binus, P. Koert, A. Parisot, M. Reinke and the Alcator C-Mod team MIT, Plasma Science and Fusion Center Cambridge, MA 02139, USA *Work supported by US DoE Cooperative agreement DE-FC02-99ER Contact info: Yijun Lin, 1

2 Part I: Real-time Fast Ferrite Tuning System 2

3 Stub Tuner/Phase Shifter System Goal: zero reflection on the matched side at all time. Stub tuner and phase shifter are adjusted between-shot based on anticipated average antenna loading. Difficult maintaining the match when the antenna loading changes significantly during a discharge. Difficult finding ideal ST/PS positions in experiments with large plasma parameter variation shot-by-shot (e.g., density scan). 3

4 Real-time Matching Techniques 1. Frequency modulation: Varying RF source frequency to change impedance Fast (milliseconds) Requires a long transmission line and a wide-band response of the transmitters Tested on JET and LHD (Not applicable on Alcator C-Mod) 2. Dielectric liquid: Pumping/filling dielectric liquid in stubs and/or phase shifters to change electrical length Slow (seconds), but good for long pulse operation Installed on LHD (Not applicable on Alcator C-Mod). 3. Ferrite material: Varying magnetic field on ferrite material to change effective electrical length Fast (milliseconds) Limited range of electrical length variation Tested on ASDEX-Upgrade (Successfully implemented on Alcator C-Mod) 4

5 Fast Ferrite Tuning (FFT) System Tuner Detail The equivalent electrical length of the tuners (at 80 MHz) can vary 35 cm for coil current from -150 A to 150 A. System Layout Real-time digital feedback control to match the time-varying antenna loading. Computation cycle 200 μs. 5

6 FFT System (Top View) 9-inch 50 Ω line from transmitter Tuner #1 L 1 =1.60 m 9-inch 50 Ω line to antenna L 12 = 3/8λ DC1 Tuner #2 L 2 =.99 m DC2 6

7 FFT System (Side View) Tuner #1 SF6 Gas Tuner #2 Arc detection fiber Coil current Cooling water 7

8 Control Hardware Linux server (Intel Xeon 3.2 GHz with 2 GB memory) Compact-PCI controller (32-input, 16-output) PLC for remote control Power supply for tuner #1 RF demodulators for DC1 and DC2 8

9 FFT at Beginning of RF Pulse The FFT system lowered the power reflection coefficient on DC1 from ~ 30% to less than 3% in less than 2 ms. The power reflection was maintained < 3% under feedback control for the entire RF pulse. <2 ms 9

10 FFT during L-H L H Transitions and ELMs With the real-time matching, the power reflection coefficient did not exceed 15% during L- H-L transitions and ELMs. The response time was generally limited by the power supply capability, but not the computer cycle. Ran successfully in both L modes and H-modes. Average density x10 20 m -3, I p = MA. Successful up to 1.1 MW forward power in H-mode (27 kv, 3.3 MW circulating power). 10

11 Part II: ICRF Sheath Study 11

12 Boronization on Alcator C-Mod Boronization is essential in obtaining high performance on C-Mod. However, an overnight boronization (~200 nm layer) can only last about 50 MJ RF energy. RF heated plasmas show much faster (~ 5 times) boron erosion, Joule to Joule, compared to Ohmic plasmas. Boron erosion is preferential in a rather small area P RF [MW] H ITER-89P Time [s] P rad [MW] , Blue: unboronized Red: boronized 12

13 RF Induced Boron Erosion is Localized st Discharge Ant 1 2nd Discharge Ant 1 Radiate Power (MW) H-mode Time (s) 1st Discharge Ant 1 2nd Discharge Ant 2 Radiate Power (MW) H-mode Time (s) After a between-shot boronization, running the same antenna in consecutive plasma discharges helped to raise the radiated power. Running a different antenna in the 2 nd discharge showed no increase in the radiated power. Different antennas were eroding the boron layer at different locations. 13

14 RF Sheath Potential Ant 1 D E J Ant 2 Probe Plasma potentials measured by an emissive probe were higher due to RF sheath when the linked antenna (Dport antenna) was powered. RF sheath is thought to be the major cause of the enhanced boron erosion (significant sputtering if greater than 30 V) compared to Ohmic plasmas. 14

15 Sheath Potential Scales with RF Power Sheath potential is higher at higher RF power. Higher in H-mode (~100 V at 1.5 MW) than in L-mode (~50 V at 1.5 MW). In H-mode after boronization, V ~ P 0.5. In unboronized H- mode, V ~ P. The difference of sheath potential vs. wall conditions and plasma confinement is not yet understood. Impurity generation (as seen in Prad) was similar in D(H) and D(He3) heating scenarios. Plasma Potential [V] unboronized boronized Sqrt(RF Power) [MW 1/2 ] 1.4 We don t know whether and how the sheath affects impurity penetration and transport , ,7,9 15

16 B T ErxB T Simple Sheath Model Open field lines connect conducting surfaces and enclose RF flux. Electrons respond to oscillating RF voltage and are lost preferentially. Field lines are charged positively and most voltage drop appears across the sheath. E r Antenna with boron nitride tiles ( ) Adding boron-nitride tiles on the antenna was expected to break the circuit. Surprisingly, it didn t. 16

17 BN Tiles Didn t Eliminate the Sheath 1 RF Power [MW] 1.5 RF Power [MW] with BN tiles with metallic tiles 0.5 H-mode Plasma Potential [V] Time (s) , Plasma Potential [V] Time (s) Sheath potentials at similar power level were similar with and without BN tiles. With BN tiles, the sheath potential was still as high as 100 V in H-mode. What are missing in the sheath model? 17

18 Research Directions and Impacts Marked tiles to identify the exact sputtering locations due to the RF sheath, and compare normal and reversed field plasmas to see whether and how the sheath affects impurity penetration and transport. On the new 4-strap antenna design (See Part III of this poster), we have made careful consideration to reduce poloidal and radial B field near the end of the straps lower sheath voltage and possibly lower impurity penetration. 18

19 Part III: New 4-strap 4 Antenna 19

20 Existing D-D and E-port E Antennas Operated routinely at high power (> 3 MW total), high standing voltage and over a wide density range. Easy to install and robust toward disruptions. Short vacuum transmission line and minimized E B regions. No spectrum control (2-strap, dipole) Impurity generation seems to be higher than J-port antenna at the same power density. Prone to arcing at E B locations. 20

