Improvements in the fast vertical control systems in KSTAR, EAST, NSTX and NSTX-U

Size: px
Start display at page:

Download "Improvements in the fast vertical control systems in KSTAR, EAST, NSTX and NSTX-U"

Transcription

1 1 PPC/P8-17 Improvements in the fast vertical control systems in KSTAR, EAST, NSTX and NSTX-U D. Mueller 1, N.W. Eidietis 2, D. A. Gates 1, S. Gerhardt 1, S.H. Hahn 3, E. Kolemen 1, L. Liu 5, J. Menard 1, Y.S. Park 4, S.A. Sabbagh 4, S.W. Yoon 3, and B.J. Xiao 5 1 Princeton Plasma Physics Laboratory, Princeton Univ., Princeton, N.J , U.S.A. 2 General Atomics, San Diego, CA, , U.S.A. 3 National Fusion Research Institute, Daejon, Korea 4 Columbia University, New York, NY, 10027, U.S.A. 5 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei Anhui, China contact of main author: mueller@pppl.gov Abstract. The control of the vertical position in tokamak plasmas is essential for exploring the operational control space. In particular, the vertical control system must be capable of responding to transients as quickly as possible and controlling plasmas near the vertical stability limit. The design of the coils systems constrains the ultimate response frequency that is available, but in order to realize the potential of the coil design it is essential to have adequate diagnostics of the position and a feedback control system capable of that. 1. Introduction The realization of a wide variety of plasma shapes with varying plasma current density profiles places challenging demands on the vertical control system in a tokamak. In particular the bootstrap current scales quadratically with elongation at fixed normalized βn = βtab T /Ip where I p is the plasma current, B T is the toroidal field, and β T = P/(BT 2 /2µ0) and P is the volume averaged plasma pressure. The plasma elongation is controlled by the action of coils that generally act to produce a field shape with an index of curvature that becomes closer to vertical instability as the elongation is increased. In devices such as the Korean Superconducting Tokamak Advanced Research (KSTAR), The Experimental Advanced Superconducting Tokamak (EAST) and ITER, the superconducting coils are separated from the plasma by conducting structures that increase the response time of the plasma to changes in the coil currents. Fast control of the plasma vertical motion, essential for stable operation at high elongation and disruption avoidance, can be accomplished with coils internal to the vacuum vessel in these devices. Each of the four devices, NSTX, EAST, KSTAR and NSTX-U, uses its own version of the General Atomics (GA) plasma control system (PCS)[1],[2],[3],[4] to control the coil power supplies with feedback on plasma parameters. The shape control systems in these tokamaks are generally based upon equilibrium analysis that does not lend itself well to fast control and in particular cannot produce a reliable time derivative of the vertical position which is necessary for fast response. The simple analysis of standard integrated magnetic signals to

2 2 PPC/P8-17 Figure 1. The geometry of the EAST and KSTAR devices showing the locations of the control coils and the sensors discussed in the text. produce a vertical position (z) signal can be incapable of yielding a derivative term (dz/dt) with sufficient signal-to-noise ratio to be adequate for control. Furthermore, for the two existing superconducting tokamaks, the slow response of the plasma to the distant superconducting coils necessitates the introduction of coils internal to the vacuum vessel in order to provide faster control of vertical instabilities. 2. Discussion The difference of the signal from up-down symmetric pairs of voltage loops can be used to provide a better signal for the dz/dt in the PD control loop of z. The NSTX control system used the analog difference of a pair of voltage loops, with 2 khz low-pass filters to remove signals due to n=1 plasma instabilities, to provide the dz/dt signal. This signal was used in the control of the difference in the rectifier power supplies for up/down difference in a pair of outer PF coils. Use of this improved signal-to-noise ratio signal realized an improvement in vertical control that allowed elongation (κ) to be increased by about 0.2.[5] NSTX-U will have 6 pairs of voltage loops instrumented to provide dz/dt for feedback control. Use of the RMP saddle coils with 7 khz power supplies for vertical control will be tested for use in vertical control if the use of the slower rectifier supplies on the poloidal field coils proves inadequate at high elongation with high internal plasma inductance (li). Analysis of these signals indicate they will provide an excellent representation of dz/dt for NSTX-U.[6] The KSTAR control system uses coils internal to the vacuum vessel to provide control of vertical instabilities and has instrumented 2 pairs of voltage loops, whose positions are indicated in Figure 1, to provide a fast dz/dt that have better signal to noise than the derivative of signals derived from flux loops or Mirnov coils as can be seen in Figure 2. Relay feedback[7] was used to optimize the vertical PD control gains. The use of the voltage loop

3 3 PPC/P8-17 Figure 2. The derivative of the fast z signal derived from integrated magnetics sensors shown in black is exhibits much more noise that the dz/dt term from the difference in a pair of up-down symmetric voltage loops shown in blue. pairs in the control system has been successfully tested, and proven to have better signal to noise ratio than is provided by the derivative of integrated signals. Insufficient operational experience exists so far to quantify the expansion of the available operational space with the improved control response. The EAST control system has similarly been modified to include two pairs of loop voltage difference signals as indicated in Figure 1. Furthermore, the internal coil power supply has been modified to use voltage control rather than current control for faster response. The improvement in the signal to noise ratio for dz/dt based on the loop voltage pairs compared that derived from the derivative of the z position derived from the integrated magnetics is shown in Figure 3. Figure 3. EAST data showing the dz/dt signal derived from the loop voltage signals compared to that from the derivative of z derived from the integrated magnetics signals.

4 4 PPC/P8-17 Figure 4. Comparison of plasma current, elongation, IVC current, feedback terms and z position in KSTAR as a function of time for two discharges. In shot 8870 shown in black, the z reference in the IVC control loop was zero. For shot 8872, the z-position reference was adjusted beginning at 3 s to achieve IVC current ~0 and z p ~ 0 after 4 s in plasmas with otherwise identical control. The implications of this discrepancy is discussed in the text. In each device, the ability of the fast vertical control is affected by the slower shape control so the target values for the fast and slow control should be compatible in order to provide good control. In Figure 4 an example of a DND plasma in KSTAR for which the z request in the fast control loop was adjusted to match the z provided by the slower shape control is shown in blue. This results in more symmetrical plasma with higher kappa than the discharge shown in black without such an adjustment. Small differences in the vertical position derived from simple, but fast systems demanded for vertical control and that derived from the shape based on real-time equilibrium analysis (rtefit)[8] used for control of the superconducting coils are almost unavoidable. If that difference exceeds some value, the internal coils will be controlled to their maximum value and the fast control response will be lost. A remedy for this conflict is to employ a high-pass fast filter on the error in the z measurement, the target value minus the measurement, used in the control of the internal coils. This solution uses the fast internal coil response to operate only on the high frequency vertical movement of the plasma while the slower superconducting coils control slower motion. This avoids the necessity of empirically tuning the z reference from shot-to-shot as agreement between the z signal and the shape control changes.

