3.7 Grounding Design for EAST Superconducting Tokamak

Size: px
Start display at page:

Download "3.7 Grounding Design for EAST Superconducting Tokamak"

Transcription

1 3.7 Design for EAST Superconducting Tokamak LIU Zhengzhi Introduction system is a relevant part of the layout of Tokamak. It is important and indispensable for the system reliability and safety on the one hand, but on the other hand it is a difficult subject. has not been the precise technology yet at present and grounding design for Tokamak is not perfect up to now. Tokamak is too complicated to be grounded in a conventional way or according to some existent standards directly because it depends on too many different sub-systems and too many factors. Further more, ground-fault caused by lightening or accident is usually a small probability event, the experimental study and statistics roles are hard to be applied in Tokamak objectives Nevertheless it is obvious that the main objectives of grounding design in Tokamak here is to construct a common grounding plat-form for all sub-system to realize: Reliable operation Safety for both of equipment and human body Limiting damage in cases of any accident against over-current, over-voltage and Electro-Magnetic Impulse (in normal operation and fault condition; internal and external) Electro-Magnetic Compatibility (EMC) in a noisy and complicated electromagnetic environment Two types of grounding The grounding may be divided into two types according to its performance: Functional grounding, such as: Working-grounding, Shielding-grounding, Signalgrounding, and Logic-grounding. The Signal-grounding and Logic-grounding may be combined together as Low-level DC potential reference grounding. Protective grounding, such as: Safety-grounding, Lightning-protective-grounding, Static-protective grounding, and Erosion-protective grounding Basis of grounding design The design work of grounding system is based on: The general principle of grounding The engineering practice and progress of grounding The structure and characteristic of Tokamak The present statue and history of grounding in site of ASIPP The design and operational experience in different fusion devices (not so much been 193

2 published unfortunately) The existent standards and regulations (domestic GB China National Standard and international IEC Standard) about grounding in Architecture, Electrical Engineering and Electronics, Communication and Information Technology, and etc. are taken as reference Technical Requirements According to the principle and objectives of the grounding design as mentioned above its technical requirements are as the followings: 1) To keep the operation voltage of living parts under a certain allowed value (depending on the rating voltage and insulation level); 2) To limit the voltage differences of idle parts to ground and between each other; 3) To avoid any possible closed metallic circular circuit that is Electro-Magnetic coupled with plasma, especially in an air-core Tokamak; 4) To offer a low impedance branch for any possible fault current to limit its damage and limit the possible over-voltage as well; 5) To avoid the interference to low-level electronic system of measuring, diagnostics, control and data acquisition for EMC; 6) To protect the lightning and stroke back voltage in any fault conditions Structure The layout of experimental architectural complex of EAST is shown in Fig.1. The grounding system consists of -electrodes, -grids, -buses, -objects, and Lightning Protection as shown in Fig electrodes and -grids In each individual (isolated) building of the experimental architectural complex, the grounding-electrodes consist of the nature grounding-electrodes, (steel-bar in reinforced concrete), and the supplementary grounding-electrodes underground. The grounding-grid is formed by the steel- belt (50mm 5mm) in mesh of about 4m 6m and in depth of 0.6m to 1.0 m underground. A copper stub above the ground is connected to the grounding-grid in a proper position to form the grounding terminal. Among the experimental architectural complex, all of the grounding-grids in each individual building shall be connected at each grounding terminal by bus bar to form the general grounding-grid. The general grounding-grid of EAST consists of nearly all the experimental buildings in site except HV power station. All of the connections must be welded all together to make the grounding resistance as small as possible which is less than 0.5 Ω in EAST but not necessary in different sites or cases. 194