21 Existing J-port J 4-strap 4 Antenna More transparent Faraday screen, higher antenna loading than D- and E-antennas Phase controlled for both heating and current drive. Improved spectrum (4-strap vs. two 2-strap). Good for a wide frequency range (operated at 50, 70 and 78 MHz). Limited at 3 MW total power. Having difficulties coupling to high neutral pressure plasmas (possibly due to a long vacuum transmission line). Time-consuming in-vessel assembly (~2 people for 2+ days). 21

22 Requirements for the New Antenna To free up a horizontal port for the 2 nd LH launcher but not comprising total ICRF power (FY2009). > 3 MW into high performance plasmas with minimum impurity production. Frequency range MHz. Pulse length up to 5 sec with 20 minutes betweenshot (inertial cooling). Withstand thermal loads 12 MW/m 2, and disruption loads of 1 T/ms at 9 T. Adequate diagnostics. Simple in-vessel installation. 22

23 Straps, Feedthrus & Transmission Lines Folded strap concept and strap separation (Similar to J-port antenna). Re-entrant 5 feedthrus (larger than the existing 4 feedthrus for higher power handling capability). Short parallel plate transmission line to reduce impact of neutrals. 23

24 E Field Limits and Radial Feeders Limit peak E < 10 kv/cm, and avoid E B wherever possible (Universal empirical observation). Limit max E B to 35 kv/cm. Shield radial feeders entirely to limit RF sheath formation (See Part II of this poster). 24

25 Faraday Screen Horizontal Faraday screen rods (same as J-port antenna). ~50% transparency (like J-port antenna) Molybdenum rods, electrically insulated at one end (~0.1 Ω to ground) to eliminate disruption induced currents (similar to J-port antenna). Modular design for simple assembly (similar to D- and E-port antennas) 25

26 Additional Features Diagnostics: GHz frequency swept X-mode reflectometer for edge density profile (poster by C. Lau, this session). Optical arc monitors. Voltage and current probes for RF pattern. External loop and matching: Flexible phasing, both heating phase and current drive phase. Standard resonant loop configuration. FFT system for real time matching (future). Assembly: Allows removing feedthrus without full antenna disassembly. 26

27 Part IV: Summary and Plans 27

28 Summary A fast ferrite tuning system has been successfully implemented on the E-port antenna. ICRF sheath study shows that the RF sheath is responsible for enhanced local boron erosion. The result also calls for more theoretical/modeling work to understand the sheath problem. A new 4-strap antenna has been designed. The design has incorporated the experience on the existing antennas, and also the recent RF sheath study result. 28

29 Plans The fast ferrite system is being upgraded to have higher voltage handling. We plan to develop and install similar systems on all transmitters/antennas in the future. We plan to do more experimental studies on the RF sheath problem, for example, marked tiles, reversed field plasmas, etc. We plan to install more emissive probes for more sheath monitoring. The new 4-strap antenna is scheduled to be fabricated and installed on the tokamak in FY

Field Aligned ICRF Antenna Design for EAST *

Field Aligned ICRF Antenna Design for EAST * Field Aligned ICRF Antenna Design for EAST * S.J. Wukitch 1, Y. Lin 1, C. Qin 2, X. Zhang 2, W. Beck 1, P. Koert 1, and L. Zhou 1 1) MIT Plasma Science and Fusion Center, Cambridge, MA USA. 2) Institute

More information

Evaluation of a Field Aligned ICRF Antenna in Alcator C-Mod

Evaluation of a Field Aligned ICRF Antenna in Alcator C-Mod Evaluation of a Field Aligned ICRF Antenna in Alcator C-Mod 24th IAEA Fusion Energy Conference San Diego, USA October 8-13 2012 S.J. Wukitch, D. Brunner, M.L. Garrett, B. Labombard, C. Lau, Y. Lin, B.

More information

RF Physics: Status and Plans

RF Physics: Status and Plans RF Physics: Status and Plans Program Advisory Committee meeting February 6-7, 2002 S. J. Wukitch Outline: 1. Overview of RF Physics issues 2. Review of antenna performance and near term modifications.

More information

Overview of ICRF Experiments in Alcator C-Mod

Overview of ICRF Experiments in Alcator C-Mod Overview of ICRF Experiments in Alcator C-Mod 50 th APS Plasma Physics Conference November 17-1, 008 S.J. Wukitch, Y.Lin, P.T. Bonoli, A. Hubbard, B. LaBombard, B. Lipschultz, M. Porkolab, J.E. Rice, D.

More information

ICRF Mode Conversion Flow Drive Studies with Improved Wave Measurement by Phase Contrast Imaging

ICRF Mode Conversion Flow Drive Studies with Improved Wave Measurement by Phase Contrast Imaging 57 th APS-DPP meeting, Nov. 2015, Savannah, GA, USA ICRF Mode Conversion Flow Drive Studies with Improved Wave Measurement by Phase Contrast Imaging Yijun Lin, E. Edlund, P. Ennever, A.E. Hubbard, M. Porkolab,

More information

C-Mod ICRF Program. Alcator C-Mod PAC Meeting January 25-27, 2006 MIT Cambridge MA. Presented by S.J. Wukitch

C-Mod ICRF Program. Alcator C-Mod PAC Meeting January 25-27, 2006 MIT Cambridge MA. Presented by S.J. Wukitch C-Mod ICRF Program Alcator C-Mod PAC Meeting January 5-7, 006 MIT Cambridge MA Presented by S.J. Wukitch Outline: 1. Overview of ICRF program. Antenna performance evaluation and coupling 3. Mode conversion

More information

Field-Aligned ICRF Antenna Characterization and Performance in Alcator C-Mod*

Field-Aligned ICRF Antenna Characterization and Performance in Alcator C-Mod* Field-Aligned ICRF Antenna Characterization and Performance in Alcator C-Mod* 54th APS DPP Annual Meeting Providence, RI USA October 9-Nov, 0 S.J. Wukitch, D. Brunner, P. Ennever, M.L. Garrett, A. Hubbard,

More information

Results from Alcator C-Mod ICRF Experiments

Results from Alcator C-Mod ICRF Experiments Results from Alcator C-Mod ICRF Experiments 18 th Topical Conference on RF Power in Plasmas June 4-7, 009 S.J. Wukitch, Y.Lin and the Alcator C-Mod Team Key Results: 1. First demonstration of efficient

More information

Investigation of RF-enhanced Plasma Potentials on Alcator C-Mod

Investigation of RF-enhanced Plasma Potentials on Alcator C-Mod PSFC/JA-13-3 Investigation of RF-enhanced Plasma Potentials on Alcator C-Mod Ochoukov, R., Whyte, D.G., Brunner, D., Cziegler *, I., LaBombard, B., Lipschultz, B., Myra **, J., Terry, J., Wukitch, S *