5 5 PPC/P8-17 Figure 5. The plasma vertical motion was ramped by controlling DRSEP shown in the second frame which permitted zp to be ramped 0.1 m while maintaining fast vertical stability and avoided large current in the internal coil (IC). This remedy has been employed in the EAST PCS system and has proved reliable to avoid saturation of the internal coil current while providing fast vertical control. The high-pass filter used in the EAST discharge shown in Figure 5 maintained stable control of the fast motion of the plasma while keeping the internal coil s current near zero while the shape control of DRSEP was used to move the plasma vertical position under control of the superconducting coils. 3. Summary Use of the voltage loop-based sensors for dz/dt in NSTX, KSTAR and EAST was successful in improving the signal to noise ratio of dz/dt used for vertical control and allowed operation closer to the vertical stability limit with an increase in achievable elongation in NSTX of 0.2. Use of multiple loop voltage pairs on NSTX-U will be commissioned in upcoming experimental campaigns. The use of a high-pass filter in the fast control loop was successful in both the superconducting tokamaks to eliminate the contention between control from the internal coils and the slower, but more powerful superconducting PF coils while maintaining control of fast transients with the internal coils. 4. Acknowledgements This research was supported by U.S. DOE contract DE-AC02-09CH11466.

6 6 PPC/P8-17 References: [1] FERRON, J.R., et al., A flexible software architecture for tokamak discharge control systems, Proc. Of the 16th IEEE/NPSS Symposium on Fusion Engineering, Champaign, IL Vol. 2, (1995) 870. [2] GATES, D., et al., Control system development plan for the National Spherical Torus Experiment, IEEE Trans. Nucl. Sci., 47, (2000) 222. [3] XAIO, B.J., et al., EAST plasma control system, Fusion Engineering and Design 83 (2008) , doi: /j.fusengdes [4] HAHN, S.H., et al., Plasma control system for Day-One operation of KSTAR tokamak, Fusion Engineering and Design 84 (2009) , doi: /j.fusengdes [5] GATES, D.A., et al., Progress towards steady state on NSTX, Nucl. Fusion 46 (2006) S22-S28, doi: / /46/3/s04. [6] GERHARDT, S.P., et al., Magnetics For Equilibrium Reconstruction and Realtime Plasma Control in NSTX-Upgrade, Review of Scientific Instruments 20th Topical Conference Proceedings on High-Temperature Plasma Diagnostics (2014) (in press). [7] HAHN, S.H., et al., Progress and improvement of KSTAR plasma control using model-based control simulators, Fusion Engineering and Design 89 (2014) [8] FERRON, J.R., et al., Real time equilibrium reconstruction for tokamak discharge control, Nucl. Fusion 38 (1998)

DIII-D INTEGRATED PLASMA CONTROL TOOLS APPLIED TO NEXT GENERATION TOKAMAKS

DIII-D INTEGRATED PLASMA CONTROL TOOLS APPLIED TO NEXT GENERATION TOKAMAKS GA-A776 by J.A. LEUER, R.D. DERANIAN, J.R. FERRON, D.A. HUMPHREYS, R.D. JOHNSON, B.G. PENAFLOR, M.L. WALKER, A.S. WELANDER, D. GATES, R. HATCHER, J. MENARD, D. MUELLER, G. McARDLE, J. STORRS, B. WAN, Y.

More information

Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas

Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas Holger Reimerdes With A.M. Garofalo, 1 E.J. Strait, 1 R.J. Buttery, 2 M.S. Chu, 1 Y. In, 3 G.L. Jackson,

More information

DEVELOPMENT OF MULTIVARIABLE CONTROL TECHNIQUES FOR USE WITH THE DIII D PLASMA CONTROL SYSTEM

DEVELOPMENT OF MULTIVARIABLE CONTROL TECHNIQUES FOR USE WITH THE DIII D PLASMA CONTROL SYSTEM GA A23151 DEVELOPMENT OF MULTIVARIABLE CONTROL TECHNIQUES FOR USE WITH THE DIII D PLASMA CONTROL SYSTEM MILESTONE NO. 127 by M.L. WALKER, D.A. HUMPHREYS, J.A. LEUER, and J.R. FERRON JUNE 1999 This report

More information

Increased Stable Beta in DIII D by Suppression of a Neoclassical Tearing Mode Using Electron Cyclotron Current Drive and Active Feedback

Increased Stable Beta in DIII D by Suppression of a Neoclassical Tearing Mode Using Electron Cyclotron Current Drive and Active Feedback 1 EX/S1-3 Increased Stable Beta in DIII D by Suppression of a Neoclassical Tearing Mode Using Electron Cyclotron Current Drive and Active Feedback R.J. La Haye, 1 D.A. Humphreys, 1 J. Lohr, 1 T.C. Luce,

More information

Active Control for Stabilization of Neoclassical Tearing Modes

Active Control for Stabilization of Neoclassical Tearing Modes Active Control for Stabilization of Neoclassical Tearing Modes Presented by D.A. Humphreys General Atomics 47th APS-DPP Meeting Denver, Colorado October 24 28, 2005 Control of NTM s is an Important Objective

More information

Technical Readiness Level For Plasma Control

Technical Readiness Level For Plasma Control Technical Readiness Level For Plasma Control PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION A.D. Turnbull, General Atomics ARIES Team Meeting University of Wisconsin, Madison,

More information

NTM Suppression and Avoidance at DIII-D Using Real-time Mirror Steering of ECCD

NTM Suppression and Avoidance at DIII-D Using Real-time Mirror Steering of ECCD NTM Suppression and Avoidance at DIII-D Using Real-time Mirror Steering of ECCD Egemen Kolemen 1, N.W. Eidietis 2, R. Ellis 1, D.A. Humphreys 2, R.J. La Haye 2, J. Lohr 2, S. Noraky 2, B.G. Penaflor 2,

More information

Profile Scan Studies on the Levitated Dipole Experiment

Profile Scan Studies on the Levitated Dipole Experiment Profile Scan Studies on the Levitated Dipole Experiment Columbia University A.K. Hansen, D.T. Garnier, M.E. Mauel, E.E. Ortiz Columbia University J. Kesner, A.C. Boxer, J.E. Ellsworth, I. Karim, S. Mahar,

More information

GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING

GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING by G.L. JACKSON, M.E. AUSTIN, J.S. degrassie, J. LOHR, C.P. MOELLER, and R. PRATER JULY