3 It should be treated as an individual building if the new buildings and the old buildings are closely adjacent to each other in site. In the design process the touch potential difference and the step potential difference, the thermal and dynamic stability for each sub-system, each equipment and connection must be checked up at worst fault conditions. Beside that the tours-base reinforcement (even stainless steel-bar used) should be electrically insulated with grounding net buses and -branches Above the ground the -buses are connected from the grounding terminal and distributed along the building. They can be divided into four types according to its functions and purpose: Working grounding G1, Shielding grounding g2, Low-level DC potential reference grounding g3, Safety grounding, Static-protective grounding and Equal-potential (equipotential) Bounding G4 (B). And the G1, G2, G3 should be open-circuited and insulated to ground and between each other. They should be connected to grounding terminal by one point, and only one point. On the contrary, the G4 should be close-circuited and re-connected to grounding grid and the steel-bar in reinforced concrete in multi-point (about in each 5 meter distant), but not one point. There are sub-grounding terminals on the grounding-buses in proper positions. And the grounding-branches are connected to the sub-grounding terminals in a certain area for grounding connections. There must be one re-connectable break at least in each grounding-branch at one subsystem for unwanted ground-loop detection. The simplified scheme of grounding-buses and its layout are shown in Fig. 3 and Fig objects -objects are grouped as four types as well. The working grounding G1: All electrical circuits should be connected with G1 in only one point directly or through a current limiting resistor. The magnets and its AC/DC converters are usually connected with G1 in the central point (or equivalent central point) to reduce the terminal potential difference. This potential difference should be within the ratings of magnets and converters. 195

4 All of the structure components of Tokamak device, such as bases, supports, thermal shields, cryostats, vacuum vessels, coil cases, etc. should be connected with G1 with one point through a current limiting resistor as well. The one point grounding is useful for ground loop detection and to limit ground current in fault conditions. And the current limiting resistor should be chosen as the potential within a safe value in fault conditions. Taking into account of the insulation level of sensors and electronic instruments attached on the structure, this safe potential may be limited as 500V to 1000V. Shielding grounding G2: All the screens of electronic devices and signal cables should be connected with G2 in only one point at transmitting end. Low-level grounding G3: It offers a relatively stable DC reference potential for all the electronics of measuring, diagnostics, control and data acquisition and should be connected with only one point at receiving end. This reference potential may vary somewhat during Tokamak operation but need not to be worried if it is used as a reference potential in a common grounding plat-form. Safety grounding and Equal-potential Bounding G4 (B): The metallic enclosure of all equipment, structure, pipes and plat-forms should be connected with G4. The TN-S system is applied in the three-phase AC low voltage mains (AC LV). The neutral and safety grounding in TN-S is separated. The neutral point of the low voltage transformer should be connected directly with G4. in only one point to limit the grounding voltage lower than 50 V (AC rms.) or less in case of grounding fault. All grounding objects should be connected to the grounding buses or ground branches by grounding conductors as shown in Fig.5. The grounding conductors should be as short and as firm as possible Lightening Protection The design of lightening protection depends on the local annual average Thunder-day and the project requirement. The annual average thunder-day (T d ) in Hefei city area is about 30 d/a (in middle level), and there is no special requirement for lightening protection in EAST. Taking the importance of the project into consideration, the second-class architecture has been thought as the design criterion of lightening protection. The lightening protection system usually consists of Air-termination system, Downconnector system, and Ground-termination system for each individual building. 196

5 The lightening protection system is one of the parts of the common-grounding system described as above. The ground-termination system is just the grounding-electrodes and grounding-grids of the same building. The air-termination system consists of the flashers and the lightning protection grids (40 4 steel-belt in 8m 12m mesh) on the roof. The main steel-bars of the pillars of building are used as the down-connector system except the old buildings where the extra down-conductors were laid before. The downconductors of the old building, which along the outer exposed wall should be kept up, but which along the inner wall of the building should be cut off. The main steel-bars of the reinforced concrete including each floor should be multi-point welded to form a sparse Faraday-cage. All the electronic equipment should be kept off the outer wall and the down-connector system more than 1m to 2m. The Surge Protection Devices (SPD), such as gaps and non-linear resistors should be applied for the protection of strike-back over-voltage Electro-Magnetic Compatibility (EMC) The EMC problems in fusion technology are becoming more difficult and important with the increase of size and complexity of the fusion machines itself. It is all because of the huge amounts of pulsed power required to initiate and heat plasma, the fast variation of main field, the stray fields produced in large volumes, the high voltage or high current modulator for additional heating and fast plasma control schemes. In general understanding, the Electro-Magnetic Interference (EMI) problems can be divided as three parts: Interference sources, such as pulse power, switching power supply, RF plant, dirty mains, some diagnostics, and etc, Interference victims, such as measurement & diagnostics, data acquisition & handling, control & protection, and etc, The unwanted and often unexpected coupling paths, including electromagnetic coupling, electrostatic coupling, magnetic coupling, conductive coupling, and dirty mains with spikes, dips, surges, and harmonics. So that the principle against EMI would be: Decrease of the intensity of interference sources, Increase of the capability of victims against interference, Cut-off of the coupling paths. And some measures are well known as the following: 197