More information

Development of C-Mod FIR Polarimeter*

Development of C-Mod FIR Polarimeter* Development of C-Mod FIR Polarimeter* P.XU, J.H.IRBY, J.BOSCO, A.KANOJIA, R.LECCACORVI, E.MARMAR, P.MICHAEL, R.MURRAY, R.VIEIRA, S.WOLFE (MIT) D.L.BROWER, W.X.DING (UCLA) D.K.MANSFIELD (PPPL) *Supported

More information

Lower Hybrid. Ron Parker Alcator C-Mod PAC Meeting January January 2006 Alcator C-Mod PAC Meeting 1

Lower Hybrid. Ron Parker Alcator C-Mod PAC Meeting January January 2006 Alcator C-Mod PAC Meeting 1 Lower Hybrid Ron Parker Alcator C-Mod PAC Meeting 25-27 January 2006 25-27 January 2006 Alcator C-Mod PAC Meeting 1 Goal of Lower Hybrid Current Drive Experiments Use Lower Hybrid Current Drive to supplement

More information

C-Mod ICRF Research Program

C-Mod ICRF Research Program C-Mod ICRF Research Program C-Mod Ideas Forum December 2-6, 2004 MIT PSFC Presented by Steve Wukitch Outline: 1. Overview of ICRF program 2. Summary of MP s and proposals ICRF Highlights Antenna Performance

More information

Alcator C-Mod Ion Cyclotron Antenna Performance

Alcator C-Mod Ion Cyclotron Antenna Performance FT/-6 Alcator C-Mod Ion Cyclotron Antenna Performance S.J. Wukitch, T. Graves, Y. Lin, B. Lipschultz, A. Parisot, M. Reinke, P.T. Bonoli, M. Porkolab, I.H. Hutchinson, E. Marmar, and the Alcator C-Mod

More information

Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod

Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod S. G. Baek, T. Shinya*, G. M. Wallace, S. Shiraiwa, R. R. Parker, Y. Takase*, D. Brunner MIT Plasma Science

More information

PSFC/JA RF-Plasma Edge Interactions and Their Impact on ICRF Antenna Performance in Alcator C-Mod

PSFC/JA RF-Plasma Edge Interactions and Their Impact on ICRF Antenna Performance in Alcator C-Mod PSFC/JA-06-14 RF-Plasma Edge Interactions and Their Impact on ICRF Antenna Performance in Alcator C-Mod S.J. Wukitch, Y. Lin, T. Graves, A. Parisot and the C-Mod Team MIT Plasma Science and Fusion Center,

More information

SOL Reflectometer for Alcator C-Mod

SOL Reflectometer for Alcator C-Mod Alcator C-Mod SOL Reflectometer for Alcator C-Mod C. Lau 1 G. Hanson 2, J. B. Wilgen 2, Y. Lin 1, G. Wallace 1, and S. J. Wukitch 1 1 MIT Plasma Science and Fusion Center, Cambridge, MA 02139 2 Oak Ridge

More information

ICRF Physics in KSTAR Steady State

ICRF Physics in KSTAR Steady State ICRF Physics in KSTAR Steady State Operation (focused on the base line operation) Oct. 24, 2005 Jong-gu Kwak on the behalf of KSTAR ICRF TEAM Korea Atomic Energy Research Institute Contents Roles of ICRF

More information

Status of the rf Current Drive Systems on MST

Status of the rf Current Drive Systems on MST Status of the rf Current Drive Systems on MST John A. Goetz for A. Almagri, J.K. Anderson, D.R. Burke, M.M. Clark, W.A. Cox, C.B. Forest, R. Ganch, M.C. Kaufman, J.G. Kulpin, P. Nonn, R. O Connell, S.P.

More information

Development Status of KSTAR LHCD System

Development Status of KSTAR LHCD System Development Status of KSTAR LHCD System September 24, 2004 Y. S. Bae,, M. H. Cho, W. Namkung Plasma Sheath Lab. Department of Physics, Pohang University of Science and Technology LHCD system overview Objectives

More information

Design and commissioning of a novel LHCD launcher on Alcator C-Mod

Design and commissioning of a novel LHCD launcher on Alcator C-Mod FTP/P6-4 Design and commissioning of a novel LHCD launcher on Alcator C-Mod S. Shiraiwa, O. Meneghini, W. Beck, J. Doody, P. MacGibbon, J. Irby, D. Johnson, P. Koert, C. Lau, R. R. Parker, D. Terry, R.

More information

First Results From the Alcator C-Mod Lower Hybrid Experiment.

First Results From the Alcator C-Mod Lower Hybrid Experiment. First Results From the Alcator C-Mod Lower Hybrid Experiment. R. Parker 1, N. Basse 1, W. Beck 1, S. Bernabei 2, R. Childs 1, N. Greenough 2, M. Grimes 1, D. Gwinn 1, J. Hosea 2, J. Irby 1, D. Johnson

More information

Advanced Tokamak Program and Lower Hybrid Experiment. Ron Parker MIT Plasma Science and Fusion Center

Advanced Tokamak Program and Lower Hybrid Experiment. Ron Parker MIT Plasma Science and Fusion Center Advanced Tokamak Program and Lower Hybrid Experiment Ron Parker MIT Plasma Science and Fusion Center Alcator C-Mod Program Advisory Meeting 23-24 February 2004 Main Goals of the Alcator C-Mod AT Program

More information

ICRF-Edge and Surface Interactions

ICRF-Edge and Surface Interactions ICRF-Edge and Surface Interactions D. A. D Ippolito and J. R. Myra Lodestar Research Corporation Presented at the 19 th PSI Meeting, San Diego, CA, May 24-28, 2009 Introduction Heating and current drive

More information

System Upgrades to the DIII-D Facility

System Upgrades to the DIII-D Facility System Upgrades to the DIII-D Facility A.G. Kellman for the DIII-D Team 24th Symposium on Fusion Technology Warsaw, Poland September 11-15, 2006 Upgrades Performed During the Long Torus Opening (LTOA)

More information

GA A22577 AN ELM-RESILIENT RF ARC DETECTION SYSTEM FOR DIII D BASED ON ELECTROMAGNETIC AND SOUND EMISSIONS FROM THE ARC

GA A22577 AN ELM-RESILIENT RF ARC DETECTION SYSTEM FOR DIII D BASED ON ELECTROMAGNETIC AND SOUND EMISSIONS FROM THE ARC GA A22577 AN ELM-RESILIENT RF ARC DETECTION SYSTEM FOR DIII D BASED ON ELECTROMAGNETIC AND SOUND EMISSIONS FROM THE ARC by D.A. PHELPS APRIL 1997 This report was prepared as an account of work sponsored

