RF Heating and Current Drive in the JT-60U Tokamak

Size: px
Start display at page:

Download "RF Heating and Current Drive in the JT-60U Tokamak"

Transcription

1 KPS Meeting, ct , Chonju RF Heating and Current Drive in the JT-6U Tokamak presented by T. Fujii Japan Atomic Energy Agency

2 Outline JT-6U 1. JT-6U Tokamak Device and its Objectives 2. LHRF Current Drive (1) Overview of the JT-6U LHRF system and its launchers (2) Performances of current profile control by LHCD 3. ECRF Heating and Current Drive (1) Development of the high power JT-6U ECRF system (2) Performances of local heating and current drive, especially for neoclassical tearing mode stabilization

3 JT-6U Objectives JT-6 Objectives JT-6U ITER Physics R&D Advanced Tokamak Concepts for ITER & DEMO ITER DEMO Reactor DEMO Reactor JT-6U NCT

4 JT-6U Device JT-6U Plasma Currents are generated inductively Major Radius 3.4m Minor Radius.9m Plasma Current 5MA Toroidal Field 4T

5 JT-6U Photo JT-6U

6 Inside Vacuum Vessel JT-6U

7 JT-6 Progress JT-6U High Performance High Efficiency Electron Heating Major Modification Year W-shaped Div. Fusion Gain Q DT eq JT-6 ('85~) lower-x ('88~) JT-6U ('91~) Plasma sustainment Time High beta sustainment time 5s 1s Break Even 15s ('97~) 1.25(WR) 65s 24s Long Pulse Ion Temperature Fusion Product Bootstrap Current Fraction Fusion Product (full noninductive CD) 1.5 E21 m-3skev (WR) 5.2x1 8 [deg.] (WR) 1.5 E21 m-3skev (WR) 8% 9% full noninductive Normalized Beta in Steady-state Electron Temperature NNB injection power (>3keV) EC injection power (11GHz) 3x1 8 [deg.] (WR) MW(D) (WR) 3MW (WR)

8 Goal : Steady-state High Integrated Performance JT-6U compact & economically attractive steady-state tokamak reactor Advanced Tokamak Development n high power density = high pressure = high β sufficient burning efficiency plasma current D T α α particle heating high confinement improvement high fuel purity high density full noninductive CD external CD: NB& RF high bootstrap fraction heat / particle high radiation reduced diverter heat flux particle exhaust

9 How to Drive Plasma Current in Steady-State JT-6U Active Method Radio Frequency Wave produces electron flow Bootstrap Current Spontaneously Produced by Pressure Gradient electron(-) pressure profile Plasma Current ion(+) Plasma Neutral Beam produces ion flow Only with the active CD methods in a Reactor -> P CD for full current drive ~ 4 MW -> circulating power of 7 MW is required (if the active CD system efficiency =6%) This value is too large (out put of commercial reactor ~ 1 MWe) -> High bootstrap fraction (7-8%) is required = SSTR concept bootstrap current Fraction of bootstrap current is proportional to poloidal beta value β p totally hollow current profile Reversed Shear (RS) Plasma Advanced Tokamak Concept Plasma profile control, such as a current profile and a pressure profile, is necessary to achieve high integrated performance

10 RF Systems as Actuators for Profile Control High power radio-frequency (RF) systems has been used as actuator for plasma profile control via plasma heating and CD together with the neutral beam injection (NBI) system In particular, the RF systems are applied for sustaining high performance plasmas or suppression of MHD instabilities by control of the plasma current profile RF Heating and CD Systems 1) LHRF : 2 GHz, 4 MW / 2 Launchers (current drive) 2) ECRF : 11 GHz, 3 MW / 2 Antennas (local heating & current drive) 3) ICRF : 12 MHz, 6 MW into Plasmas Torus Hall P-NB (95 kev, 2 MW) #9, 1 P-NB #13, 14 #11, 12 P-NB T-NB T-NB (5 kev, 11 MW) N-NB (42 kev, 6 MW) N-NB LHRF (8x4 M.J.) (P11) JT-6U ECRF (P18) ICRF (P11, 12) ECRF LHRF (4x2 M.J.) P-NB (P17) (P18) JT-6U #1, 2 P-NB #3, 4 #5, 6 P-NB T-NB #7, m Top view of heating an CD systems set in Torus Hall

11 LHRF Current Drive

12 Outline of the JT-6U LHRF System Frequency GHz Output at Klys. 1 MW Power into Plasma 4 MW Pulse duration 1 s 16 High Power Klystrons 2 Multi-Junction Launchers JT-6U Torus Hall P11 Launcher 8 x 4 M.J. (upper port) 8 x 4 W/G Lines (length ~ 1 m) #1 #2 #3 Amp. Room II Klystrons.6 MW x 1 s #8 P18 Launcher 4 x 2 M.J. (equatorial port) Dummy Loads #4 JT-6U 4 x 2 W/G Lines (length ~ 1 m) #8 Phase Shifter Amp. Room I

13 High Directivity Launcher Needed for Efficient LHCD JT-6U LHRF CD efficiency η CD r (directivity) if the power spectrum is relatively sharp A multi-junction launcher has higher directivity than the conventional one, however, it requires low reflection of < 1% (or good coupling) for power injection into plasmas Plasma Multi-Junction (M.J.) Launcher High Directivity φ M + φ φ M + 2φ φ M + 3φ φ 2φ 3φ º φ M 2 φ M Kly. 1 Kly. 2 Kly. 3-5 Power Spectrum from a Launcher Conventional Type of Launcher Plasma P(N // ) (a. u.) driving opposite currents -4-3 Low Directivity φ 1 φ 2 φ 3 φ sharp and lowered N // => more efficient CD not access. N // Kly. 1 Kly. 2 Kly. 3 Kly. 4 B T Geometrical Phase Shifters built in B T φ = φ i - φ i+1 Array of waveguides

14 Development of Multi-Junction Launchers for JT-6U 8 x 4 Multi-Junction Launcher 8-column x 4-row modules P (N // ) (a.u.) Jacket for bundling subwaveguides in a column (including phase shifter) N 2 gas cooling pipe CFC guard limiter standard w/g Wide Control of N // Spectrum º 2.2 GHz Directivity ~.9 18º 2 GHz φ M = 24º 1.74 GHz N // =.4 4 x 4 Multi-Junction Launcher For high power injection and simplified waveguide lines bellows 4-column x 4-row modules 65 P (N // ) (a.u.) GHz φ M = - 6º 12 subwaveguides in a column (including phase shifter) CFC guard limiter 3º 18º P JT-6U standard w/g oversized taper w/g Fairly Sharp N // Directivity ~.95 N =.2 // N // N //

15 Full-CD by Combined LHRF and N-NB in RS Plasmas JT-6U P NB (MW) 1 P LH 4 (MW).4 V.2 l (V) -.2 T e,i (kev) E37964,.9MA, 2.5T, deuterium N-NB P-NB LHRF 4 2 T e Ti time (s) LHCD (2 GHz) + N-NBCD (E b ~ 36keV) => V l ~V, βn ~ 2.2, βp ~ 2.1, T e ~ T i, q 95 = βn n e (1 19 m -3 ) T e,i (kev) V l (V) s MSE analysis T e T i 7.24s 7.24s ITB 6.15s foot.5 1 ρ full non-inductive CD T e, T i and n e ITBs expand