More information

Error Fields Expected in ITER and their Correction

Error Fields Expected in ITER and their Correction 1 ITR/P5-9 Error Fields Expected in ITER and their Correction Y. Gribov 1, V. Amoskov, E. Lamzin, N. Maximenkova, J. E. Menard 3, J.-K. Park 3, V. Belyakov, J. Knaster 1, S. Sytchevsky 1 ITER Organization,

More information

3D-MAPTOR Code for Computation of Magnetic Fields in Tokamaks

3D-MAPTOR Code for Computation of Magnetic Fields in Tokamaks 3D-MAPTOR Code for Computation of Magnetic Fields in Tokamaks J. Julio E. Herrera-Velázquez 1), Esteban Chávez-Alaercón 2) 1) Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México

More information

Gyung-Su Lee National Fusion R & D Center Korea Basic Science Institute

Gyung-Su Lee National Fusion R & D Center Korea Basic Science Institute Status of the KSTAR Project and Fusion Research in Korea Gyung-Su Lee National Fusion R & D Center Korea Basic Science Institute Fusion Research Activities and Plan in Korea Basic Plasma and Fusion Research

More information

Presented by Rob La Haye. on behalf of Francesco Volpe. at the 4 th IAEA-TM on ECRH for ITER

Presented by Rob La Haye. on behalf of Francesco Volpe. at the 4 th IAEA-TM on ECRH for ITER Locked Neoclassical Tearing Mode Control on DIII-D by ECCD and Magnetic Perturbations Presented by Rob La Haye General Atomics, San Diego (USA) on behalf of Francesco Volpe Max-Planck Gesellschaft (Germany)

More information

ICRF Physics in KSTAR Steady State

ICRF Physics in KSTAR Steady State ICRF Physics in KSTAR Steady State Operation (focused on the base line operation) Oct. 24, 2005 Jong-gu Kwak on the behalf of KSTAR ICRF TEAM Korea Atomic Energy Research Institute Contents Roles of ICRF

More information

GA A22338 A HYBRID DIGITAL-ANALOG LONG PULSE INTEGRATOR

GA A22338 A HYBRID DIGITAL-ANALOG LONG PULSE INTEGRATOR GA A22338 A HYBRID DIGITAL-ANALOG LONG PULSE INTEGRATOR by E.J. STRAIT, J.D. BROESCH, R.T. SNIDER, and M.L. WALKER MAY 1996 GA A22338 A HYBRID DIGITAL-ANALOG LONG PULSE INTEGRATOR by E.J. STRAIT, J.D.

More information

H. Y. Lee, J. W. Lee, J. G. Jo, J. Y. Park, S. C. Kim, J. I. Wang, J. Y. Jang, S. H. Kim, Y. S. Na, Y. S. Hwang

H. Y. Lee, J. W. Lee, J. G. Jo, J. Y. Park, S. C. Kim, J. I. Wang, J. Y. Jang, S. H. Kim, Y. S. Na, Y. S. Hwang Study on EBW assisted start-up and heating experiments via direct XB mode conversion from low field side injection in VEST H. Y. Lee, J. W. Lee, J. G. Jo, J. Y. Park, S. C. Kim, J. I. Wang, J. Y. Jang,

More information

Real-time Systems in Tokamak Devices. A case study: the JET Tokamak May 25, 2010

Real-time Systems in Tokamak Devices. A case study: the JET Tokamak May 25, 2010 Real-time Systems in Tokamak Devices. A case study: the JET Tokamak May 25, 2010 May 25, 2010-17 th Real-Time Conference, Lisbon 1 D. Alves 2 T. Bellizio 1 R. Felton 3 A. C. Neto 2 F. Sartori 4 R. Vitelli

More information

Plasma Confinement by Pressure of Rotating Magnetic Field in Toroidal Device

Plasma Confinement by Pressure of Rotating Magnetic Field in Toroidal Device 1 ICC/P5-41 Plasma Confinement by Pressure of Rotating Magnetic Field in Toroidal Device V. Svidzinski 1 1 FAR-TECH, Inc., San Diego, USA Corresponding Author: svidzinski@far-tech.com Abstract: Plasma

More information

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas Z. Yan1, G.R. McKee1, R.J. Groebner2, P.B. Snyder2, T.H. Osborne2, M.N.A. Beurskens3, K.H. Burrell2, T.E. Evans2, R.A. Moyer4, H. Reimerdes5

More information

PLASMA STUDIES AT HIGH NORMALIZED CURRENT IN THE PEGASUS EXPERIMENT

PLASMA STUDIES AT HIGH NORMALIZED CURRENT IN THE PEGASUS EXPERIMENT PLASMA STUDIES AT HIGH NORMALIZED CURRENT IN THE PEGASUS EXPERIMENT for the PEGASUS team: D. Battaglia M. Bongard S. Burke N. Eideitis G. Garstka M. Kozar B. Lewicki E. Unterberg Raymond.J. Fonck presented

More information

2. Composing and characteristics of EAST

2. Composing and characteristics of EAST Overview Progress and Future Plan of EAST project Yuanxi Wan, Jiangang Li, Peide Weng and EAST, GA, PPPL team Institute of Plasma Physics, Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031

More information

GA A27238 MEASUREMENT OF DEUTERIUM ION TOROIDAL ROTATION AND COMPARISON TO NEOCLASSICAL THEORY IN THE DIII-D TOKAMAK

GA A27238 MEASUREMENT OF DEUTERIUM ION TOROIDAL ROTATION AND COMPARISON TO NEOCLASSICAL THEORY IN THE DIII-D TOKAMAK GA A27238 MEASUREMENT OF DEUTERIUM ION TOROIDAL ROTATION AND COMPARISON TO NEOCLASSICAL THEORY IN THE DIII-D TOKAMAK by B.A. GRIERSON, K.H. BURRELL, W.W. HEIDBRINK, N.A. PABLANT and W.M. SOLOMON APRIL

More information

Recent Results on RFX-mod control experiments in RFP and tokamak configuration

Recent Results on RFX-mod control experiments in RFP and tokamak configuration Recent Results on RFX-mod control experiments in RFP and tokamak configuration L.Marrelli Summarizing contributions by M.Baruzzo, T.Bolzonella, R.Cavazzana, Y. In, G.Marchiori, P.Martin, E.Martines, M.Okabayashi,

More information

Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak

Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak 1 Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak C. Xiao 1), J. Morelli 1), A.K. Singh 1, 2), O. Mitarai 3), T. Asai 1), A. Hirose 1) 1) Department of Physics and