More information

Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod

Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod N. Tsujii, M. Porkolab, E.M. Edlund, L. Lin, Y. Lin, J.C. Wright, S.J. Wukitch MIT Plasma Science and Fusion Center

More information

Novel Vacuum Vessel & Coil System Design for the Advanced Divertor Experiment (ADX)

Novel Vacuum Vessel & Coil System Design for the Advanced Divertor Experiment (ADX) Novel Vacuum Vessel & Coil System Design for the Advanced Divertor Experiment (ADX) R.F. Vieira, J. Doody, W.K. Beck, L. Zhou, R. Leccacorvi, B. LaBombard, R.S. Granetz, S.M. Wolfe, J.H. Irby, S.J. Wukitch,

More information

Importance of edge physics in optimizing ICRF performance

Importance of edge physics in optimizing ICRF performance Importance of edge physics in optimizing ICRF performance D. A. D'Ippolito and J. R. Myra Research Corp., Boulder, CO Acknowledgements D. A. Russell, M. D. Carter, RF SciDAC Team Presented at the ECC Workshop

More information

Measurement of Mode Converted ICRF Waves with Phase Contrast Imaging and Comparison with Full-wave Simulations on Alcator C-Mod

Measurement of Mode Converted ICRF Waves with Phase Contrast Imaging and Comparison with Full-wave Simulations on Alcator C-Mod Measurement of Mode Converted ICRF Waves with Phase Contrast Imaging and Comparison with Full-wave Simulations on Alcator C-Mod N. Tsujii 1, M. Porkolab 1, P.T. Bonoli 1, Y. Lin 1, J.C. Wright 1, S.J.

More information

Fast Ferrite ICRF Matching System in Alcator C-Mod*

Fast Ferrite ICRF Matching System in Alcator C-Mod* Poster QP-00053, 48 th APS-DPP Annua Meeting, Phiadephia, PA, 006 Fast Ferrite ICRF Matching System in Acator C-Mod*. Lin, A. Binus, A. Parisot, S. Wukitch and the Acator C-Mod team MIT, Pasma Science

More information

High Field Side Lower Hybrid Current Drive Launcher Design for DIII-D

High Field Side Lower Hybrid Current Drive Launcher Design for DIII-D High Field Side Lower Hybrid Current Drive Launcher Design for DIII-D by G.M. Wallace (MIT PSFC) Presented at the American Physical Society Division of Plasma Physics Annual Meeting October 23, 2017 On

More information

Status Alcator C-Mod Engineering Systems. DoE Quarterly Review October 27, 2005

Status Alcator C-Mod Engineering Systems. DoE Quarterly Review October 27, 2005 Status Alcator C-Mod Engineering Systems DoE Quarterly Review October 27, 2005 1 Outline Run campaign Up-to-Air Machine Status Lower Hybrid Cryopump Tungsten Tiles Schedule/Plans 2 FY2005 Run Campaign

More information

ICRF antenna matching systems with ferrite tuners for the Alcator C-Mod tokamak

ICRF antenna matching systems with ferrite tuners for the Alcator C-Mod tokamak ICRF antenna matching systems with ferrite tuners for the Alcator C-Mod tokamak The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Design of an ICRF Fast Matching System on Alcator C-Mod

Design of an ICRF Fast Matching System on Alcator C-Mod PSFC/RR-04-2 DOE-ET-54512-350 Design of an ICRF Fast Matching System on Alcator C-Mod A. Parisot September 2004 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139

More information

P. Koert, P. MacGibbon, R. Vieira, D. Terry, R.Leccacorvi, J. Doody, W. Beck. October 2008

P. Koert, P. MacGibbon, R. Vieira, D. Terry, R.Leccacorvi, J. Doody, W. Beck. October 2008 PSFC/JA-08-50 WAVEGUIDE SPLITTER FOR LOWER HYBRID CURRENT DRIVE P. Koert, P. MacGibbon, R. Vieira, D. Terry, R.Leccacorvi, J. Doody, W. Beck October 2008 Plasma Science and Fusion Center Massachusetts

More information

RF, Disruption and Thermal Analyses of EAST Antennas*

RF, Disruption and Thermal Analyses of EAST Antennas* RF, Disruption and Thermal Analyses of EAST Antennas* L. Zhou, W.K. Beck, P. Koert, J. Doody, R.F. Vieira, S.J. Wukitch, R.S. Granetz, and J.H. Irby Plasma Science and Fusion Center (PSFC) Massachusetts

More information

3.10 Lower Hybrid Current Drive (LHCD) System

3.10 Lower Hybrid Current Drive (LHCD) System 3.10 Lower Hybrid Current Drive (LHCD) System KUANG Guangli SHAN Jiafang 3.10.1 Purpose of LHCD program 3.10.1.1 Introduction Lower hybrid waves are quasi-static electric waves propagated in magnetically

More information

GA A22583 FAST WAVE ANTENNA ARRAY FEED CIRCUITS TOLERANT OF TIME-VARYING LOADING FOR DIII D

GA A22583 FAST WAVE ANTENNA ARRAY FEED CIRCUITS TOLERANT OF TIME-VARYING LOADING FOR DIII D GA A22583 TOLERANT OF TIME-VARYING LOADING FOR DIII D by R.I. PINSKER, C.P. MOELLER, J.S. degrassie, D.A. PHELPS, C.C. PETTY, R.W. CALLIS, and F.W. BAITY APRIL 1997 This report was prepared as an account

More information

Initial Active MHD Spectroscopy Experiments Exciting Stable Alfvén Eigenmodes in Alcator C-Mod

Initial Active MHD Spectroscopy Experiments Exciting Stable Alfvén Eigenmodes in Alcator C-Mod PSFC/JA-03-26 Initial Active MHD Spectroscopy Experiments Exciting Stable Alfvén Eigenmodes in Alcator C-Mod J.A. Snipes, D. Schmittdiel, A. Fasoli*, R.S. Granetz, R.R. Parker 16 December 2003 Plasma Science

More information

Structural Analysis of High-field-Side RF antennas during a disruption on the Advanced Divertor experiment (ADX)

Structural Analysis of High-field-Side RF antennas during a disruption on the Advanced Divertor experiment (ADX) Structural Analysis of High-field-Side RF antennas during a disruption on the Advanced Divertor experiment (ADX) J. Doody, B. LaBombard, R. Leccacorvi, S. Shiraiwa, R. Vieira, G.M. Wallace, S.J. Wukitch,