16 q j/q Profile Modification by External Current Drivers N-NBCD (+ P-NB) increases j => lower q however in ρ <.3, q is still high N-NBCD LHCD.6 Inner region ρ =.4 q time (s) s 6.15s.5 1 ρ Outer region LHCD j LH at just outside q-min expands ρ q-min => ITB expansion ρfoot The results are demonstrated with high f BS (62%) s.6.7 ρq-min JT-6U 7.24s

17 Development of Real-time Control of q(r) JT-6U Real-time evaluation of q(r) with MSE Change CD location by LHW phase difference φ MSE LH ρ CD q MSE φ ρ ref q ref q MSE E43167,t=12.s real-time calc. 1 eq. reconstruction ρ

18 q profile control was demonstrated JT-6U φ was controlled q(r) approached to the reference, and was sustained for 3s n e =.5x1 19 m -3 η CD ~1x1 19 A/W/m -2 q(r) control in high f BS and/or β N plasmas is a next target

19 ECRF Heating and Current Drive

20 Necessity of High Power ECRF System JT-6U B [arb.] Ip [MA] β N B [arb.] Performance was degraded by NTMs in High βp H-mode plasmas E29442 n=2(m=3) n=1(m=2) Ip=1.5, B t =3.7T, q 95 = time[s] 4 2 PNB [MW] Plasma performance at high β N was limited by MHD instabilities, especially neoclassical tearing modes (NTM), which appear locally in plasma middle region The NTM can be suppressed by driving currents only at its location A multi-mw ECRF system was needed, which can converge the ECRF beam on a spot of ~ 1 cm in diameter at plasma center and can scan it from plasma center to the edge

21 Outline of Developed JT-6U ECRF System JT-6U Frequency 11 GHz Power at gyrotrons 4 MW Power into Plasma 3 MW Pulse Duration 5 s Transmission Mode HE 11 Transmission Length ~ 6 m / line Transmission Efficiency 7-8 % Pressure in Lines Pa Antenna B Antenna A Torus Windows MOU #1 Gyrotrons (1MW each) #4 Main Power Supplies (6 kv, 65 A each) #2 Pumping #3 JT-6U Transmission Lines (31.75 mm Corrugated Waveguides, 9 Bends/line) Waveguide Acceleration Dummy Load Power Supplies (1 kv,.3 A each)

22 Expansion of the Gyrotron Operation Region Output of the JT-6U gyrotron can be increased with the beam current I C 1 MW (designed) at I C ~ 55 A to 1.2 MW at I C ~ 6 A by suppressing parasitic oscillation and adjusting the anode voltage JT-6U The anode voltage controller is also useful for power modulation and extension of the pulse duration since it can control the gyrotron oscillation JT-6U Control System Local Control (sequencer) Timing Generator Functional Generator Controller Heater Controller Gyrotron H Main P/S DC Generator AC DC 18 kv / 6 kv, 65 A 4.45 MVA IGBT Switch 1 kv, 1 A Body P/S 1kV, 3mA Acceleration P/S Optical Signal Heater P/S Anode Voltage Controller -6 kv K -2 kv A 25 kv B kv C Electron Beam DC Break RF Power I C

23 Development of ECRF beam Scanning Antenna Poloidal ECRF Beam Scan Antenna A : from center to edge Antenna B : from center to the predicted NTM position (r ~.6) (limited by the port space) By both preprogram and feed-back control Antenna B With beam scan speed of 15 deg/s (fast mode) and Top View of JT-6U 5 deg/s (high resolution mode : resolution.4 deg) Side View of the Antenna A Antenna A 2 Ip ±2 Simple and reliable mechanical driving P17 P18 Antenna A Converging Mirror Antenna B JT-6U Steering Mirror Rotating Mirror Servo motor * Servo Motor Driven Steering Plane Mirror Steering Mirror

24 Progress of Injected Energy into Plasmas JT-6U Injected energy was increased from 1 MJ to 15 MJ in long pulse operation of the gyrotron by the preprogrammed anode voltage and heater input controllers P in ~ 1 MW, 15 s (15 MJ) : Combined Injection with three gyrotrons P in ~.35 MW, 45 s (15 MJ) : Series Injection with automatic succession control Injected Energy (MJ) '2 '3 '4 Tentative Objective 18MJ (.6MW,3s) E44264 ~3MW ~1MW ~.35MW E44264 I p (MA) V l (V) Plasma Stored Energy (a. u.) Injected EC Power (a.u.) #3 #1 #4 # Pulse Duration (s) Time (s)

25 Ip [MA] Te()[keV] T e () ~ 23 kev was achieved by EC waves E41651 Te() ECCD analysis Ip=.6MA.5 PEC=2.9MW TIME(s) Vl [V].5 n e [1 19 /m 3 ] JT-6U Objective is to analyze EC driven current in a high-t e regime. Resonance location of ECH/ECCD was optimized to achieve high-t e for long enough for ECCD analysis Te [kev] E41651 t=5.7 ECE Thomson CL ECH.6MW ECCD 2.3MW T e () = 23 kev for.8 s On-axis ECCD efficiency η CD increased with T e and reached 4.2 x 1 18 m -2 A W ρ

26 Real-time NTM Feedback Stabilization System JT-6U NTM stabilization is required for sustaining high beta plasmas Mode location can be changed in time Real-time NTM FB stabilization Complete NTM stabilization was demonstrated using the real-time NTM FB stabilization system in JT-6U Z[m] 1 fec Steerable mirror EC ECE M-shaped amplitude profile -1 ECE R[m] Rs Real-time calculation of plasma shape with a given q-profile [%] Rs at step 1 δt e /T e Local min.: island center R [m] 3.8 EC Steerable mirror Calculation: 1ms Mirror scan: Rdep/ t~1cm/s Rough estimation Fine tuning EC mirror steering

27 Complete Stabilization of m/n=3/2 NTM with Real-time Feedback Control System JT-6U PNB[MW] B [arb.] βn Channel number Angle [degree] 3 E n=2 (m=3) CH at ~ Te min Mirror angle Ip=1.5MA, Bt=3.7T, q95=3.9 EC(~3MW) 1.67 Reference time[s] Te[keV] ~ Te/Te E41666 Increment of T e at 9ms after ECW injection 7.52s(6.84kHz) CH1 CH6 Center CH R [m] β N increased by the stabilization, and even after the EC turn-off Confinement improvement: HH 98y2 :

28 B / f [arb.] [arb.] [MW] E4165 B Effective NTM Suppression Control Late injection PNB β N =1.4 Real-time FB on PEC(1.5MW) n=2 (m=3) time[s] Early injection Late injection PEC [MW] Early injection is effective Injection timing [arb.] [MW] Effectiveness of NTM suppression Injection location E41693 B Early injection PNB PEC(1.7MW) JT-6U Real-time FB off n=2 (m=3) time[s] B / f [arb.] Early injection Island center 4 units 3 units 2 units ρ EC Center injection is effective Suppression control can be effectively made for saving EC power by using early and island-center injection.