More information

Task on the evaluation of the plasma response to the ITER ELM stabilization coils in ITER H- mode operational scenarios. Technical Specifications

Task on the evaluation of the plasma response to the ITER ELM stabilization coils in ITER H- mode operational scenarios. Technical Specifications Task on the evaluation of the plasma response to the ITER ELM stabilization coils in ITER H- mode operational scenarios Technical Specifications Version 1 Date: 28/07/2011 Name Affiliation Author G. Huijsmans

More information

Effect of electrode biasing on m/n=2/1 tearing modes in J-TEXT experiments

Effect of electrode biasing on m/n=2/1 tearing modes in J-TEXT experiments Effect of electrode biasing on m/n=2/1 tearing modes in J-TEXT experiments Hai Liu 1, Qiming Hu 1, a, Zhipeng Chen 1, a, Q. Yu 2, Lizhi Zhu 1, Zhifeng Cheng 1, Ge Zhuang 1 and Zhongyong Chen 1 1 State

More information

Magnetics and Power System Upgrades for the Pegasus-U Experiment

Magnetics and Power System Upgrades for the Pegasus-U Experiment Magnetics and Power System Upgrades for the Pegasus-U Experiment R.C. Preston, M.W. Bongard, R.J. Fonck, and B.T. Lewicki 56 th Annual Meeting of the APS Division of Plasma Physics University of Wisconsin-Madison

More information

3.4 Poloidal Field Power Supply Systems for the EAST Steady State Superconducting Tokamak

3.4 Poloidal Field Power Supply Systems for the EAST Steady State Superconducting Tokamak 3.4 Poloidal Field Power Supply Systems for the EAST Steady State Superconducting Tokamak FU Peng 3.4.1 Introduction The EAST superconducting tokamak is an advanced steady state experimental device being

More information

Overview of ICRF Experiments on Alcator C-Mod*

Overview of ICRF Experiments on Alcator C-Mod* 49 th annual APS-DPP meeting, Orlando, FL, Nov. 2007 Overview of ICRF Experiments on Alcator C-Mod* Y. Lin, S. J. Wukitch, W. Beck, A. Binus, P. Koert, A. Parisot, M. Reinke and the Alcator C-Mod team

More information

High-Resolution Detection and 3D Magnetic Control of the Helical Boundary of a Wall-Stabilized Tokamak Plasma

High-Resolution Detection and 3D Magnetic Control of the Helical Boundary of a Wall-Stabilized Tokamak Plasma 1 EX/P4-19 High-Resolution Detection and 3D Magnetic Control of the Helical Boundary of a Wall-Stabilized Tokamak Plasma J. P. Levesque, N. Rath, D. Shiraki, S. Angelini, J. Bialek, P. Byrne, B. DeBono,

More information

Developing Disruption Warning Algorithms Using Large Databases on Alcator C-Mod and EAST Tokamaks

Developing Disruption Warning Algorithms Using Large Databases on Alcator C-Mod and EAST Tokamaks Developing Disruption Warning Algorithms Using Large Databases on Alcator C-Mod and EAST Tokamaks R. Granetz 1, A. Tinguely 1, B. Wang 2, C. Rea 1, B. Xiao 2, Z.P. Luo 2 1) MIT Plasma Science and Fusion

More information

Local Helicity Injection Startup and Edge Stability Studies in the Pegasus Toroidal Experiment

Local Helicity Injection Startup and Edge Stability Studies in the Pegasus Toroidal Experiment 1 EX/P4-36 Local Helicity Injection Startup and Edge Stability Studies in the Pegasus Toroidal Experiment A.J. Redd, J.L. Barr, M.W. Bongard, M.G. Burke, R.J. Fonck, E.T. Hinson, D.J. Schlossberg, and

More information

The Compact Toroidal Hybrid A university scale fusion experiment. Greg Hartwell

The Compact Toroidal Hybrid A university scale fusion experiment. Greg Hartwell The Compact Toroidal Hybrid A university scale fusion experiment Greg Hartwell Plasma Physics Workshop, SMF-PPD, Universidad National Autónoma México, October 12-14, 2016 CTH Team and Collaborators CTH

More information

System Upgrades to the DIII-D Facility

System Upgrades to the DIII-D Facility System Upgrades to the DIII-D Facility A.G. Kellman for the DIII-D Team 24th Symposium on Fusion Technology Warsaw, Poland September 11-15, 2006 Upgrades Performed During the Long Torus Opening (LTOA)

More information

Abstract. heating with a HHFW RF system has begun. This system supplies bulk T(e) heating with

Abstract. heating with a HHFW RF system has begun. This system supplies bulk T(e) heating with Abstract Present experimental campaigns on the are concerned with accessing q- and β-limits in an ultra-low aspect ratio plasma. To date, Pegasus plasma are heated only with an OH solenoid, but an additional

More information

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison Abstract Extensive new capabilities have been installed on the Pegasus ST facility. The laboratory has been completely reconfigured to separate all power systems from the main hall. Data acquisition, control,

More information

Microwave Experiments on Prairie View Rotamak

Microwave Experiments on Prairie View Rotamak Microwave Experiments on Prairie View Rotamak R. J. Zhou,, M. Xu, and Tian-Sen Huang ) Prairie View A&M University, Prairie View, Texas 776, USA ) Institute of Plasma Physics, Chinese Academy of Sciences,

More information

EX/P9-5. Comprehensive Control of Resistive Wall Modes in DIII-D Advanced Tokamak Plasmas

EX/P9-5. Comprehensive Control of Resistive Wall Modes in DIII-D Advanced Tokamak Plasmas Comprehensive Control of Resistive Wall Modes in DIII-D Advanced Tokamak Plasmas M. Okabayashi 1), I.N. Bogatu 2), T. Bolzonella 3) M.S. Chance 1), M.S. Chu 4), A.M. Garofalo 4), R. Hatcher 1), Y. In 2),

More information

Study of Elliptical Polarization Requirement of KSTAR 84-GHz ECH System

Study of Elliptical Polarization Requirement of KSTAR 84-GHz ECH System Journal of the Korean Physical Society, Vol. 49, December 2006, pp. S201 S205 Study of Elliptical Polarization Requirement of KSTAR 84-GHz ECH System Jinhyun Jeong, Youngsoon Bae, Moohyun Cho and Won Namkung

More information

GA A26865 PEDESTAL TURBULENCE DYNAMICS IN ELMING AND ELM-FREE H-MODE PLASMAS

GA A26865 PEDESTAL TURBULENCE DYNAMICS IN ELMING AND ELM-FREE H-MODE PLASMAS GA A26865 PEDESTAL TURBULENCE DYNAMICS IN ELMING AND ELM-FREE H-MODE PLASMAS by Z. YAN, G.R. McKEE, R.J. GROEBNER, P.B. SNYDER, T.H. OSBORNE, M.N.A. BEURSKENS, K.H. BURRELL, T.E. EVANS, R.A. MOYER, H.