More information

Detection of Lower Hybrid Waves on Alcator C-Mod with Phase Contrast Imaging Using Electro-Optic Modulators

Detection of Lower Hybrid Waves on Alcator C-Mod with Phase Contrast Imaging Using Electro-Optic Modulators Detection of Lower Hybrid Waves on Alcator C-Mod with Phase Contrast Imaging Using Electro-Optic Modulators K. Arai, M. Porkolab, N. Tsujii, P. Koert, R. Parker, P. Woskov, S. Wukitch MIT Plasma Science

More information

ICRF Mode Conversion Physics in Alcator C-Mod: Experimental Measurements and Modeling

ICRF Mode Conversion Physics in Alcator C-Mod: Experimental Measurements and Modeling Work supported by the US DOE ICRF Mode Conversion Physics in Alcator C-Mod: Experimental Measurements and Modeling S.J. Wukitch Presented at the 46th Annual Meeting of the Division of Plasma Physics November

More information

Facilities and Upgrades PAC Presented by Jim Irby for the C-Mod Group

Facilities and Upgrades PAC Presented by Jim Irby for the C-Mod Group Facilities and Upgrades PAC 2010 Presented by Jim Irby for the C-Mod Group Outline Machine History and Status Alternator/Machine 2009 run campaign 2010 run campaign Availability Chart Contributions to

More information

ICRF-Edge and Surface Interactions

ICRF-Edge and Surface Interactions ICRF-Edge and Surface Interactions D. A. D Ippolito and J. R. Myra Lodestar Research Corporation Presented at the ReNeW Taming the Plasma Material Interface Workshop, UCLA, March 4-5, 2009 Introduction

More information

Wall Conditioning Strategy for Wendelstein7-X. H.P. Laqua, D. Hartmann, M. Otte, D. Aßmus

Wall Conditioning Strategy for Wendelstein7-X. H.P. Laqua, D. Hartmann, M. Otte, D. Aßmus Wall Conditioning Strategy for Wendelstein7-X H.P. Laqua, D. Hartmann, M. Otte, D. Aßmus 1 Outline 1. Physics background 2. Experience from different experiments (LHD, Wega. Tore Supra) 3. Strategy for

More information

3D modeling of toroidal asymmetry due to localized divertor nitrogen puffing on Alcator C-Mod

3D modeling of toroidal asymmetry due to localized divertor nitrogen puffing on Alcator C-Mod 3D modeling of toroidal asymmetry due to localized divertor nitrogen puffing on Alcator C-Mod J.D. Lore 1, M.L. Reinke 2, B. LaBombard 2, B. Lipschultz 3, R. Pitts 4 1 Oak Ridge National Laboratory, Oak

More information

Real-time Fast Ferrite ICRF Tuning System on the Alcator C-Mod Tokamak

Real-time Fast Ferrite ICRF Tuning System on the Alcator C-Mod Tokamak PSFC/JA-08-26 Real-time Fast Ferrite ICRF Tuning System on the Alcator C-Mod Tokamak Lin, Y., Binus, A., Wukitch, S. J. August 2008 Plasma Science and Fusion Center Massachusetts Institute of Technology

More information

High Power Antenna Design for Lower Hybrid Current Drive in MST

High Power Antenna Design for Lower Hybrid Current Drive in MST High Power Antenna Design for Lower Hybrid Current Drive in MST M.A. Thomas, J.A. Goetz, M.C. Kaufman, S.P. Oliva University of WisconsinMadison J.B.O. Caughman, P.M. Ryan Oak Ridge National Laboratory

More information

Initial Results from the C-Mod Prototype Polarimeter/Interferometer

Initial Results from the C-Mod Prototype Polarimeter/Interferometer Initial Results from the C-Mod Prototype Polarimeter/Interferometer K. R. Smith, J. Irby, R. Leccacorvi, E. Marmar, R. Murray, R. Vieira October 24-28, 2005 APS-DPP Conference 1 Abstract An FIR interferometer-polarimeter

More information

RF, Disruption and Thermal Analyses of EAST Antennas*

RF, Disruption and Thermal Analyses of EAST Antennas* RF, Disruption and Thermal Analyses of EAST Antennas* L. Zhou, W.K. Beck, P. Koert, J. Doody, R.F. Vieira, S.J. Wukitch, R.S. Granetz, and J.H. Irby Plasma Science and Fusion Center (PSFC) Massachusetts

More information

ICRF mode conversion in three-ion species heating experiment and in flow drive experiment on the Alcator C- Mod tokamak

ICRF mode conversion in three-ion species heating experiment and in flow drive experiment on the Alcator C- Mod tokamak ICRF mode conversion in three-ion species heating experiment and in flow drive experiment on the Alcator C- Mod tokamak The MIT Faculty has made this article openly available. Please share how this access

More information

Status of C-Mod Diagnostics. Presented by Jim Irby For the C-Mod Group

Status of C-Mod Diagnostics. Presented by Jim Irby For the C-Mod Group Status of C-Mod Diagnostics Presented by Jim Irby For the C-Mod Group Outline Diagnostic Availability Selected Diagnostics PAC 2009 PAC 2009 Diagnostic Availability UCLA Polarimetry Dual FIR lasers operational

More information

Alcator C-Mod Second Quarter FY07 DoE Review

Alcator C-Mod Second Quarter FY07 DoE Review Alcator C-Mod Second Quarter FY07 DoE Review May 7, 2007 Facility status: Jim Irby ICRF status: Earl Marmar (for Steve Wukitch) Cryopump status: Brian LaBombard LHRF status: Ron Parker Research campaign

More information

Research Thrust for Reliable Plasma Heating and Current Drive using ICRF

Research Thrust for Reliable Plasma Heating and Current Drive using ICRF Research Thrust for Reliable Plasma Heating and Current Drive using ICRF J.B.O. Caughman, D.A. Rasmussen, L.A. Berry, R.H. Goulding, D.L. Hillis, P.M. Ryan, and L. Snead (ORNL), R.I. Pinsker (General Atomics),

More information

Resonant and Non-resonant type Pre-ionization and Current Ramp-up Experiments on Tokamak Aditya in the Ion Cyclotron Frequency Range

Resonant and Non-resonant type Pre-ionization and Current Ramp-up Experiments on Tokamak Aditya in the Ion Cyclotron Frequency Range Resonant and Non-resonant type Pre-ionization and Current Ramp-up Experiments on Tokamak Aditya in the Ion Cyclotron Frequency Range S.V. Kulkarni, Kishore Mishra, Sunil Kumar, Y.S.S. Srinivas, H.M. Jadav,