29 1. LHRF Current Drive Summary Efficient LHCD (η CD = x 1 19 m -2 A W -1 ) was performed with the multi-junction launchers having high directivity as well as with plasma shaping and constant-gap control and additional gas puffing Full non-inductive CD was attained in RS plasmas by combined LHCD and NBCD, where LHCD drove currents at just outside q-min Real-time current profile (exactly q profile) control was demonstrated by LHCD together with multi-channel MSE measurements 2. ECRF Heating and Current Drive JT-6U The high power (3 MW into plasmas) ECRF system was developed for local heating and CD, which can converge the ECRF beam on a spot of ~1 cm in diameter and can scan it from plasma core to periphery High electron temperature of T e () ~ 23 kev was achieved by 3 MW on-axis heating, and ECCD efficiency increased with T e up to 4.2 x 1 18 m -2 A W -1 NTM stabilization was demonstrated with the real-time feedback control system and it was found that key points to effective suppression of NTM instabilities were injection timing and injection location

Design study for JT-60SA ECRF system and the latest results of JT-60U ECRF system

Design study for JT-60SA ECRF system and the latest results of JT-60U ECRF system Japan-Korea : Workshop on Physics of Wave Heating and Current Drive, NFRI, Daejon, Korea, Jan. 14-15, 2008 R F &LHRF& ECRF ICRF JT - 60 JT-60 RF group Japan Atomic Energy Agency Design study for JT-60SA

More information

ICRF Physics in KSTAR Steady State

ICRF Physics in KSTAR Steady State ICRF Physics in KSTAR Steady State Operation (focused on the base line operation) Oct. 24, 2005 Jong-gu Kwak on the behalf of KSTAR ICRF TEAM Korea Atomic Energy Research Institute Contents Roles of ICRF

More information

Operational progress of 170GHz 1MW ECH system in KSTAR

Operational progress of 170GHz 1MW ECH system in KSTAR 8 th IAEA TM on Steady State Operation of Magnetic Fusion Devices, May. 29, 2015, NARA, JAPAN Operational progress of 170GHz 1MW ECH system in KSTAR J. H. Jeong a, Y. S. Bae a, M. Joung a, M. H. Woo a,

More information

Lower Hybrid. Ron Parker Alcator C-Mod PAC Meeting January January 2006 Alcator C-Mod PAC Meeting 1

Lower Hybrid. Ron Parker Alcator C-Mod PAC Meeting January January 2006 Alcator C-Mod PAC Meeting 1 Lower Hybrid Ron Parker Alcator C-Mod PAC Meeting 25-27 January 2006 25-27 January 2006 Alcator C-Mod PAC Meeting 1 Goal of Lower Hybrid Current Drive Experiments Use Lower Hybrid Current Drive to supplement

More information

Active Control for Stabilization of Neoclassical Tearing Modes

Active Control for Stabilization of Neoclassical Tearing Modes Active Control for Stabilization of Neoclassical Tearing Modes Presented by D.A. Humphreys General Atomics 47th APS-DPP Meeting Denver, Colorado October 24 28, 2005 Control of NTM s is an Important Objective

More information

Advanced Tokamak Program and Lower Hybrid Experiment. Ron Parker MIT Plasma Science and Fusion Center

Advanced Tokamak Program and Lower Hybrid Experiment. Ron Parker MIT Plasma Science and Fusion Center Advanced Tokamak Program and Lower Hybrid Experiment Ron Parker MIT Plasma Science and Fusion Center Alcator C-Mod Program Advisory Meeting 23-24 February 2004 Main Goals of the Alcator C-Mod AT Program

More information

National Fusion Research Institute a. Princeton Plasma Physics Laboratory

National Fusion Research Institute a. Princeton Plasma Physics Laboratory Ko-Ja Workshop on Physics and Technology of Heating and Current Drive, Pohang, Korea, 2016 M. Joung, J. H. Jeong, J. W. Han, I. H. Lee, S. K. Kim, S. J. Wang, J. G. Kwak, R. Ellis a, J. Hosea a and the

More information

Development Status of KSTAR LHCD System

Development Status of KSTAR LHCD System Development Status of KSTAR LHCD System September 24, 2004 Y. S. Bae,, M. H. Cho, W. Namkung Plasma Sheath Lab. Department of Physics, Pohang University of Science and Technology LHCD system overview Objectives

More information

Experimental results and Upgrade plan of ECH/CD system in KSTAR

Experimental results and Upgrade plan of ECH/CD system in KSTAR 2015 KSTAR conference, Feb. 27, 2015, Daejeon, Korea Experimental results and Upgrade plan of ECH/CD system in KSTAR J. H. Jeong a, Y. S. Bae a, M. Joung a, J. W. Han a, I. H. Rhee a, I. H. Rhee a, S.

More information

Increased Stable Beta in DIII D by Suppression of a Neoclassical Tearing Mode Using Electron Cyclotron Current Drive and Active Feedback

Increased Stable Beta in DIII D by Suppression of a Neoclassical Tearing Mode Using Electron Cyclotron Current Drive and Active Feedback 1 EX/S1-3 Increased Stable Beta in DIII D by Suppression of a Neoclassical Tearing Mode Using Electron Cyclotron Current Drive and Active Feedback R.J. La Haye, 1 D.A. Humphreys, 1 J. Lohr, 1 T.C. Luce,

More information

System Upgrades to the DIII-D Facility

System Upgrades to the DIII-D Facility System Upgrades to the DIII-D Facility A.G. Kellman for the DIII-D Team 24th Symposium on Fusion Technology Warsaw, Poland September 11-15, 2006 Upgrades Performed During the Long Torus Opening (LTOA)

More information

INITIAL RESULTS FROM THE MULTI-MEGAWATT 110 GHz ECH SYSTEM FOR THE DIII D TOKAMAK

INITIAL RESULTS FROM THE MULTI-MEGAWATT 110 GHz ECH SYSTEM FOR THE DIII D TOKAMAK GA A22576 INITIAL RESULTS FROM THE MULTI-MEGAWATT 110 GHz ECH SYSTEM by R.W. CALLIS, J. LOHR, R.C. O NEILL, D. PONCE, M.E. AUSTIN, T.C. LUCE, and R. PRATER APRIL 1997 This report was prepared as an account

More information

Recent progress of 170 GHz Gyrotron in KSTAR

Recent progress of 170 GHz Gyrotron in KSTAR Recent progress of 170 GHz Gyrotron in KSTAR Japan-Korea Workshop on Physics and Technology of Heating and Current Drive Hanwha Resort, Haeundae, Busan, Korea January 28-30, 2013 J.H. Jeong, M. Joung,

More information

Development of the 170GHz gyrotron and equatorial launcher for ITER

Development of the 170GHz gyrotron and equatorial launcher for ITER Development of the 17GHz gyrotron and equatorial launcher for ITER K.Sakamoto, A. Kasugai, K. Takahashi, R. Minami a), T. Kariya b), Y. Mitsunaka b), N.Kobayashi Plasma Heating Laboratory, Japan Atomic

More information

3.10 Lower Hybrid Current Drive (LHCD) System

3.10 Lower Hybrid Current Drive (LHCD) System 3.10 Lower Hybrid Current Drive (LHCD) System KUANG Guangli SHAN Jiafang 3.10.1 Purpose of LHCD program 3.10.1.1 Introduction Lower hybrid waves are quasi-static electric waves propagated in magnetically