More information

RWM control on EXTRAP T2R using various controller configurations.

RWM control on EXTRAP T2R using various controller configurations. RWM control on EXTRAP T2R using various controller configurations. See reference [1] for details of material in this presentation P R Brunsell, K E J Olofsson, L Frassinetti, J R Drake Div. of Fusion Plasma

More information

DESIGN OF INTEGRATOR SYSTEM FOR PLASMA REACTOR USING CADENCE

DESIGN OF INTEGRATOR SYSTEM FOR PLASMA REACTOR USING CADENCE DESIGN OF INTEGRATOR SYSTEM FOR PLASMA REACTOR USING CADENCE S.ANJANEYULU 1, M.KRISHNA THULASI 2, P. NAGAVENI 3, U.LAKSHMI DEVI 4, V.HIMAJA 5 1Lecturer, Dept. of ECE, S.K.U College of Engineering & Technology

More information

Contributions of Advanced Design Activities to Fusion Research

Contributions of Advanced Design Activities to Fusion Research Contributions of Advanced Design Activities to Fusion Research Farrokh Najmabadi University of California San Diego Presentation to: VLT PAC Meeting February 24, 2003 General Atomics Electronic copy: http://aries.ucsd.edu/najmabadi/talks/

More information

Initial Active MHD Spectroscopy Experiments Exciting Stable Alfvén Eigenmodes in Alcator C-Mod

Initial Active MHD Spectroscopy Experiments Exciting Stable Alfvén Eigenmodes in Alcator C-Mod PSFC/JA-03-26 Initial Active MHD Spectroscopy Experiments Exciting Stable Alfvén Eigenmodes in Alcator C-Mod J.A. Snipes, D. Schmittdiel, A. Fasoli*, R.S. Granetz, R.R. Parker 16 December 2003 Plasma Science

More information

Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team Plasma Physics Laboratory University of Saskatchewan

Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team Plasma Physics Laboratory University of Saskatchewan Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team (chijin.xiao@usask.ca) Plasma Physics Laboratory University of Saskatchewan 1 \ STOR-M Experiments Improved confinement induced by

More information

GA A25824 A NEW OVERCURRENT PROTECTION SYSTEM FOR THE DIII-D FIELD SHAPING COILS

GA A25824 A NEW OVERCURRENT PROTECTION SYSTEM FOR THE DIII-D FIELD SHAPING COILS GA A25824 A NEW OVERCURRENT PROTECTION SYSTEM FOR THE DIII-D FIELD SHAPING COILS by D.H. KELLMAN and T.M. DETERLY JUNE 2007 DISCLAIMER This report was prepared as an account of work sponsored by an agency

More information

Conceptual Design of Magnetic Island Divertor in the J-TEXT tokamak

Conceptual Design of Magnetic Island Divertor in the J-TEXT tokamak The 2 nd IAEA Technical Meeting on Divertor Concepts, 13 to 16 November, 2017, Suzhou China Conceptual Design of Magnetic Island Divertor in the J-TEXT tokamak Bo Rao 1, Yonghua Ding 1, Song Zhou 1, Nengchao

More information

Design study for JT-60SA ECRF system and the latest results of JT-60U ECRF system

Design study for JT-60SA ECRF system and the latest results of JT-60U ECRF system Japan-Korea : Workshop on Physics of Wave Heating and Current Drive, NFRI, Daejon, Korea, Jan. 14-15, 2008 R F &LHRF& ECRF ICRF JT - 60 JT-60 RF group Japan Atomic Energy Agency Design study for JT-60SA

More information

Interdependence of Magnetic Islands, Halo Current and Runaway Electrons in T-10 Tokamak

Interdependence of Magnetic Islands, Halo Current and Runaway Electrons in T-10 Tokamak IAEA-CN-77/EXP2/02 Interdependence of Magnetic Islands, Halo Current and Runaway Electrons in T-10 Tokamak N.V. Ivanov, A.M. Kakurin, V.A. Kochin, P.E. Kovrov, I.I. Orlovski, Yu.D.Pavlov, V.V. Volkov Nuclear

More information

Non-inductive Production of Extremely Overdense Spherical Tokamak Plasma by Electron Bernstein Wave Excited via O-X-B Method in LATE

Non-inductive Production of Extremely Overdense Spherical Tokamak Plasma by Electron Bernstein Wave Excited via O-X-B Method in LATE 1 EXW/P4-4 Non-inductive Production of Extremely Overdense Spherical Tokamak Plasma by Electron Bernstein Wave Excited via O-X-B Method in LATE H. Tanaka, M. Uchida, T. Maekawa, K. Kuroda, Y. Nozawa, A.

More information

Status and Plan for VEST

Status and Plan for VEST Status and Plan for VEST Y.S. Hwang and VEST team Nov. 6, 2015 Dept. of Nuclear Engineering Seoul National University 18 th International Spherical Torus Workshop, Nov. 2-6, 2015, Princeton, NJ, USA Status

More information

Supported by. Overview of Transient CHI Plasma Start-up in NSTX. Roger Raman University of Washington

Supported by. Overview of Transient CHI Plasma Start-up in NSTX. Roger Raman University of Washington NSTX Supported by Overview of Transient CHI Plasma Start-up in NSTX College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U

More information

EXW/10-2Ra. Avoidance of Disruptions at High β N in ASDEX Upgrade with Off-Axis ECRH

EXW/10-2Ra. Avoidance of Disruptions at High β N in ASDEX Upgrade with Off-Axis ECRH 1 EXW/1-2Ra Avoidance of Disruptions at High β N in ASDEX Upgrade with Off-Axis ECRH B. Esposito 1), G. Granucci 2), M. Maraschek 3), S. Nowak 2), A. Gude 3), V. Igochine 3), R. McDermott 3), E. oli 3),

More information

GA A22583 FAST WAVE ANTENNA ARRAY FEED CIRCUITS TOLERANT OF TIME-VARYING LOADING FOR DIII D

GA A22583 FAST WAVE ANTENNA ARRAY FEED CIRCUITS TOLERANT OF TIME-VARYING LOADING FOR DIII D GA A22583 TOLERANT OF TIME-VARYING LOADING FOR DIII D by R.I. PINSKER, C.P. MOELLER, J.S. degrassie, D.A. PHELPS, C.C. PETTY, R.W. CALLIS, and F.W. BAITY APRIL 1997 This report was prepared as an account