6 Isolation The Electro-Magnetic Isolation and Optic-Electro Isolation are common used; Separate cable conduit should be designed for power cables and signal cables; The multi-wire power cables for AC power and the coaxial cable or coaxial bus-bar for DC power are preferable; The clean mains with isolated transformer and filter and surge suppressers are necessary for electronic equipment. Shielding All electronic equipment should be full screened; All signal cables should be full screened too, the twisted pair cables with individual screen and over-all screen are preferable; The metallic conduit or copper tube for signal cables is necessary usually. The full screen control cubicles or control room is effective. It is one of the essential parts of EMC just as described above. Protection It is also one of the essential parts of EMC as well. The Filter and SPD with high rating capability and fast response are necessary and especially for protection against Lightning Electromagnetic Impulse (LEP) Remarks in Construction The construction of grounding system should be carried out according to the blueprints and requirement of technical design. The unmentioned items on the technical files are treated on conventional regulations. Besides, some remarks in construction should be emphasized: All the installations or paths should be isolated if it might lead in or lead out the potential difference between the general grounding grid and any grounding grid outside. Any grounding grid out of the general grounding grid must be isolated totally and SPD should be set up for bonding of potential difference in any cases. All the metallic structures and pipes under grounding grid should be bonded. All the metallic structures, cables and pipes that pass through the interface of grounding grid should be bonded to the bonding bar of G4 (B) at the interface. The shields and armors of all power cables should be grounded to G4 (B) in both of two 198

7 terminals. All cables should be laid in cable conduits or pipes with screens. All the metallic structures and pipes in the cable conduits should be bonded too. The neutral line (N) and the safety grounding Line (G4) should be separated and insulated, and must not mixed up Summary According to the engineering experience and recent progress of grounding practice in civil engineering, electrical engineering and electronics, communication and information technology, and etc. the so called BDSGP (Bounding, Dividing, Shielding,, and Protection) system design has been proven as the most feasible and successful approach to realize EMC in a large and complicated environment. Based on the structure and characteristic of Tokamak, the design and operational practice of grounding system in the existent HT-7 superconducting Tokamak in ASIPP and different fusion devices world wide, the grounding design for EAST has been carried out and put into the system design of BDSGP. A common grounding plat-form has been designed and constructed for all sub-systems. Each sub-system should be responsible for the grounding connections itself according to the grounding design above. Particular attention should be paid to the analysis and protection design in fault conditions concerned with grounding in each sub-system, especially in power supplies, magnets, and AH/CD systems. As mentioned before, the grounding design for Tokamak has not been yet perfect up to now. There are still many arguments to be studied and discussed. There are still many problems to be solved or improved. It needs still great efforts. 199

8 Fig.1 The layout of EAST experimental architectural complex 200

9 objects objects objects Branches Sub- Terminals G1 G2 G3 Bus B Branches Sub- Terminals G1 G2 G3 Bus B Branches B Sub- Terminals G1 G2 G3 Bus Terminal Terminal Terminal Grid Grid Grid electrods electrods electrods Cryogenic Hall Experimental Hall AH/CD Hall Flashers-and lightning-protection gird Down conducters Fig.2 The structure of common grounding system of EAST 201

10 G3 G2 G1 B ACLV Fig.3 The simplified scheme of grounding-buses Fig.4 The layout of the grounding-buses HT-7U LVPS PS a DS O/E CS b c n o Rg G2 G1 G3 G4(B) PS:Power supply CS:Control system DS:Diganostic system LVPS:Low voltage power supply Fig.5 The illustration of grounding-objects of EAST 202

Grounding for EMC at the European XFEL

Grounding for EMC at the European XFEL Grounding for EMC at the European XFEL Herbert Kapitza, Hans-Jörg Eckoldt, Markus Faesing Deutsches Elektronensynchrotron (DESY) D-22603 Hamburg, Germany Email: herbert.kapitza@desy.de Abstract The European