More information

CT-7Ra Development of Gyrotron and JT-60U EC Heating System for Fusion Reactor

CT-7Ra Development of Gyrotron and JT-60U EC Heating System for Fusion Reactor Development of Gyrotron and JT-6U EC Heating System for Fusion Reactor K. SAKAMOTO 1), A. KASUGAI 1), YO. IKEDA 1), K. HAYASHI 1), K. TAKAHASHI 1), K. KAJIWARA 1), S. MORIYAMA 1), M. SEKI 1), T. KARIYA

More information

Helicon Wave Current Drive in KSTAR Plasmas

Helicon Wave Current Drive in KSTAR Plasmas Daejeon Helicon Wave Current Drive in KSTAR Plasmas S. J. Wanga, H. J. Kima, Jeehyun Kima, V. Vdovinb, B. H. Parka, H. H. Wic, S. H. Kimd, and J. G. Kwaka anational Fusion Research Institute, Daejeon,

More information

High Field Side Lower Hybrid Current Drive Launcher Design for DIII-D

High Field Side Lower Hybrid Current Drive Launcher Design for DIII-D High Field Side Lower Hybrid Current Drive Launcher Design for DIII-D by G.M. Wallace (MIT PSFC) Presented at the American Physical Society Division of Plasma Physics Annual Meeting October 23, 2017 On

More information

Study of Elliptical Polarization Requirement of KSTAR 84-GHz ECH System

Study of Elliptical Polarization Requirement of KSTAR 84-GHz ECH System Journal of the Korean Physical Society, Vol. 49, December 2006, pp. S201 S205 Study of Elliptical Polarization Requirement of KSTAR 84-GHz ECH System Jinhyun Jeong, Youngsoon Bae, Moohyun Cho and Won Namkung

More information

RF Physics: Status and Plans

RF Physics: Status and Plans RF Physics: Status and Plans Program Advisory Committee meeting February 6-7, 2002 S. J. Wukitch Outline: 1. Overview of RF Physics issues 2. Review of antenna performance and near term modifications.

More information

Abstract. G.D. Garstka 47 th APS-DPP Denver October 27, Pegasus Toroidal Experiment University of Wisconsin-Madison

Abstract. G.D. Garstka 47 th APS-DPP Denver October 27, Pegasus Toroidal Experiment University of Wisconsin-Madison Abstract The PEGASUS Toroidal Experiment provides an attractive opportunity for investigating the physics and implementation of electron Bernstein wave (EBW) heating and current drive in an overdense ST

More information

ECRF Heating on CS Reactors

ECRF Heating on CS Reactors ECRF Heating on CS Reactors T.K. Mau UC-San Diego With input from L.P. Ku (PPPL), J.F. Lyon (ORNL), X.R. Wang (UCSD) ARIES Project Meeting May 6-7, 2003 Livermore, California 1 OUTLINE ECH scenario studies

More information

Technical Readiness Level For Plasma Control

Technical Readiness Level For Plasma Control Technical Readiness Level For Plasma Control PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION A.D. Turnbull, General Atomics ARIES Team Meeting University of Wisconsin, Madison,

More information

Neoclassical Tearing Mode Control with ECCD and Magnetic Island Evolution in JT-60U

Neoclassical Tearing Mode Control with ECCD and Magnetic Island Evolution in JT-60U EX/5-4 Neoclassical Tearing Mode Control with ECCD and Magnetic Island Evolution in A. Isayama 1), G. Matsunaga 1), T. Kobayashi 1), S. Moriyama 1), N. Oyama 1), Y. Sakamoto 1), T. Suzuki 1), H. Urano

More information

SUPPRESSION OF NEOCLASSICAL TEARING MODES IN THE PRESENCE OF SAWTEETH INSTABILITIES BY RADIALLY LOCALIZED OFF-AXIS

SUPPRESSION OF NEOCLASSICAL TEARING MODES IN THE PRESENCE OF SAWTEETH INSTABILITIES BY RADIALLY LOCALIZED OFF-AXIS SUPPRESSION OF NEOCLASSICAL TEARING MODES IN THE PRESENCE OF SAWTEETH INSTABILITIES BY RADIALLY LOCALIZED OFF-AXIS ELECTRON CYCLOTRON CURRENT DRIVE IN THE TOKAMAK R.. LA HAYE,. LOHR, T.C. LUCE, C.C. PETTY,

More information

GA A22963 RECENT DEVELOPMENTS ON THE HIGH POWER ECH INSTALLATION AT THE DIII D TOKAMAK

GA A22963 RECENT DEVELOPMENTS ON THE HIGH POWER ECH INSTALLATION AT THE DIII D TOKAMAK GA A22963 RECENT DEVELOPMENTS ON THE HIGH POWER ECH INSTALLATION by J. LOHR, D. PONCE, R.W. CALLIS, J.L. DOANE, H. IKEZI, and C.P. MOELLER SEPTEMBER 1998 This report was prepared as an account of work

More information

Launcher Study for KSTAR 5 GHz LHCD System*

Launcher Study for KSTAR 5 GHz LHCD System* Launcher Study for KSTAR 5 GHz LHCD System* Joint Workshop on RF Heating and Current Drive in Fusion Plasmas October 24, 2005 Pohang Accelerator Laboratory, Pohang Y. S. Bae, M. H. Cho, W. Namkung Department

More information

ECRH Beam Optics Optimization for ITER Upper Port Launcher

ECRH Beam Optics Optimization for ITER Upper Port Launcher ECRH Beam Optics Optimization for ITER Upper Port Launcher H. Shidara 1, M.A. Henderson 1, R. Chavan 1, D. Farina 2, E. Poli 3, G. Ramponi 2 1: CRPP, EURATOM Confédération Suisse, EPFL, CH-1015 Lausanne,

More information

Sustainment and Additional Heating of High-Beta Field-Reversed Configuration Plasmas

Sustainment and Additional Heating of High-Beta Field-Reversed Configuration Plasmas 1 Sustainment and Additional Heating of High-Beta Field-Reversed Configuration Plasmas S. Okada, T. Fukuda, K. Kitano, H. Sumikura, T. Higashikozono, M. Inomoto, S. Yoshimura, M. Ohta and S. Goto Science

More information

EXW/10-2Ra. Avoidance of Disruptions at High β N in ASDEX Upgrade with Off-Axis ECRH

EXW/10-2Ra. Avoidance of Disruptions at High β N in ASDEX Upgrade with Off-Axis ECRH 1 EXW/1-2Ra Avoidance of Disruptions at High β N in ASDEX Upgrade with Off-Axis ECRH B. Esposito 1), G. Granucci 2), M. Maraschek 3), S. Nowak 2), A. Gude 3), V. Igochine 3), R. McDermott 3), E. oli 3),

More information

Status of the rf Current Drive Systems on MST

Status of the rf Current Drive Systems on MST Status of the rf Current Drive Systems on MST John A. Goetz for A. Almagri, J.K. Anderson, D.R. Burke, M.M. Clark, W.A. Cox, C.B. Forest, R. Ganch, M.C. Kaufman, J.G. Kulpin, P. Nonn, R. O Connell, S.P.