More information

2.3 PF System. WU Weiyue PF5 PF PF1

2.3 PF System. WU Weiyue PF5 PF PF1 2.3 PF System WU Weiyue 2.3.1 Introduction The poloidal field (PF) system consists of fourteen superconducting coils, including 6 pieces of central selenoid coils, 4 pieces of divertor coils and 4 pieces

More information

Development of C-Mod FIR Polarimeter*

Development of C-Mod FIR Polarimeter* Development of C-Mod FIR Polarimeter* P.XU, J.H.IRBY, J.BOSCO, A.KANOJIA, R.LECCACORVI, E.MARMAR, P.MICHAEL, R.MURRAY, R.VIEIRA, S.WOLFE (MIT) D.L.BROWER, W.X.DING (UCLA) D.K.MANSFIELD (PPPL) *Supported

More information

Abstract. * Supported by U.S. D.O.E. Grant DE-FG02-96ER54375

Abstract. * Supported by U.S. D.O.E. Grant DE-FG02-96ER54375 Abstract The operational space of the will be significantly expanded by recent upgrades: shape and position control, increased and time variable toroidal field, increased ohmic flux, and loop voltage control.

More information

GA A26495 PHYSICS OPERATIONS WITH THE DIII-D PLASMA CONTROL SYSTEM

GA A26495 PHYSICS OPERATIONS WITH THE DIII-D PLASMA CONTROL SYSTEM GA A26495 PHYSICS OPERATIONS WITH THE DIII-D PLASMA CONTROL SYSTEM by A.W. HYATT, J.R. FERRON, D.A. HUMPHREYS, F.R. CHAMBERLAIN, R.D. JOHNSON, B.G. PENAFLOR, D.A. PIGLOWSKI, J.T. SCOVILLE and M.L. WALKER

More information

Analysis of Short Circuit Fault for 4.6GHz/6MW LHCD High Voltage Power Supply

Analysis of Short Circuit Fault for 4.6GHz/6MW LHCD High Voltage Power Supply Journal of Electrical and Electronic Engineering 207; 5(4): 6-22 http://www.sciencepublishinggroup.com/j/jeee doi: 0.648/j.jeee.2070504.2 ISSN: 2329-63 (Print); ISSN: 2329-605 (Online) Analysis of Short

More information

Performance and Stability Limits at Near-Unity Aspect Ratio in the PEGASUS Toroidal Experiment

Performance and Stability Limits at Near-Unity Aspect Ratio in the PEGASUS Toroidal Experiment Performance and Stability Limits at Near-Unity Aspect Ratio in the R. Fonck, S. Diem, G. Garstka, M. Kissick, B. Lewicki, C. Ostrander, P. Probert, M. Reinke, A. Sontag, K. Tritz, E. Unterberg University

More information

Linear and Impulse Control Systems for Plasma Unstable Vertical Position in Elongated Tokamak

Linear and Impulse Control Systems for Plasma Unstable Vertical Position in Elongated Tokamak 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA Linear and Impulse Control Systems for Plasma Unstable Vertical Position in Elongated okamak Yuri V. Mitrishkin, Semyon

More information

A Design Study of Stable Coil Current Control Method for Back-to-Back Thyristor Converter in JT-60SA

A Design Study of Stable Coil Current Control Method for Back-to-Back Thyristor Converter in JT-60SA J. Plasma Fusion Res. SERIES, Vol. 9 (1) A Design Study of Stable Coil Current Control Method for Back-to-Back Thyristor Converter in JT-6SA Katsuhiro SHIMADA 1, Tsunehisa TERAKADO 1, Makoto MATSUKAWA

More information

Non-Solenoidal Startup via Local Helicity Injection and Edge Stability Studies in the Pegasus Toroidal Experiment

Non-Solenoidal Startup via Local Helicity Injection and Edge Stability Studies in the Pegasus Toroidal Experiment Non-Solenoidal Startup via Local Helicity Injection and Edge Stability Studies in the Pegasus Toroidal Experiment Raymond J. Fonck on behalf of the Pegasus Team 17 th International Spherical Torus Workshop

More information

To reach any of these experts, please contact Larry Bernard at (609) or

To reach any of these experts, please contact Larry Bernard at (609) or Need an Expert? Whether you re reporting on fusion energy or plasma science, or have questions about physics, chances are we have an expert you can interview. See inside for details on renowned experts

More information

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas 1 Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas Z. Yan 1), G.R. McKee 1), R.J. Groebner 2), P.B. Snyder 2), T.H. Osborne 2), M.N.A. Beurskens 3), K.H. Burrell 2), T.E. Evans 2), R.A.

More information

QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER*

QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER* QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER* P.N. Prakash and A.Roy Nuclear Science Centre, P.O.Box 10502, New Delhi 110 067, INDIA and K.W.Shepard Physics Division, Argonne National Laboratory,

More information

Investigation of compact toroid penetration for fuelling spherical tokamak plasmas on CPD

Investigation of compact toroid penetration for fuelling spherical tokamak plasmas on CPD 1 EX/P5-7 Investigation of compact toroid penetration for fuelling spherical tokamak plasmas on CPD N. Fukumoto 1), K. Hanada 2), S. Kawakami 2), S. Honma 2), M. Nagata 1), N. Nishino 3), H. Zushi 2),

More information

Overview and Initial Results of the ETE Spherical Tokamak

Overview and Initial Results of the ETE Spherical Tokamak Overview and Initial Results of the ETE Spherical Tokamak L.A. Berni, E. Del Bosco, J.G. Ferreira, G.O. Ludwig, R.M. Oliveira, C.S. Shibata, L.F.F.P.W. Barbosa, W.A. Vilela Instituto Nacional de Pesquisas

More information

Recent progress of 170 GHz Gyrotron in KSTAR

Recent progress of 170 GHz Gyrotron in KSTAR Recent progress of 170 GHz Gyrotron in KSTAR Japan-Korea Workshop on Physics and Technology of Heating and Current Drive Hanwha Resort, Haeundae, Busan, Korea January 28-30, 2013 J.H. Jeong, M. Joung,

More information

TOKAMAK T-15MD: experience of scientific and technical project realization in RUSSIA

TOKAMAK T-15MD: experience of scientific and technical project realization in RUSSIA TOKAMAK T-15MD: experience of scientific and technical project realization in RUSSIA Stage one: Physicists decided What tokamak is needed? Compact or medium size (Aspect ratio ~ 2 or ~3) Divertor configuration:

More information

Aaron Sontag, Oak Ridge National Lab

Aaron Sontag, Oak Ridge National Lab Supported by College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL

More information

Developing Disruption Warning Algorithms Using Large Databases on Alcator C-Mod, EAST, and DIII-D