More information

Magnetics and Power System Upgrades for the Pegasus-U Experiment

Magnetics and Power System Upgrades for the Pegasus-U Experiment Magnetics and Power System Upgrades for the Pegasus-U Experiment R.C. Preston, M.W. Bongard, R.J. Fonck, and B.T. Lewicki 56 th Annual Meeting of the APS Division of Plasma Physics University of Wisconsin-Madison

More information

ICRF Operation with Improved Antennas in a Full W-wall ASDEX Upgrade, Status and Developments

ICRF Operation with Improved Antennas in a Full W-wall ASDEX Upgrade, Status and Developments 1 EX/P5-19 ICRF Operation with Improved Antennas in a Full W-wall ASDEX Upgrade, Status and Developments V. Bobkov 1*, M. Balden 1, F. Braun 1, R. Dux 1, A. Herrmann 1, H. Faugel 1, H. Fünfgelder 1, L.

More information

Poloidal Transport Asymmetries, Edge Plasma Flows and Toroidal Rotation in Alcator C-Mod

Poloidal Transport Asymmetries, Edge Plasma Flows and Toroidal Rotation in Alcator C-Mod Poloidal Transport Asymmetries, Edge Plasma Flows and Toroidal Rotation in B. LaBombard, J.E. Rice, A.E. Hubbard, J.W. Hughes, M. Greenwald, J. Irby, Y. Lin, B. Lipschultz, E.S. Marmar, K. Marr, C.S. Pitcher,

More information

Electromagnetic Field Simulation for ICRF Antenna and Comparison with Experimental Results in LHD

Electromagnetic Field Simulation for ICRF Antenna and Comparison with Experimental Results in LHD Electromagnetic Field Simulation for ICRF Antenna and Comparison with Experimental Results in LHD Takashi MUTOH, Hiroshi KASAHARA, Tetsuo SEKI, Kenji SAITO, Ryuhei KUMAZAWA, Fujio SHIMPO and Goro NOMURA

More information

GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING

GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING by G.L. JACKSON, M.E. AUSTIN, J.S. degrassie, J. LOHR, C.P. MOELLER, and R. PRATER JULY

More information

Upper Divertor Cryopump Quarterly Progress Report Presented by B. LaBombard for the Cryopump Team July 26, 2007

Upper Divertor Cryopump Quarterly Progress Report Presented by B. LaBombard for the Cryopump Team July 26, 2007 Alcator C-Mod Upper Divertor Cryopump Quarterly Progress Report Presented by B. LaBombard for the Cryopump Team July 6, 7 Recent Accomplishments Alcator C-Mod Pumping Slots Gas Baffle Gas Cuffs (for laser

More information

Launcher Study for KSTAR 5 GHz LHCD System*

Launcher Study for KSTAR 5 GHz LHCD System* Launcher Study for KSTAR 5 GHz LHCD System* Joint Workshop on RF Heating and Current Drive in Fusion Plasmas October 24, 2005 Pohang Accelerator Laboratory, Pohang Y. S. Bae, M. H. Cho, W. Namkung Department

More information

Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak

Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak 1 Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak C. Xiao 1), J. Morelli 1), A.K. Singh 1, 2), O. Mitarai 3), T. Asai 1), A. Hirose 1) 1) Department of Physics and

More information

6 - Stage Marx Generator

6 - Stage Marx Generator 6 - Stage Marx Generator Specifications - 6-stage Marx generator has two capacitors per stage for the total of twelve capacitors - Each capacitor has 90 nf with the rating of 75 kv - Charging voltage used

More information

Structure and Characteristics of the Quasi-Coherent Mode

Structure and Characteristics of the Quasi-Coherent Mode Structure and Characteristics of the Quasi-Coherent Mode in EDA H-mode Plasmas I. Cziegler, J. L. Terry, L. Lin, M. Porkolab,J. A. Snipes MIT Plasma Science and Fusion Center American Physical Society

More information

A Modular Commercial Tokamak Reactor with Day Long Pulses

A Modular Commercial Tokamak Reactor with Day Long Pulses PFC/JA-82-217 A Modular Commercial Tokamak Reactor with Day Long Pulses L. Bromberg, D.R. Cohn, and J.E. C. Williams Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Journal of Fusion

More information

Abstract. G.D. Garstka 47 th APS-DPP Denver October 27, Pegasus Toroidal Experiment University of Wisconsin-Madison

Abstract. G.D. Garstka 47 th APS-DPP Denver October 27, Pegasus Toroidal Experiment University of Wisconsin-Madison Abstract The PEGASUS Toroidal Experiment provides an attractive opportunity for investigating the physics and implementation of electron Bernstein wave (EBW) heating and current drive in an overdense ST

More information

Heating Issues. G.Granucci on behalf of the project team

Heating Issues. G.Granucci on behalf of the project team Heating Issues G.Granucci on behalf of the project team EURO fusion DTT Workshop Frascati, Italy, 19-20 June 2017 Summary Physical Requirements DTT Heating Mix ECRH System ICRH System Auxiliary Heating

More information

AN ELM=RESlLlENT RF ARC DETECTION SYSTEM FOR DIII-D BASED ON ELECTROMAGNETIC AND SOUND EMISSIONS FROM THE ARC

AN ELM=RESlLlENT RF ARC DETECTION SYSTEM FOR DIII-D BASED ON ELECTROMAGNETIC AND SOUND EMISSIONS FROM THE ARC @*r\lf--4.74/oa--/3 GA-A22577 AN ELM=RESlLlENT RF ARC DETECTON SYSTEM FOR D-D BASED ON ELECTROMAGNETC AND SOUND EMSSONS FROM THE ARC by D.A. PHELPS Dcmtnt JnON OF THfS DOCUMENT S UNLM APRL 1997 GENERAL

More information

Gyung-Su Lee National Fusion R & D Center Korea Basic Science Institute

Gyung-Su Lee National Fusion R & D Center Korea Basic Science Institute Status of the KSTAR Project and Fusion Research in Korea Gyung-Su Lee National Fusion R & D Center Korea Basic Science Institute Fusion Research Activities and Plan in Korea Basic Plasma and Fusion Research