More information

GA A25780 STABILIZATION OF NEOCLASSICAL TEARING MODES IN TOKAMAKS BY RADIO FREQUENCY CURRENT DRIVE

GA A25780 STABILIZATION OF NEOCLASSICAL TEARING MODES IN TOKAMAKS BY RADIO FREQUENCY CURRENT DRIVE GA A25780 STABILIZATION OF NEOCLASSICAL TEARING MODES IN TOKAMAKS by R.J. LA HAYE MAY 2007 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government.

More information

First Results From the Alcator C-Mod Lower Hybrid Experiment.

First Results From the Alcator C-Mod Lower Hybrid Experiment. First Results From the Alcator C-Mod Lower Hybrid Experiment. R. Parker 1, N. Basse 1, W. Beck 1, S. Bernabei 2, R. Childs 1, N. Greenough 2, M. Grimes 1, D. Gwinn 1, J. Hosea 2, J. Irby 1, D. Johnson

More information

GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING

GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING by G.L. JACKSON, M.E. AUSTIN, J.S. degrassie, J. LOHR, C.P. MOELLER, and R. PRATER JULY

More information

A High-Power Gyrotron and high-power mm wave technology for Fusion Reactor

A High-Power Gyrotron and high-power mm wave technology for Fusion Reactor A High-Power Gyrotron and high-power mm wave technology for Fusion Reactor Keishi Sakamoto, Ken Kajiwara, Atsushi Kasugai, Yasuhisa Oda, Koji Takahashi, Noriyuki Kobayashi, Takayuki Kobayashi, Akihiko

More information

Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies

Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies P. T. Bonoli, S. G. Baek, B. LaBombard, Y. Lin, T. Palmer, R. R. Parker, M. Porkolab, S. Shiraiwa,

More information

Plasma Confinement by Pressure of Rotating Magnetic Field in Toroidal Device

Plasma Confinement by Pressure of Rotating Magnetic Field in Toroidal Device 1 ICC/P5-41 Plasma Confinement by Pressure of Rotating Magnetic Field in Toroidal Device V. Svidzinski 1 1 FAR-TECH, Inc., San Diego, USA Corresponding Author: svidzinski@far-tech.com Abstract: Plasma

More information

IAEA-CN-116 / EX / 7-2

IAEA-CN-116 / EX / 7-2 ASDEX Upgrade Max-Planck-Institut für Plasmaphysik Active Control of MHD Instabilities by ECCD in ASDEX Upgrade M. Maraschek (), G. Gantenbein (), T.P. Goodman (3), S. Günter (), D.F. Howell (4), F. Leuterer

More information

Sensitivity study for the optimization of the viewing chord arrangement of the ITER poloidal polarimeter

Sensitivity study for the optimization of the viewing chord arrangement of the ITER poloidal polarimeter P8-29 6th International Toki Conference, December 5-8, 26 Sensitivity study for the optimization of the viewing chord arrangement of the ITER poloidal polarimeter T. Yamaguchi, Y. Kawano and Y. Kusama

More information

2. Achievement of reliable long pulse operation of 1 MW 170 GHz gyrotron

2. Achievement of reliable long pulse operation of 1 MW 170 GHz gyrotron Demonstration of 1 MW quasi-cw operation of 170 GHz Gyrotron and Progress of EC Technology for ITER A.Kasugai, K.Sakamoto, K.Takahashi, K.Kajiwara, Y.Oda, N.Kobayashi Fusion Research and Development Directorate,

More information

Heating Issues. G.Granucci on behalf of the project team

Heating Issues. G.Granucci on behalf of the project team Heating Issues G.Granucci on behalf of the project team EURO fusion DTT Workshop Frascati, Italy, 19-20 June 2017 Summary Physical Requirements DTT Heating Mix ECRH System ICRH System Auxiliary Heating

More information

Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption for Current Drive Without Cyclotron Resonances

Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption for Current Drive Without Cyclotron Resonances Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption for Current Drive Without Cyclotron Resonances R.I. Pinsker General Atomics 100 50 Presented at the 56 th Annual Division of Plasma

More information

Installation of 84-GHz, 500-kW KSTAR ECH system

Installation of 84-GHz, 500-kW KSTAR ECH system Korea Superconducting Tokamak Advanced Research Sample image2 Sample image3 Installation of 84-GHz, 500-kW KSTAR ECH system 정진현, 박승일, 조무현, 남궁원포항공과대학교 배영순, 한원순, 안상진국가핵융합연구소 2007 년도한국물리학회추계학술논문발표회 October

More information

Feedback control of ECRH for MHD mode stabilization on TEXTOR

Feedback control of ECRH for MHD mode stabilization on TEXTOR -Institute for Plasma Physics Rijnhuizen Association Euratom- Feedback control of ECRH for MHD mode stabilization on TEXTOR Bart Hennen Tuesday, 25 November, 28 With contributions from: E. Westerhof, M.

More information

Presented by Rob La Haye. on behalf of Francesco Volpe. at the 4 th IAEA-TM on ECRH for ITER

Presented by Rob La Haye. on behalf of Francesco Volpe. at the 4 th IAEA-TM on ECRH for ITER Locked Neoclassical Tearing Mode Control on DIII-D by ECCD and Magnetic Perturbations Presented by Rob La Haye General Atomics, San Diego (USA) on behalf of Francesco Volpe Max-Planck Gesellschaft (Germany)

More information

Status Alcator C-Mod Engineering Systems. DoE Quarterly Review October 27, 2005

Status Alcator C-Mod Engineering Systems. DoE Quarterly Review October 27, 2005 Status Alcator C-Mod Engineering Systems DoE Quarterly Review October 27, 2005 1 Outline Run campaign Up-to-Air Machine Status Lower Hybrid Cryopump Tungsten Tiles Schedule/Plans 2 FY2005 Run Campaign

More information

Development of the long-pulse ECRF system for JT-60SA

Development of the long-pulse ECRF system for JT-60SA J. Plasma Fusion Res. SERIES, Vol. 9 (2010) Development of the long-pulse ECRF system for JT-60SA Takayuki KOBAYASHI 1, Akihiko ISAYAMA 1, Damien FASEL 2, Kenji YOKOKURA 1, Mitsugu SHIMONO 1, Koichi HASEGAWA

More information

CRITICAL PROBLEMS IN PLASMA HEATING/ CD IN LARGE FUSION DEVICES AND ITER

CRITICAL PROBLEMS IN PLASMA HEATING/ CD IN LARGE FUSION DEVICES AND ITER CRITICAL PROBLEMS IN PLASMA HEATING/ CD IN LARGE FUSION DEVICES AND ITER Vdovin V.L. RRC Kurchatov Institute Nuclear Fusion Institute Moscow, Russia 22nd IAEA Fusion Energy Conference 13-18 October 2008

More information

Collective Thomson Scattering Study using Gyrotron in LHD

Collective Thomson Scattering Study using Gyrotron in LHD Collective Thomson Scattering Study using Gyrotron in LHD Shin KUBO, Masaki NISHIURA, Kenji TANAKA, Takashi SHIMOZUMA, Yasuo YOSHIMURA, Hiroe IGAMI, Hiromi TAKAHASHI, Takashi MUTOH National Institute for

More information

Development of High Power Gyrotron and Power Modulation Technique using the JT-60U ECRF System )

Development of High Power Gyrotron and Power Modulation Technique using the JT-60U ECRF System ) Development of High Power Gyrotron and Power Modulation Technique using the JT-60U ECRF System ) Takayuki KOBAYASHI, Masayuki TERAKADO, Fumiaki SATO, Kenji YOKOKURA, Mitsugu SHIMONO, Koichi HASEGAWA, Masayuki