More information

Tech Talk (12) Down to Earth: A Discussion of the General Requirements for the Earthing of Control and Instrumentation Systems

Tech Talk (12) Down to Earth: A Discussion of the General Requirements for the Earthing of Control and Instrumentation Systems 701880MAC0010.1177/0020294017701880 research-article2017 Contributed Paper Tech Talk (12) Down to Earth: A Discussion of the General Requirements for the Earthing of Control and Instrumentation Systems

More information

SDCS-03 DISTRIBUTION NETWORK GROUNDING CONSTRUCTION STANDARD (PART-I) UNDERGROUND NETWORK GROUNDING. Rev. 01

SDCS-03 DISTRIBUTION NETWORK GROUNDING CONSTRUCTION STANDARD (PART-I) UNDERGROUND NETWORK GROUNDING. Rev. 01 SDCS-03 DISTRIBUTION NETWORK GROUNDING CONSTRUCTION STANDARD (PART-I) UNDERGROUND NETWORK GROUNDING Rev. 01 This specification is property of SEC and subject to change or modification without any notice

More information

6. Internal lightning protection

6. Internal lightning protection 6. Internal lightning protection 6.1 Equipotential bonding for metal installations Equipotential bonding according to IEC 60364-4- 41 and IEC 60364-5-54 Equipotential bonding is required for all newly

More information

Grounding Systems and Their Implementation By: Charles Atkinson Canadian Broadcasting Corporation Toronto, Canada

Grounding Systems and Their Implementation By: Charles Atkinson Canadian Broadcasting Corporation Toronto, Canada Grounding Systems and Their Implementation By: Charles Atkinson Canadian Broadcasting Corporation Toronto, Canada and Philip Giddings Engineering Harmonics Toronto, Canada The original document and figures

More information

Electromagnetic and Radio Frequency Interference (EMI/RFI) Considerations For Nuclear Power Plant Upgrades

Electromagnetic and Radio Frequency Interference (EMI/RFI) Considerations For Nuclear Power Plant Upgrades Electromagnetic and Radio Frequency Interference (EMI/RFI) Considerations For Nuclear Power Plant Upgrades November 9, 2016 Presented to: Presented by: Chad Kiger EMC Engineering Manager ckiger@ams-corp.com

More information

Power Quality. Case Study. Conrad Bottu Laborelec January 2008

Power Quality. Case Study. Conrad Bottu Laborelec January 2008 Case Study Electromagnetic compatibility (EMC) study Breakdown of low voltage electronic equipment in a 25 kv substation Conrad Bottu Laborelec January 2008 Power Quality Power Quality 1 Introduction Description

More information

Safety Issues Caused by High Earth Resistance and Identifying Them Using Instruments

Safety Issues Caused by High Earth Resistance and Identifying Them Using Instruments Safety Issues Caused by High Earth Resistance and Identifying Them Using Instruments Thomas Szollossy Senior Technical Support Engineer Power Quality Thailand PQSynergy 2017, Chiang Mai, Thailand Introduction

More information

EMC Philosophy applied to Design the Grounding Systems for Gas Insulation Switchgear (GIS) Indoor Substation

EMC Philosophy applied to Design the Grounding Systems for Gas Insulation Switchgear (GIS) Indoor Substation EMC Philosophy applied to Design the Grounding Systems for Gas Insulation Switchgear (GIS) Indoor Substation Marcos Telló Department of Electrical Engineering Pontifical Catholic University of Rio Grande

More information

CHAPTER 15 GROUNDING REQUIREMENTS FOR ELECTRICAL EQUIPMENT

CHAPTER 15 GROUNDING REQUIREMENTS FOR ELECTRICAL EQUIPMENT CHAPTER 15 GROUNDING REQUIREMENTS FOR ELECTRICAL EQUIPMENT A. General In a hazardous location grounding of an electrical power system and bonding of enclosures of circuits and electrical equipment in the

More information

Agenda. Earthing of Telecom Installations using Single Point Earthing. Reference Documents. How many earths? Earthing Issue...