Developing Disruption Warning Algorithms Using Large Databases on Alcator C-Mod, EAST, and DIII-D Developing Disruption Warning Algorithms Using Large Databases on Alcator C-Mod, EAST, and DIII-D R.S. Granetz, C. Rea, R.A. Tinguely, K. Montes MIT Plasma Science and Fusion Center, Cambridge, MA, US

More information

The ECH experiments in VEST(Versatile Experiment Spherical Torus)

The ECH experiments in VEST(Versatile Experiment Spherical Torus) The ECH experiments in VEST(Versatile Experiment Spherical Torus) January 28 th, 213 Hyunyeong Lee, Jong Gab Jo, Y. H. An, S. H. Kim, K. J. Chung and Y. S. Hwang NUPLEX, Dept. of Nuclear, Seoul National

More information

Simulation Studies of Field-Reversed Configurations with Rotating Magnetic Field Current Drive

Simulation Studies of Field-Reversed Configurations with Rotating Magnetic Field Current Drive Simulation Studies of Field-Reversed Configurations with Rotating Magnetic Field Current Drive E. V. Belova 1), R. C. Davidson 1), 1) Princeton University Plasma Physics Laboratory, Princeton NJ, USA E-mail:ebelova@pppl.gov

More information

Investigation of ion toroidal rotation induced by Lower Hybrid waves in Alcator C-Mod * using integrated numerical codes

Investigation of ion toroidal rotation induced by Lower Hybrid waves in Alcator C-Mod * using integrated numerical codes Investigation of ion toroidal rotation induced by Lower Hybrid waves in Alcator C-Mod * using integrated numerical codes J.P. Lee 1, J.C. Wright 1, P.T. Bonoli 1, R.R. Parker 1, P.J. Catto 1, Y. Podpaly

More information

Helicon Wave Current Drive in KSTAR Plasmas

Helicon Wave Current Drive in KSTAR Plasmas Daejeon Helicon Wave Current Drive in KSTAR Plasmas S. J. Wanga, H. J. Kima, Jeehyun Kima, V. Vdovinb, B. H. Parka, H. H. Wic, S. H. Kimd, and J. G. Kwaka anational Fusion Research Institute, Daejeon,

More information

Radio Frequency Current Drive for Small Aspect Ratio Tori

Radio Frequency Current Drive for Small Aspect Ratio Tori (?onlf-970+/0a- Radio Frequency Current Drive for Small Aspect Ratio Tori M.D. Carter, E.F. Jaeger, D.B. Batchelor, D.J. S&cMer, R. Majeski" Oak Ridge National Laboratoly, Oak Ridge, Tennessee 378314071

More information

Workshop on Active control of MHD Stability, Princeton, NJ, 6-8 Nov., RWM control in T2R. Per Brunsell

Workshop on Active control of MHD Stability, Princeton, NJ, 6-8 Nov., RWM control in T2R. Per Brunsell Workshop on Active control of MHD Stability, Princeton, NJ, 6-8 Nov., 2006 RWM control in T2R Per Brunsell P. R. Brunsell 1, J. R. Drake 1, D. Yadikin 1, D. Gregoratto 2, R. Paccagnella 2, Y. Q. Liu 3,

More information

Magnetic Reconnection and Ion Flows During Point Source Helicity Injection on the Pegasus Toroidal Experiment

Magnetic Reconnection and Ion Flows During Point Source Helicity Injection on the Pegasus Toroidal Experiment Magnetic Reconnection and Ion Flows During Point Source Helicity Injection on the Pegasus Toroidal Experiment M.G. Burke, R.J. Fonck, J.L. Barr, K.E. Thome, E.T. Hinson, M.W. Bongard, A.J. Redd, D.J. Schlossberg

More information

Improved core transport triggered by off-axis ECRH switch-off on the HL-2A tokamak

Improved core transport triggered by off-axis ECRH switch-off on the HL-2A tokamak Improved core transport triggered by off-axis switch-off on the HL-2A tokamak Z. B. Shi, Y. Liu, H. J. Sun, Y. B. Dong, X. T. Ding, A. P. Sun, Y. G. Li, Z. W. Xia, W. Li, W.W. Xiao, Y. Zhou, J. Zhou, J.

More information

KSTAR Construction and Commissioning

KSTAR Construction and Commissioning KSTAR Construction and Commissioning H. L. Yang, J. S. Bak, Y. S. Kim, Y. K. Oh, I. S. Whang, Y. S. Bae, Y. M. Park, K. W. Cho, Y. J. Kim, K. R. Park, W. C. Kim, M. K. Park, T. H. Ha and the KSTAR Team

More information

TOROIDAL ALFVÉN EIGENMODES

TOROIDAL ALFVÉN EIGENMODES TOROIDAL ALFVÉN EIGENMODES S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK OUTLINE OF LECTURE 4 Toroidicity induced frequency gaps and Toroidal

More information

Plasma Laboratory for Fusion Energy and Applications Costa Rica Institute of Technology Cartago, Costa Rica

Plasma Laboratory for Fusion Energy and Applications Costa Rica Institute of Technology Cartago, Costa Rica J. Mora*, V.I. Vargas, L.A. Araya-Solano, A.M. Rojas- Loaiza, I. Monge, J. F. Rojas, N. Piedra-Quesada and J.M. Arias-Brenes Plasma Laboratory for Fusion Energy and Applications Costa Rica Institute of

More information

SUPPRESSION OF NEOCLASSICAL TEARING MODES IN THE PRESENCE OF SAWTEETH INSTABILITIES BY RADIALLY LOCALIZED OFF-AXIS

SUPPRESSION OF NEOCLASSICAL TEARING MODES IN THE PRESENCE OF SAWTEETH INSTABILITIES BY RADIALLY LOCALIZED OFF-AXIS SUPPRESSION OF NEOCLASSICAL TEARING MODES IN THE PRESENCE OF SAWTEETH INSTABILITIES BY RADIALLY LOCALIZED OFF-AXIS ELECTRON CYCLOTRON CURRENT DRIVE IN THE TOKAMAK R.. LA HAYE,. LOHR, T.C. LUCE, C.C. PETTY,

More information

GA A24030 ECE RADIOMETER UPGRADE ON THE DIII D TOKAMAK

GA A24030 ECE RADIOMETER UPGRADE ON THE DIII D TOKAMAK GA A24030 ECE RADIOMETER UPGRADE ON THE DIII D TOKAMAK by M.E. AUSTIN, and J. LOHR AUGUST 2002 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government.