More information

NTM Suppression and Avoidance at DIII-D Using Real-time Mirror Steering of ECCD

NTM Suppression and Avoidance at DIII-D Using Real-time Mirror Steering of ECCD NTM Suppression and Avoidance at DIII-D Using Real-time Mirror Steering of ECCD Egemen Kolemen 1, N.W. Eidietis 2, R. Ellis 1, D.A. Humphreys 2, R.J. La Haye 2, J. Lohr 2, S. Noraky 2, B.G. Penaflor 2,

More information

2005, M.Maraschek, IPP-Garching. ASDEX Upgrade

2005, M.Maraschek, IPP-Garching. ASDEX Upgrade ASDEX Upgrade Max-Planck-Institut für Plasmaphysik Control of core MHD Instabilities by ECCD in ASDEX Upgrade M. Maraschek (), G. Gantenbein (), S. Günter (), F. Leuterer (), A. Mück (), A. Manini (),

More information

INITIAL TESTS AND OPERATION OF A 110 GHz, 1 MW GYROTRON WITH EVACUATED WAVEGUIDE SYSTEM ON THE DIII D TOKAMAK

INITIAL TESTS AND OPERATION OF A 110 GHz, 1 MW GYROTRON WITH EVACUATED WAVEGUIDE SYSTEM ON THE DIII D TOKAMAK GA A22420 INITIAL TESTS AND OPERATION OF A 110 GHz, 1 MW GYROTRON WITH EVACUATED WAVEGUIDE SYSTEM ON THE DIII D TOKAMAK by JOHN LOHR, DAN PONCE, L. POPOV,1 J.F. TOOKER, and DAQING ZHANG2 AUGUST 1996 GA

More information

PRESENT STATUS OF THE NEW MULTI-FREQUENCY ECRH SYSTEM FOR ASDEX UPGRADE

PRESENT STATUS OF THE NEW MULTI-FREQUENCY ECRH SYSTEM FOR ASDEX UPGRADE Max-Planck-Institut für Plasmaphysik PRESENT STATUS OF THE NEW MULTI-FREQUENCY ECRH SYSTEM FOR ASDEX UPGRADE D. Wagner, G. Grünwald, F. Leuterer, A. Manini, F. Monaco, M. Münich, H. Schütz, J. Stober,

More information

Study of Ion Cyclotron Emissions due to DD Fusion Product Ions on JT-60U

Study of Ion Cyclotron Emissions due to DD Fusion Product Ions on JT-60U 1 Study of Ion Cyclotron Emissions due to DD Fusion Product Ions on JT-6U M. Ichimura 1), M. Katano 1), Y. Yamaguchi 1), S. Sato 1), Y. Motegi 1), H. Muro 1), T. Ouchi 1), S. Moriyama 2), M. Ishikawa 2),

More information

EX/P9-5. Comprehensive Control of Resistive Wall Modes in DIII-D Advanced Tokamak Plasmas

EX/P9-5. Comprehensive Control of Resistive Wall Modes in DIII-D Advanced Tokamak Plasmas Comprehensive Control of Resistive Wall Modes in DIII-D Advanced Tokamak Plasmas M. Okabayashi 1), I.N. Bogatu 2), T. Bolzonella 3) M.S. Chance 1), M.S. Chu 4), A.M. Garofalo 4), R. Hatcher 1), Y. In 2),

More information

Optimization of the ITER EC H&CD Functional Capabilities while Relaxing the Engineering Constraints

Optimization of the ITER EC H&CD Functional Capabilities while Relaxing the Engineering Constraints Optimization of the ITER EC H&CD Functional Capabilities while Relaxing the Engineering Constraints D. Farina, M. Henderson, L. Figini, G. Saibene, T. Goodman, K. Kajiwara, T. Omori, E. Poli, D. Strauss

More information

Experiments with real-time controlled ECW

Experiments with real-time controlled ECW Experiments with real-time controlled ECW on the TCV Tokamak Experiments with real-time controlled ECW on the TCV Tokamak S. Alberti 1, G. Arnoux 2, J. Berrino 1, Y.Camenen 1, S. Coda 1, B.P. Duval 1,

More information

Overview of ICRF Experiments on Alcator C-Mod*

Overview of ICRF Experiments on Alcator C-Mod* 49 th annual APS-DPP meeting, Orlando, FL, Nov. 2007 Overview of ICRF Experiments on Alcator C-Mod* Y. Lin, S. J. Wukitch, W. Beck, A. Binus, P. Koert, A. Parisot, M. Reinke and the Alcator C-Mod team

More information

US ITER Electron Cyclotron System White Paper

US ITER Electron Cyclotron System White Paper US ITER Electron Cyclotron System White Paper January 10, 2003 General Atomics, Calabazas Creek Research, Communications and Power Industries, Massachusetts Institute of Technology, Princeton Plasma Physics

More information

Construction of 0.5-MW prototype PAM for KSTAR LHCD system

Construction of 0.5-MW prototype PAM for KSTAR LHCD system Korea-Japan Workshop on Physics and Technology of Heating and Current Drive 2016 PAL, Pohang, Korea / Dec. 14-16, 2016, Construction of 0.5-MW prototype PAM for KSTAR LHCD system Jeehyun Kim a, Sonjong

More information

Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod

Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod S. G. Baek, T. Shinya*, G. M. Wallace, S. Shiraiwa, R. R. Parker, Y. Takase*, D. Brunner MIT Plasma Science

More information

The report includes materials of three papers:

The report includes materials of three papers: The report includes materials of three papers: Performance of 170 GHz high-power gyrotron for CW operation A. Kasugai, Japan gyrotron team Development of Steady-State 2-MW 170-GHz Gyrotrons for ITER B.

More information

Development of Collective Thomson Scattering System Using the Gyrotrons of Sub-Tera Hz Region

Development of Collective Thomson Scattering System Using the Gyrotrons of Sub-Tera Hz Region 1 FTP/P6-31 Development of Collective Thomson Scattering System Using the Gyrotrons of Sub-Tera Hz Region Y. Tatematsu 1), S. Kubo 2), M. Nishiura 2), K. Tanaka 2), N. Tamura 3), T. Shimozuma 2), T. Saito

More information

Measurement of Mode Converted ICRF Waves with Phase Contrast Imaging and Comparison with Full-wave Simulations on Alcator C-Mod

Measurement of Mode Converted ICRF Waves with Phase Contrast Imaging and Comparison with Full-wave Simulations on Alcator C-Mod Measurement of Mode Converted ICRF Waves with Phase Contrast Imaging and Comparison with Full-wave Simulations on Alcator C-Mod N. Tsujii 1, M. Porkolab 1, P.T. Bonoli 1, Y. Lin 1, J.C. Wright 1, S.J.