Agenda. Earthing of Telecom Installations using Single Point Earthing. Reference Documents. How many earths? Earthing Issue... Earthing of Telecom Installations using Single Point Earthing R. Saji Kumar DGM (IT) O/o The Chief General Manager Trivandrum Agenda Reference Documents Earthing Issue & the Problems Earthing Principle

More information

Overview of the ATLAS Electromagnetic Compatibility Policy

Overview of the ATLAS Electromagnetic Compatibility Policy Overview of the ATLAS Electromagnetic Compatibility Policy G. Blanchot CERN, CH-1211 Geneva 23, Switzerland Georges.Blanchot@cern.ch Abstract The electromagnetic compatibility of ATLAS electronic equipments

More information

AC Motor Drives EMC Standard Installation Guide EMC Compliance Practice

AC Motor Drives EMC Standard Installation Guide EMC Compliance Practice http://www.delta.com.tw/industrialautomation/ AC Motor Drives EMC Standard Installation Guide EMC Compliance Practice i Preface When an AC motor drive is installed in a noisy environment, radiated and/or

More information

SDCS-03 DISTRIBUTION NETWORK GROUNDING CONSTRUCTION STANDARD (PART-II) OVERHEAD NETWORK GROUNDING. Rev. 01

SDCS-03 DISTRIBUTION NETWORK GROUNDING CONSTRUCTION STANDARD (PART-II) OVERHEAD NETWORK GROUNDING. Rev. 01 SEC DISTRIBUTION GROUNDING STANDARD SDCS-03 Part-II Rev.01 SDCS-03 DISTRIBUTION NETWORK GROUNDING CONSTRUCTION STANDARD (PART-II) OVERHEAD NETWORK GROUNDING Rev. 01 This specification is property of SEC

More information

Research on State Estimation and Information Processing Method for Intelligent Substation

Research on State Estimation and Information Processing Method for Intelligent Substation , pp.89-93 http://dx.doi.org/10.14257/astl.2015.83.17 Research on State Estimation and Information Processing Method for Intelligent Substation Tongwei Yu 1, Xingchao Yang 2 1 Electric Power Research Institute,

More information

Wisconsin Contractors Institute Continuing Education

Wisconsin Contractors Institute Continuing Education IMPORTANT NOTE: You should have received an email from us with a link and password to take your final exam online. Please check your email for this link. Be sure to check your spam folder as well. If you

More information

Application Note # 5438

Application Note # 5438 Application Note # 5438 Electrical Noise in Motion Control Circuits 1. Origins of Electrical Noise Electrical noise appears in an electrical circuit through one of four routes: a. Impedance (Ground Loop)

More information

Grounding for Power Quality

Grounding for Power Quality Presents Grounding for Power Quality Grounding for Power Quality NEC 250.53 states that ground resistance should be less than 25 ohms. Is this true? Grounding for Power Quality No! NEC 250.53 states

More information

Field Instruction. Induced voltages can occur in overhead lines, underground cables, or in switchyards.

Field Instruction. Induced voltages can occur in overhead lines, underground cables, or in switchyards. 8.3 Induced Voltage Purpose The purpose of this instruction is to provide awareness of Electrostatic and Electromagnetic induced voltages and the method required to reduce or eliminate it. An induced voltage

More information

RADIO AND TELEVISION SATELLITE EQUIPMENT

RADIO AND TELEVISION SATELLITE EQUIPMENT ARTICLE 810 RADIO AND TELEVISION SATELLITE EQUIPMENT Introduction to Article 810 Radio and Television Satellite Equipment This article covers transmitter and receiver (antenna) equipment and the wiring

More information

TEST REPORT... 1 CONTENT...

TEST REPORT... 1 CONTENT... CONTENT TEST REPORT... 1 CONTENT... 2 1 TEST RESULTS SUMMARY... 3 2 EMC RESULTS CONCLUSION... 4 3 LABORATORY MEASUREMENTS... 6 4 EMI TEST... 7 4.1 CONTINUOUS CONDUCTED DISTURBANCE VOLTAGE TEST... 7 4.2

More information

Lightning Strikes. Presented to the Greater Norwalk Amateur Radio Corporation Inc. February 8, 2017 Steven M. Simons W1SMS

Lightning Strikes. Presented to the Greater Norwalk Amateur Radio Corporation Inc. February 8, 2017 Steven M. Simons W1SMS Lightning Strikes Presented to the Greater Norwalk Amateur Radio Corporation Inc. February 8, 2017 Steven M. Simons W1SMS ARRL CT State Technical Coordinator The Power of Lightning What is a Ground? Design