More information

Real-time Systems in Tokamak Devices. A case study: the JET Tokamak May 25, 2010

Real-time Systems in Tokamak Devices. A case study: the JET Tokamak May 25, 2010 Real-time Systems in Tokamak Devices. A case study: the JET Tokamak May 25, 2010 May 25, 2010-17 th Real-Time Conference, Lisbon 1 D. Alves 2 T. Bellizio 1 R. Felton 3 A. C. Neto 2 F. Sartori 4 R. Vitelli

More information

Upgrade of the ICRF Fault and Control Systems On Alcator C-Mod

Upgrade of the ICRF Fault and Control Systems On Alcator C-Mod PSFC/JA-09-16 Upgrade of the ICRF Fault and Control Systems On Alcator C-Mod R. Murray, A. Kanojia, W. Burke, D. Terry, A. Binus, S. Wukitch, Y. Lin, W. Parkin June 2009 Plasma Science and Fusion Center

More information

Active Control for Stabilization of Neoclassical Tearing Modes

Active Control for Stabilization of Neoclassical Tearing Modes Active Control for Stabilization of Neoclassical Tearing Modes Presented by D.A. Humphreys General Atomics 47th APS-DPP Meeting Denver, Colorado October 24 28, 2005 Control of NTM s is an Important Objective

More information

Profile Scan Studies on the Levitated Dipole Experiment

Profile Scan Studies on the Levitated Dipole Experiment Profile Scan Studies on the Levitated Dipole Experiment Columbia University A.K. Hansen, D.T. Garnier, M.E. Mauel, E.E. Ortiz Columbia University J. Kesner, A.C. Boxer, J.E. Ellsworth, I. Karim, S. Mahar,

More information

Performance of the Prototype NLC RF Phase and Timing Distribution System *

Performance of the Prototype NLC RF Phase and Timing Distribution System * SLAC PUB 8458 June 2000 Performance of the Prototype NLC RF Phase and Timing Distribution System * Josef Frisch, David G. Brown, Eugene Cisneros Stanford Linear Accelerator Center, Stanford University,

More information

High Performance Computing for Plasma Control

High Performance Computing for Plasma Control High Performance Computing for Plasma Control L.Giannone, R.Fischer, J.C.Fuchs, K.Lackner, P.J.McCarthy, A.Scarabosio, W.Treutterer, T.Eich, A.Kallenbach, M.Maraschek, A.Mlynek, G.Neu, R.Preuss, M.Reich,

More information

Improvements in the fast vertical control systems in KSTAR, EAST, NSTX and NSTX-U

Improvements in the fast vertical control systems in KSTAR, EAST, NSTX and NSTX-U 1 PPC/P8-17 Improvements in the fast vertical control systems in KSTAR, EAST, NSTX and NSTX-U D. Mueller 1, N.W. Eidietis 2, D. A. Gates 1, S. Gerhardt 1, S.H. Hahn 3, E. Kolemen 1, L. Liu 5, J. Menard

More information

Varying Electron Cyclotron Resonance Heating to Modify Confinement on the Levitated Dipole Experiment

Varying Electron Cyclotron Resonance Heating to Modify Confinement on the Levitated Dipole Experiment Varying Electron Cyclotron Resonance Heating to Modify Confinement on the Levitated Dipole Experiment Columbia University A.K. Hansen, D.T. Garnier, M.E. Mauel, E.E. Ortiz Columbia University J. Kesner,

More information

Design study for JT-60SA ECRF system and the latest results of JT-60U ECRF system

Design study for JT-60SA ECRF system and the latest results of JT-60U ECRF system Japan-Korea : Workshop on Physics of Wave Heating and Current Drive, NFRI, Daejon, Korea, Jan. 14-15, 2008 R F &LHRF& ECRF ICRF JT - 60 JT-60 RF group Japan Atomic Energy Agency Design study for JT-60SA

More information

GA A22574 ADVANTAGES OF TRAVELING WAVE RESONANT ANTENNAS FOR FAST WAVE HEATING SYSTEMS

GA A22574 ADVANTAGES OF TRAVELING WAVE RESONANT ANTENNAS FOR FAST WAVE HEATING SYSTEMS GA A22574 ADVANTAGES OF TRAVELING WAVE RESONANT ANTENNAS by D.A. PHELPS, F.W. BAITY, R.W. CALLIS, J.S. degrassie, C.P. MOELLER, and R.I. PINSKER APRIL 1997 This report was prepared as an account of work

More information

Abstract. *Supported by U.S. DoE grant No. DE-FG02-96ER Pegasus Toroidal Experiment University of Wisconsin-Madison

Abstract. *Supported by U.S. DoE grant No. DE-FG02-96ER Pegasus Toroidal Experiment University of Wisconsin-Madison Abstract The Pegasus Facility is studying Extremely-Low-Aspect Ratio Tokamak (ELART) plasmas, accessing high-β plasmas. A 60 Turn Toroidal Field bundle in the centerstack limited rod currents to

More information

HIGH POWER HELICON ANTENNA DESIGN FOR DIII-D. R.C. O NEILL General Atomics San Diego, California, USA

HIGH POWER HELICON ANTENNA DESIGN FOR DIII-D. R.C. O NEILL General Atomics San Diego, California, USA HIGH POWER HELICON ANTENNA DESIGN FOR DIII-D R.C. O NEILL General Atomics San Diego, California, USA Email: oneill@fusion.gat.com M.W. BROOKMAN, J.S. DEGRASSIE, B. FISHLER, H. GRUNLOH, M. LESHER, C.P.

More information

Recent Results on RFX-mod control experiments in RFP and tokamak configuration

Recent Results on RFX-mod control experiments in RFP and tokamak configuration Recent Results on RFX-mod control experiments in RFP and tokamak configuration L.Marrelli Summarizing contributions by M.Baruzzo, T.Bolzonella, R.Cavazzana, Y. In, G.Marchiori, P.Martin, E.Martines, M.Okabayashi,

More information

Technical Readiness Level For Plasma Control

Technical Readiness Level For Plasma Control Technical Readiness Level For Plasma Control PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION A.D. Turnbull, General Atomics ARIES Team Meeting University of Wisconsin, Madison,

More information

The Coaxial Multipactor Experiment (CMX): A facility for investigating multipactor discharges

The Coaxial Multipactor Experiment (CMX): A facility for investigating multipactor discharges PSFC/JA-05-28 The Coaxial Multipactor Experiment (CMX): A facility for investigating multipactor discharges T. P. Graves, B. LaBombard, S. J. Wukitch, and I.H. Hutchinson 31 October 2005 Plasma Science