More information

Importance of edge physics in optimizing ICRF performance

Importance of edge physics in optimizing ICRF performance Importance of edge physics in optimizing ICRF performance D. A. D'Ippolito and J. R. Myra Research Corp., Boulder, CO Acknowledgements D. A. Russell, M. D. Carter, RF SciDAC Team Presented at the ECC Workshop

More information

Non-inductive Production of Extremely Overdense Spherical Tokamak Plasma by Electron Bernstein Wave Excited via O-X-B Method in LATE

Non-inductive Production of Extremely Overdense Spherical Tokamak Plasma by Electron Bernstein Wave Excited via O-X-B Method in LATE 1 EXW/P4-4 Non-inductive Production of Extremely Overdense Spherical Tokamak Plasma by Electron Bernstein Wave Excited via O-X-B Method in LATE H. Tanaka, M. Uchida, T. Maekawa, K. Kuroda, Y. Nozawa, A.

More information

Status and Plan for VEST

Status and Plan for VEST Status and Plan for VEST Y.S. Hwang and VEST team Nov. 6, 2015 Dept. of Nuclear Engineering Seoul National University 18 th International Spherical Torus Workshop, Nov. 2-6, 2015, Princeton, NJ, USA Status

More information

HIGH-POWER CORRUGATED WAVEGUIDE COMPONENTS FOR mm-wave FUSION HEATING SYSTEMS

HIGH-POWER CORRUGATED WAVEGUIDE COMPONENTS FOR mm-wave FUSION HEATING SYSTEMS GA A22466 HIGH-POWER CORRUGATED WAVEGUIDE COMPONENTS FOR mm-wave FUSION HEATING SYSTEMS by R.A. OLSTAD, J.L. DOANE, C.P. MOELLER, R.C. O NEILL, and M. Di MARTINO OCTOBER 1996 GA A22466 HIGH-POWER CORRUGATED

More information

RECENT UPGRADES AND EXTENSIONS OF THE ASDEX UPGRADE ECRH SYSTEM

RECENT UPGRADES AND EXTENSIONS OF THE ASDEX UPGRADE ECRH SYSTEM RECENT UPGRADES AND EXTENSIONS OF THE ASDEX UPGRADE ECRH SYSTEM D. Wagner 1, J. Stober 1, F. Leuterer 1, F. Monaco 1, M. Münich 1, D. Schmid-Lorch 1, H. Schütz 1, H. Zohm 1, M. Thumm 2, T. Scherer 3, A.

More information

Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod

Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod N. Tsujii, M. Porkolab, E.M. Edlund, L. Lin, Y. Lin, J.C. Wright, S.J. Wukitch MIT Plasma Science and Fusion Center

More information

PLASMA BUILD-UP and CONFINEMENT IN URAGAN-2M DEVICE

PLASMA BUILD-UP and CONFINEMENT IN URAGAN-2M DEVICE PLASMA BUILD-UP and CONFINEMENT IN URAGAN-2M DEVICE V.E. Moiseenko, A.V. Lozin, M.M. Kozulya, Yu.K. Mironov, V.S. Romanov, A.N. Shapoval, V.G. Konovalov, V.V. Filippov, V.B. Korovin, A. Yu. Krasyuk, V.V.

More information

Observation of Toroidal Flow on LHD

Observation of Toroidal Flow on LHD 17 th International Toki conference / 16 th International Stellarator/Heliotron Workshop 27 Observation of Toroidal Flow on LHD M. Yoshinuma, K. Ida, M. Yokoyama, K. Nagaoka, M. Osakabe and the LHD Experimental

More information

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas Z. Yan1, G.R. McKee1, R.J. Groebner2, P.B. Snyder2, T.H. Osborne2, M.N.A. Beurskens3, K.H. Burrell2, T.E. Evans2, R.A. Moyer4, H. Reimerdes5

More information

Variation of N and its Effect on Fast Wave Electron Heating on LHD

Variation of N and its Effect on Fast Wave Electron Heating on LHD J. Plasma Fusion Res. SERIES, Vol. 6 (004) 6 (004) 64 646 000 000 Variation of N and its Effect on Fast Wave Electron Heating on LHD TAKEUCHI Norio, SEKI Tetsuo 1, TORII Yuki, SAITO Kenji 1, WATARI Tetsuo

More information

Real time control of the sawtooth period using EC launchers

Real time control of the sawtooth period using EC launchers Real time control of the sawtooth period using EC launchers J I Paley, F Felici, S Coda, T P Goodman, F Piras and the TCV Team Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique

More information

Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team Plasma Physics Laboratory University of Saskatchewan

Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team Plasma Physics Laboratory University of Saskatchewan Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team (chijin.xiao@usask.ca) Plasma Physics Laboratory University of Saskatchewan 1 \ STOR-M Experiments Improved confinement induced by

More information

2.2 MW Operation of the European Coaxial-Cavity Pre-Prototype Gyrotron for ITER

2.2 MW Operation of the European Coaxial-Cavity Pre-Prototype Gyrotron for ITER 2.2 MW Operation of the European Coaxial-Cavity Pre-Prototype Gyrotron for ITER G. Gantenbein 1, T. Rzesnicki 1, B. Piosczyk 1, S. Kern 1, S. Illy 1, J. Jin 1, A. Samartsev 1, A. Schlaich 1,2 and M. Thumm

More information

J.Shafii, J.N. Talmadge, R.J. Vernon, HSX team HSX Plasma Laboratory, University of Wisconsin-Madison T. S. Bigelow, ORNL K.M.

J.Shafii, J.N. Talmadge, R.J. Vernon, HSX team HSX Plasma Laboratory, University of Wisconsin-Madison T. S. Bigelow, ORNL K.M. J.Shafii, J.N. Talmadge, R.J. Vernon, HSX team HSX Plasma Laboratory, University of Wisconsin-Madison T. S. Bigelow, ORNL K.M. Likin, Fusion Division, CIEMAT Outline Abstract HSX ECH system Introduction

More information

Profile Scan Studies on the Levitated Dipole Experiment

Profile Scan Studies on the Levitated Dipole Experiment Profile Scan Studies on the Levitated Dipole Experiment Columbia University A.K. Hansen, D.T. Garnier, M.E. Mauel, E.E. Ortiz Columbia University J. Kesner, A.C. Boxer, J.E. Ellsworth, I. Karim, S. Mahar,

More information

GA A24030 ECE RADIOMETER UPGRADE ON THE DIII D TOKAMAK

GA A24030 ECE RADIOMETER UPGRADE ON THE DIII D TOKAMAK GA A24030 ECE RADIOMETER UPGRADE ON THE DIII D TOKAMAK by M.E. AUSTIN, and J. LOHR AUGUST 2002 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government.