More information

Alternative Coupling Method for Immunity Testing of Power Grid Protection Equipment

Alternative Coupling Method for Immunity Testing of Power Grid Protection Equipment Alternative Coupling Method for Immunity Testing of Power Grid Protection Equipment Christian Suttner*, Stefan Tenbohlen Institute of Power Transmission and High Voltage Technology (IEH), University of

More information

The Role of the Grounding System in Electronics Lightning Protection

The Role of the Grounding System in Electronics Lightning Protection ILPS 2016 - International Lightning Protection Symposium April 21-22, 2016 Porto Portugal The Role of the Grounding System in Electronics Lightning Protection Roberto Menna Barreto SEFTIM Brazil Rio de

More information

Grounding, Shielding and Power Distribution in LHCb

Grounding, Shielding and Power Distribution in LHCb Grounding, Shielding and Power Distribution in LHCb LHCB Technical Note Issue: released Revision: 6 Reference: LHCb 2004-039 Created: Jan. 2001 Last modified: May 2004 Prepared By: Vincent Bobillier, Jorgen

More information

Lumped Network Model of a Resistive Type High T c fault current limiter for transient investigations

Lumped Network Model of a Resistive Type High T c fault current limiter for transient investigations Lumped Network Model of a Resistive Type High T c fault current limiter for transient investigations Ricard Petranovic and Amir M. Miri Universität Karlsruhe, Institut für Elektroenergiesysteme und Hochspannungstechnik,

More information

EMI Installation Guidelines

EMI Installation Guidelines EMI Installation Guidelines Although Red Lion Controls Products are designed with a high degree of immunity to Electromagnetic Interference (EMI), proper installation and wiring methods must be followed

More information

Overview of EMC Regulations and Testing. Prof. Tzong-Lin Wu Department of Electrical Engineering National Taiwan University

Overview of EMC Regulations and Testing. Prof. Tzong-Lin Wu Department of Electrical Engineering National Taiwan University Overview of EMC Regulations and Testing Prof. Tzong-Lin Wu Department of Electrical Engineering National Taiwan University What is EMC Electro-Magnetic Compatibility ( 電磁相容 ) EMC EMI (Interference) Conducted

More information

Surge Protection and Grounding Issues

Surge Protection and Grounding Issues Surge Protection and Grounding Issues Presented to SCTE Chicago Chapter January 21, 2004 By: Nisar Chaudhry VP Electrical Engineering, CTO Introduction Transients caused by disturbances on the power lines

More information

American Electrical Institute

American Electrical Institute American Electrical Institute Oregon Electricians Continuing Education Grounding & Bonding (Article 250) 4 Hours American Electrical Institute PO Box 31131 Spokane, WA 99223 www.aeitraining.com Article

More information

10. DISTURBANCE VOLTAGE WITHSTAND CAPABILITY

10. DISTURBANCE VOLTAGE WITHSTAND CAPABILITY 9. INTRODUCTION Control Cabling The protection and control equipment in power plants and substations is influenced by various of environmental conditions. One of the most significant environmental factor

More information

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies 1 Definitions EMI = Electro Magnetic Interference EMC = Electro Magnetic Compatibility (No EMI) Three Components

More information

EMC filters. Mounting instructions. Date: January 2006

EMC filters. Mounting instructions. Date: January 2006 Date: January 2006 EPCOS AG 2006. Reproduction, publication and dissemination of this data sheet and the information contained therein without EPCOS prior express consent is prohibited. EMC cannot be assured

More information

HV Module Systems for Testing, Training and Research

HV Module Systems for Testing, Training and Research HV Module Systems for Testing, Training and Research 4.0/3 Application Advantages Principle of HV circuit Smaller high-voltage (HV) test systems are necessary for research, development and quality testing

More information

Minimizing Lightning and Static Discharge in Broadcasting

Minimizing Lightning and Static Discharge in Broadcasting Minimizing Lightning and Static Discharge in Broadcasting Lightning and static discharge represent two of the most damaging and unpredictable events faced by broadcasters. Together or separately they are

More information

2/15/2015. Current will always try to return to its source. In order for there to be current, there must be a complete circuit

2/15/2015. Current will always try to return to its source. In order for there to be current, there must be a complete circuit Current will always try to return to its source In order for there to be current, there must be a complete circuit Current will take as many paths or circuits available to it to return to the source The