More information

Faster, Hotter MHD-Driven Jets Using RF Pre-Ionization

Faster, Hotter MHD-Driven Jets Using RF Pre-Ionization Faster, Hotter MHD-Driven Jets Using RF Pre-Ionization V. H. Chaplin, P. M. Bellan, and H. V. Willett 1 1) University of Cambridge, United Kingdom; work completed as a Summer Undergraduate Research Fellow

More information

National Fusion Research Institute. Pohang, Korea, December 14-16,

National Fusion Research Institute. Pohang, Korea, December 14-16, Korea-Japan Workshop on Physics and Technology of Heating and Current Drive Hyunho Wi, Haejin Kim, Sonjong Wang, and Jong-gu Kwak National Fusion Research Institute Pohang, Korea, December 14-16, 2016

More information

Toroidal Rotation and Ion Temperature Validations in KSTAR Plasmas

Toroidal Rotation and Ion Temperature Validations in KSTAR Plasmas Toroidal Rotation and Ion Temperature Validations in KSTAR Plasmas S. G. Lee 1, H. H. Lee 1, W. H. Ko 1, J. W. Yoo 2, on behalf of the KSTAR team and collaborators 1 NFRI, Daejeon, Korea 2 UST, Daejeon,

More information

Next Generation Space Atomic Clock Space Communications and Navigation (SCaN) Technology

Next Generation Space Atomic Clock Space Communications and Navigation (SCaN) Technology Next Generation Space Atomic Clock Space Communications and Navigation (SCaN) Technology John D. Prestage- 1 Next Generation Space Atomic Clock!! Hg Ion Clock Technology was selected as NASA OCT TDM!!

More information

Improved core transport triggered by off-axis ECRH switch-off on the HL-2A tokamak

Improved core transport triggered by off-axis ECRH switch-off on the HL-2A tokamak Improved core transport triggered by off-axis switch-off on the HL-2A tokamak Z. B. Shi, Y. Liu, H. J. Sun, Y. B. Dong, X. T. Ding, A. P. Sun, Y. G. Li, Z. W. Xia, W. Li, W.W. Xiao, Y. Zhou, J. Zhou, J.

More information

Investigation of ion toroidal rotation induced by Lower Hybrid waves in Alcator C-Mod * using integrated numerical codes

Investigation of ion toroidal rotation induced by Lower Hybrid waves in Alcator C-Mod * using integrated numerical codes Investigation of ion toroidal rotation induced by Lower Hybrid waves in Alcator C-Mod * using integrated numerical codes J.P. Lee 1, J.C. Wright 1, P.T. Bonoli 1, R.R. Parker 1, P.J. Catto 1, Y. Podpaly

More information

Developing Disruption Warning Algorithms Using Large Databases on Alcator C-Mod and EAST Tokamaks

Developing Disruption Warning Algorithms Using Large Databases on Alcator C-Mod and EAST Tokamaks Developing Disruption Warning Algorithms Using Large Databases on Alcator C-Mod and EAST Tokamaks R. Granetz 1, A. Tinguely 1, B. Wang 2, C. Rea 1, B. Xiao 2, Z.P. Luo 2 1) MIT Plasma Science and Fusion

More information

Upper limit on turbulent electron temperature fluctuations on Alcator C-Mod APS DPP Meeting Albuquerque 2003

Upper limit on turbulent electron temperature fluctuations on Alcator C-Mod APS DPP Meeting Albuquerque 2003 Upper limit on turbulent electron temperature fluctuations on Alcator C-Mod APS DPP Meeting Albuquerque 2003 Christopher Watts, Y. In (U. Idaho), A.E. Hubbard (MIT PSFC) R. Gandy (U. Southern Mississippi),

More information

J.Shafii, J.N. Talmadge, R.J. Vernon, HSX team HSX Plasma Laboratory, University of Wisconsin-Madison T. S. Bigelow, ORNL K.M.

J.Shafii, J.N. Talmadge, R.J. Vernon, HSX team HSX Plasma Laboratory, University of Wisconsin-Madison T. S. Bigelow, ORNL K.M. J.Shafii, J.N. Talmadge, R.J. Vernon, HSX team HSX Plasma Laboratory, University of Wisconsin-Madison T. S. Bigelow, ORNL K.M. Likin, Fusion Division, CIEMAT Outline Abstract HSX ECH system Introduction

More information

Alcator C-Mod ICRF Research Program

Alcator C-Mod ICRF Research Program Alcator C-Mod ICRF Research Program MIT Plasma Science and Fusion Center February 4-6, 2009 S.J. Wukitch Overall Themes 1. Develop ICRF heating and flow/current drive actuators for optimization i i of

More information

Lightning Protection. Wisconsin Broadcasters Association Broadcasters Clinic. 14 th October 2009 Jeff Welton Regional Sales Manager, Central U.S.

Lightning Protection. Wisconsin Broadcasters Association Broadcasters Clinic. 14 th October 2009 Jeff Welton Regional Sales Manager, Central U.S. Lightning Protection Wisconsin Broadcasters Association Broadcasters Clinic 14 th October 2009 Jeff Welton Regional Sales Manager, Central U.S. Nautel Limited 2009 This presentation has been produced for

More information

Abstract. * Supported by U.S. D.O.E. Grant DE-FG02-96ER54375

Abstract. * Supported by U.S. D.O.E. Grant DE-FG02-96ER54375 Abstract The operational space of the will be significantly expanded by recent upgrades: shape and position control, increased and time variable toroidal field, increased ohmic flux, and loop voltage control.

More information

Study of the radio-frequency driven sheath in the ion cyclotron slow wave antennas

Study of the radio-frequency driven sheath in the ion cyclotron slow wave antennas Journal of Nuclear Materials 266±269 (1999) 969±974 Study of the radio-frequency driven sheath in the ion cyclotron slow wave antennas T. Imai *, H. Sawada, Y. Uesugi 1, S. Takamura Graduate School of

More information

Magnetic Reconnection and Ion Flows During Point Source Helicity Injection on the Pegasus Toroidal Experiment

Magnetic Reconnection and Ion Flows During Point Source Helicity Injection on the Pegasus Toroidal Experiment Magnetic Reconnection and Ion Flows During Point Source Helicity Injection on the Pegasus Toroidal Experiment M.G. Burke, R.J. Fonck, J.L. Barr, K.E. Thome, E.T. Hinson, M.W. Bongard, A.J. Redd, D.J. Schlossberg

More information

Levitated Dipole Experiment

Levitated Dipole Experiment Microwave Interferometer Density Diagnostic for the Levitated Dipole Experiment Columbia University A. Boxer, J. Kesner MIT PSFC M.E. Mauel, D.T. Garnier, A.K. Hansen, Columbia University Presented at

More information