More information

3D full wave code modelling of ECRF plasma heating in tokamaks and ITER at fundamental and second harmonics

3D full wave code modelling of ECRF plasma heating in tokamaks and ITER at fundamental and second harmonics 3D full wave code modelling of ECRF plasma heating in tokamaks and ITER at fundamental and second harmonics Vdovin V.L. RRC Kurchatov Institute Tokamak Physics Institute vdov@nfi.kiae.ru Abstract We present

More information

Advanced Density Profile Reflectometry; the State-of-the-Art and Measurement Prospects for ITER

Advanced Density Profile Reflectometry; the State-of-the-Art and Measurement Prospects for ITER Advanced Density Profile Reflectometry; the State-of-the-Art and Measurement Prospects for ITER by E.J. Doyle With W.A. Peebles, L. Zeng, P.-A. Gourdain, T.L. Rhodes, S. Kubota and G. Wang Dept. of Electrical

More information

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison Abstract Extensive new capabilities have been installed on the Pegasus ST facility. The laboratory has been completely reconfigured to separate all power systems from the main hall. Data acquisition, control,

More information

GA A22776 THE DESIGN AND PERFORMANCE OF WAVEGUIDE TRANSMISSION LINE COMPONENTS FOR PLASMA ELECTRON CYCLOTRON HEATING (ECH) SYSTEMS

GA A22776 THE DESIGN AND PERFORMANCE OF WAVEGUIDE TRANSMISSION LINE COMPONENTS FOR PLASMA ELECTRON CYCLOTRON HEATING (ECH) SYSTEMS GA A22776 THE DESIGN AND PERFORMANCE OF WAVEGUIDE TRANSMISSION LINE COMPONENTS FOR PLASMA ELECTRON CYCLOTRON HEATING (ECH) SYSTEMS by R.C. O Neill, J.L. Doane, C.P. Moeller, M. DiMartino, H.J. Grunloh,

More information

Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak

Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak 1 Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak C. Xiao 1), J. Morelli 1), A.K. Singh 1, 2), O. Mitarai 3), T. Asai 1), A. Hirose 1) 1) Department of Physics and

More information

Max-Planck-Institut für Plasmaphysik

Max-Planck-Institut für Plasmaphysik Max-Planck-Institut für Plasmaphysik STATUS OF THE NEW ECRH SYSTEM FOR ASDEX UPGRADE D. Wagner, G.Grünwald, F.Leuterer, F.Monaco, M.Münich, H.Schütz, F.Ryter, R. Wilhelm, H.Zohm, T.Franke Max-Planck-Institut

More information

Critical Problems in Plasma Heating/CD in large fusion devices and ITER

Critical Problems in Plasma Heating/CD in large fusion devices and ITER Critical Problems in Plasma Heating/CD in large fusion devices and ITER V.L. Vdovin RRC Kurchatov Institute, Institute of Nuclear Fusion Russia vdov@pike.pike.ru Abstract We identify critical problems

More information

Recent Results on Coupling Fast Waves to High Performance Plasmas on DIII-D

Recent Results on Coupling Fast Waves to High Performance Plasmas on DIII-D Recent Results on Coupling Fast Waves to High Performance Plasmas on DIII-D The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Poloidal Transport Asymmetries, Edge Plasma Flows and Toroidal Rotation in Alcator C-Mod

Poloidal Transport Asymmetries, Edge Plasma Flows and Toroidal Rotation in Alcator C-Mod Poloidal Transport Asymmetries, Edge Plasma Flows and Toroidal Rotation in B. LaBombard, J.E. Rice, A.E. Hubbard, J.W. Hughes, M. Greenwald, J. Irby, Y. Lin, B. Lipschultz, E.S. Marmar, K. Marr, C.S. Pitcher,

More information

FaDiS, a Fast Switch and Combiner for High-power Millimetre Wave Beams

FaDiS, a Fast Switch and Combiner for High-power Millimetre Wave Beams FaDiS, a Fast Switch and Combiner for High-power Millimetre Wave Beams W. Kasparek, M. Petelin, D. Shchegolkov, V. Erckmann 3, B. Plaum, A. Bruschi 4, ECRH groups at IPP Greifswald 3, FZK Karlsruhe 5,

More information

Development of a Multi-Purpose, Multi-Frequency Gyrotron for DEMO at KIT

Development of a Multi-Purpose, Multi-Frequency Gyrotron for DEMO at KIT KSTAR Conference 2015 February 25-27, 2015, Daejeon, Korea Development of a Multi-Purpose, Multi-Frequency Gyrotron for DEMO at KIT M. Thumm a,b, K.A. Avramidis a, J. Franck a, G. Gantenbein a, S. Illy

More information

Estimation of the Loss in the ECH Transmission Lines for ITER

Estimation of the Loss in the ECH Transmission Lines for ITER Estimation of the Loss in the ECH Transmission Lines for ITER S. T. Han, M. A. Shapiro, J. R. Sirigiri, D. Tax, R. J. Temkin and P. P. Woskov MIT Plasma Science and Fusion Center, MIT Building NW16-186,

More information

A Modular Commercial Tokamak Reactor with Day Long Pulses

A Modular Commercial Tokamak Reactor with Day Long Pulses PFC/JA-82-217 A Modular Commercial Tokamak Reactor with Day Long Pulses L. Bromberg, D.R. Cohn, and J.E. C. Williams Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Journal of Fusion

More information

TOROIDAL ALFVÉN EIGENMODES

TOROIDAL ALFVÉN EIGENMODES TOROIDAL ALFVÉN EIGENMODES S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK OUTLINE OF LECTURE 4 Toroidicity induced frequency gaps and Toroidal

More information

THE 110 GHz MICROWAVE HEATING SYSTEM ON THE DIII D TOKAMAK

THE 110 GHz MICROWAVE HEATING SYSTEM ON THE DIII D TOKAMAK GA A24333 THE 110 GHz MICROWAVE HEATING SYSTEM ON THE DIII D TOKAMAK by J. LOHR, R.W. CALLIS, J.L. DOANE, R.A. ELLIS, Y.A. GORELOV, K. KAJIWARA, D. PONCE, and R. PRATER JULY 2003 DISCLAIMER This report

More information

TESTS AND PERFORMANCE ON THE SIX GYROTRON SYSTEM ON THE DIII-D TOKAMAK

TESTS AND PERFORMANCE ON THE SIX GYROTRON SYSTEM ON THE DIII-D TOKAMAK GAMA241 68 TESTS AND PERFORMANCE ON THE SIX GYROTRON SYSTEM ON THE DIII-D TOKAMAK by J. LOHR, Y.A. GORELOV, K. KAJIWARA, D. PONCE, R.W. CALLIS, J.R. FERRON, C.M. GREENFIELD, R.J. LA HAYE, R.I. PINSKER,

More information

HIGH POWER HELICON ANTENNA DESIGN FOR DIII-D. R.C. O NEILL General Atomics San Diego, California, USA

HIGH POWER HELICON ANTENNA DESIGN FOR DIII-D. R.C. O NEILL General Atomics San Diego, California, USA HIGH POWER HELICON ANTENNA DESIGN FOR DIII-D R.C. O NEILL General Atomics San Diego, California, USA Email: oneill@fusion.gat.com M.W. BROOKMAN, J.S. DEGRASSIE, B. FISHLER, H. GRUNLOH, M. LESHER, C.P.

More information

Contributions of Advanced Design Activities to Fusion Research

Contributions of Advanced Design Activities to Fusion Research Contributions of Advanced Design Activities to Fusion Research Farrokh Najmabadi University of California San Diego Presentation to: VLT PAC Meeting February 24, 2003 General Atomics Electronic copy: http://aries.ucsd.edu/najmabadi/talks/

More information

The 10-MW ECR heating and current drive system for W7-X: First gyrotron operates at IPP- Greifswald. In this issue...

The 10-MW ECR heating and current drive system for W7-X: First gyrotron operates at IPP- Greifswald. In this issue... Published by Fusion Energy Division, Oak Ridge National Laboratory Building 5700 P.O. Box 2008 Oak Ridge, TN 37831-6169, USA Editor: James A. Rome Issue 91 March 2004 E-Mail: jar@ornl.gov Phone (865) 482-5643

More information