More information

Industrial and Commercial Power Systems Topic 7 EARTHING

Industrial and Commercial Power Systems Topic 7 EARTHING The University of New South Wales School of Electrical Engineering and Telecommunications Industrial and Commercial Power Systems Topic 7 EARTHING 1 INTRODUCTION Advantages of earthing (grounding): Limitation

More information

UBC Technical Guidelines Section Edition Medium-Voltage Transformers Page 1 of 5

UBC Technical Guidelines Section Edition Medium-Voltage Transformers Page 1 of 5 Page 1 of 5 1.0 GENERAL 1.1 Coordination Requirements.1 UBC Energy & Water Services.2 UBC Building Operations 1.2 Description.1 UBC requirements for Substation Transformers. 2.0 MATERIAL AND DESIGN REQUIREMENTS

More information

Understanding Noise Cut Transformers

Understanding Noise Cut Transformers 2014 Understanding Noise Cut Transformers By Quality Transformer and Electronics James Nealon Understanding Noise Cut Transformers By Quality Transformer and Electronics Engineering and Sales Staff Quality

More information

CONTINUING EDUC ATION

CONTINUING EDUC ATION 3 CONTINUING EDUC ATION FOR WISCONSIN ELECTRICIANS 2017 NEC Article 250 2 Hours WISCONSIN CONTRACTORS INSTITUTE N16 W23217 Stone Ridge Drive Suite 290 Waukesha, WI 53188 262-409-4282 www.wcitraining.com

More information

Implement lightning survivability in the design of launch vehicles to avoid lightning induced failures.

Implement lightning survivability in the design of launch vehicles to avoid lightning induced failures. PREFERRED RELIABILITY PRACTICES PRACTICE NO. PD-ED-1231 PAGE 1OF 7 DESIGN CONSIDERATIONS FOR LIGHTNING STRIKE Practice: Implement lightning survivability in the design of launch vehicles to avoid lightning

More information

SERIES K: PROTECTION AGAINST INTERFERENCE

SERIES K: PROTECTION AGAINST INTERFERENCE International Telecommunication Union ITU-T K.21 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (04/2008) SERIES K: PROTECTION AGAINST INTERFERENCE Resistibility of telecommunication equipment installed

More information

EC6011-ELECTROMAGNETICINTERFERENCEANDCOMPATIBILITY

EC6011-ELECTROMAGNETICINTERFERENCEANDCOMPATIBILITY EC6011-ELECTROMAGNETICINTERFERENCEANDCOMPATIBILITY UNIT-3 Part A 1. What is an opto-isolator? [N/D-16] An optoisolator (also known as optical coupler,optocoupler and opto-isolator) is a semiconductor device

More information

3.4 Poloidal Field Power Supply Systems for the EAST Steady State Superconducting Tokamak

3.4 Poloidal Field Power Supply Systems for the EAST Steady State Superconducting Tokamak 3.4 Poloidal Field Power Supply Systems for the EAST Steady State Superconducting Tokamak FU Peng 3.4.1 Introduction The EAST superconducting tokamak is an advanced steady state experimental device being

More information

7P Series - Surge Protection Device (SPD) Features 7P P P

7P Series - Surge Protection Device (SPD) Features 7P P P Features 7P.09.1.255.0100 7P.01.8.260.1025 7P.02.8.260.1025 SPD Type 1+2 Surge arrester range - single phase system / three phase system Surge arresters suitable in low-voltage applications in order to

More information

SERIES K: PROTECTION AGAINST INTERFERENCE

SERIES K: PROTECTION AGAINST INTERFERENCE International Telecommunication Union ITU-T K.21 TELECOMMUNICTION STNDRDIZTION SECTOR OF ITU (11/2011) SERIES K: PROTECTION GINST INTERFERENCE Resistibility of telecommunication equipment installed in

More information

Licensed Electricians Practical Assessment (LEP)

Licensed Electricians Practical Assessment (LEP) Licensed Electricians Practical Assessment (LEP) Surname: Given Names: Date: Time: Location: Assessment Time (includes reading and preparation time): At the end of this time you will be asked to stop.