More information

Faster, Hotter MHD-Driven Jets Using RF Pre-Ionization

Faster, Hotter MHD-Driven Jets Using RF Pre-Ionization Faster, Hotter MHD-Driven Jets Using RF Pre-Ionization V. H. Chaplin, P. M. Bellan, and H. V. Willett 1 1) University of Cambridge, United Kingdom; work completed as a Summer Undergraduate Research Fellow

More information

Varying Electron Cyclotron Resonance Heating to Modify Confinement on the Levitated Dipole Experiment

Varying Electron Cyclotron Resonance Heating to Modify Confinement on the Levitated Dipole Experiment Varying Electron Cyclotron Resonance Heating to Modify Confinement on the Levitated Dipole Experiment Columbia University A.K. Hansen, D.T. Garnier, M.E. Mauel, E.E. Ortiz Columbia University J. Kesner,

More information

Magnetic System for the Upgraded Spherical Tokamak Globus-M2

Magnetic System for the Upgraded Spherical Tokamak Globus-M2 1 ICC/P1-01 Magnetic System for the Upgraded Spherical Tokamak Globus-M2 V.B. Minaev 1, V.K. Gusev 1, N.V. Sakharov 1, Yu.V. Petrov 1, E.N. Bondarchuk 2, A.F. Arneman 2, A.A. Kavin 2, N.M. Kozhukhovskaya

More information

RF Heating and Current Drive in the JT-60U Tokamak

RF Heating and Current Drive in the JT-60U Tokamak KPS Meeting, ct. 22 25, Chonju RF Heating and Current Drive in the JT-6U Tokamak presented by T. Fujii Japan Atomic Energy Agency Outline JT-6U 1. JT-6U Tokamak Device and its Objectives 2. LHRF Current

More information

GA A22712 DIII D ICRF HIGH VOLTAGE POWER SUPPLY REGULATOR UPGRADE

GA A22712 DIII D ICRF HIGH VOLTAGE POWER SUPPLY REGULATOR UPGRADE GA A22712 DIII D ICRF HIGH VOLTAGE POWER SUPPLY REGULATOR UPGRADE by W.P. CARY, B.L. BURLEY, and W.H. GROSNICKLE NOVEMBER 1997 DISCLAIMER This report was prepared as an account of work sponsored by an

More information

Sensitivity study for the optimization of the viewing chord arrangement of the ITER poloidal polarimeter

Sensitivity study for the optimization of the viewing chord arrangement of the ITER poloidal polarimeter P8-29 6th International Toki Conference, December 5-8, 26 Sensitivity study for the optimization of the viewing chord arrangement of the ITER poloidal polarimeter T. Yamaguchi, Y. Kawano and Y. Kusama

More information

High Performance Computing for Plasma Control

High Performance Computing for Plasma Control High Performance Computing for Plasma Control L.Giannone, R.Fischer, J.C.Fuchs, K.Lackner, P.J.McCarthy, A.Scarabosio, W.Treutterer, T.Eich, A.Kallenbach, M.Maraschek, A.Mlynek, G.Neu, R.Preuss, M.Reich,

More information

INITIAL RESULTS FROM THE MULTI-MEGAWATT 110 GHz ECH SYSTEM FOR THE DIII D TOKAMAK

INITIAL RESULTS FROM THE MULTI-MEGAWATT 110 GHz ECH SYSTEM FOR THE DIII D TOKAMAK GA A22576 INITIAL RESULTS FROM THE MULTI-MEGAWATT 110 GHz ECH SYSTEM by R.W. CALLIS, J. LOHR, R.C. O NEILL, D. PONCE, M.E. AUSTIN, T.C. LUCE, and R. PRATER APRIL 1997 This report was prepared as an account

More information

Recent Results on Coupling Fast Waves to High Performance Plasmas on DIII-D

Recent Results on Coupling Fast Waves to High Performance Plasmas on DIII-D Recent Results on Coupling Fast Waves to High Performance Plasmas on DIII-D The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

A NEW MULTI-POINT, MULTI-PULSE THOMSON SCATTERING SYSTEM FOR THE MST RFP

A NEW MULTI-POINT, MULTI-PULSE THOMSON SCATTERING SYSTEM FOR THE MST RFP A NEW MULTI-POINT, MULTI-PULSE THOMSON SCATTERING SYSTEM FOR THE MST RFP D. J. HOLLY, P. ANDREW, and D. J. DEN HARTOG Department of Physics, University of Wisconsin Madison, 1150 University Avenue, Madison,

More information

Experiments with real-time controlled ECW

Experiments with real-time controlled ECW Experiments with real-time controlled ECW on the TCV Tokamak Experiments with real-time controlled ECW on the TCV Tokamak S. Alberti 1, G. Arnoux 2, J. Berrino 1, Y.Camenen 1, S. Coda 1, B.P. Duval 1,

More information

Status Alcator C-Mod Engineering Systems. DoE Quarterly Review October 27, 2005

Status Alcator C-Mod Engineering Systems. DoE Quarterly Review October 27, 2005 Status Alcator C-Mod Engineering Systems DoE Quarterly Review October 27, 2005 1 Outline Run campaign Up-to-Air Machine Status Lower Hybrid Cryopump Tungsten Tiles Schedule/Plans 2 FY2005 Run Campaign

More information

GA A22577 AN ELM-RESILIENT RF ARC DETECTION SYSTEM FOR DIII D BASED ON ELECTROMAGNETIC AND SOUND EMISSIONS FROM THE ARC

GA A22577 AN ELM-RESILIENT RF ARC DETECTION SYSTEM FOR DIII D BASED ON ELECTROMAGNETIC AND SOUND EMISSIONS FROM THE ARC GA A22577 AN ELM-RESILIENT RF ARC DETECTION SYSTEM FOR DIII D BASED ON ELECTROMAGNETIC AND SOUND EMISSIONS FROM THE ARC by D.A. PHELPS APRIL 1997 This report was prepared as an account of work sponsored

More information

3.7 Grounding Design for EAST Superconducting Tokamak

3.7 Grounding Design for EAST Superconducting Tokamak 3.7 Design for EAST Superconducting Tokamak LIU Zhengzhi 3.7.1 Introduction system is a relevant part of the layout of Tokamak. It is important and indispensable for the system reliability and safety on

More information

3D modeling of toroidal asymmetry due to localized divertor nitrogen puffing on Alcator C-Mod

3D modeling of toroidal asymmetry due to localized divertor nitrogen puffing on Alcator C-Mod 3D modeling of toroidal asymmetry due to localized divertor nitrogen puffing on Alcator C-Mod J.D. Lore 1, M.L. Reinke 2, B. LaBombard 2, B. Lipschultz 3, R. Pitts 4 1 Oak Ridge National Laboratory, Oak

More information