More information

Earthing for EMC in Installations

Earthing for EMC in Installations Earthing for EMC in Installations Ian McMichael n 1 PQSynergy 2010 Conference Earthing for EMC in Installations Introduction Electromagnetic Compatibility or EMC EMC and installations Standards and References

More information

ITU-T K.27. Bonding configurations and earthing inside a telecommunication building SERIES K: PROTECTION AGAINST INTERFERENCE

ITU-T K.27. Bonding configurations and earthing inside a telecommunication building SERIES K: PROTECTION AGAINST INTERFERENCE I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T K.27 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (03/2015) SERIES K: PROTECTION AGAINST INTERFERENCE Bonding configurations

More information

Article 250 Grounding & Bonding

Article 250 Grounding & Bonding Article 250 Grounding & Bonding AMERICAN ELECTRICAL INSTITUTE N16 W23217 Stone Ridge Dr. Waukesha, WI 53188 855-780-5046 www.aeitraining.com DISCLAIMER NOTE: This course is APPROVED for continuing education

More information

One-day Conference 18 March Power Supply, EMC and Signalling, in Railway Systems

One-day Conference 18 March Power Supply, EMC and Signalling, in Railway Systems One-day Conference 18 March 2017 Power Supply, EMC and Signalling, in Railway Systems EMC Management and Related Technical Aspects in Railway Systems By Dr Peter S W LEUNG http://www.ee.cityu.edu.hk/~pswleung/

More information

Contents. 1 Introduction. 2 System-Level Electrostatic Discharge (ESD) and Electrical Fast Transient. 3 Electromagnetic Interference

Contents. 1 Introduction. 2 System-Level Electrostatic Discharge (ESD) and Electrical Fast Transient. 3 Electromagnetic Interference Issue 3, October 2002 Electromagnetic Compatibility and Electrical Safety Contents Telcordia GR-1089 - Documentation Information Generic Requirements Notice Of Disclaimer................. iii Contents.......................................

More information

Technical information Release 07/2010. Cable management systems for improvement of EMC

Technical information Release 07/2010. Cable management systems for improvement of EMC Technical information Release 07/2010 Cable management systems for improvement of EMC Definition of electromagnetic compatibility (EMC) In recent years, the use of electronic circuits has increased continually.

More information

Single Channel Loop Vehicle detector User Manual

Single Channel Loop Vehicle detector User Manual Single Channel Loop Vehicle detector User Manual 1 Introduction CE-L02-J9 is a single channel digital inductive loop vehicle detector. It is used to identify the presence of vehicle by means of an inductive

More information

Anti Interference Technology. Of Relay Protection System

Anti Interference Technology. Of Relay Protection System Anti Interference Technology Of Relay Protection System Author s name: Liulyu Address: No.5, Shanghai Road, Xiangshan District, Guilin City, Guangxi,China E-mail:42099256@qq.com ABSTRACT Relay protection

More information

Use optocouplers for safe and reliable electrical systems

Use optocouplers for safe and reliable electrical systems 1 di 5 04/01/2013 10.15 Use optocouplers for safe and reliable electrical systems Harold Tisbe, Avago Technologies Inc. 1/2/2013 9:06 AM EST Although there are multiple technologies--capacitive, magnetic,

More information

Table of Contents. 1 Introduction. 2 System-Level Electrostatic Discharge (ESD) and Electrical Fast Transient (EFT) 3 Electromagnetic Interference

Table of Contents. 1 Introduction. 2 System-Level Electrostatic Discharge (ESD) and Electrical Fast Transient (EFT) 3 Electromagnetic Interference Electromagnetic Compatibility and Electrical Safety GR-1089-CORE Table of Contents Table of Contents 1 Introduction 1.1 Purpose and Scope.................................. 1 1 1.2 Items Not Covered in

More information

Specification. CTR 2 ESD calibration target

Specification. CTR 2 ESD calibration target Specification CTR 2 ESD calibration target IEC 61000-4-2 IEC 61000-4-2 77B/378/CDV ISO CD 10605 N1347 The CTR 2 is a coaxial current target to monitor Electro Static Discharges as required in the draft

More information

EMI Protection De sign Guideline

EMI Protection De sign Guideline 6/22/66 IINDIX IYSTIMS DIVISION ANN ARIOR, MICH. EMI Protection De sign Guideline PAGI 1 Of' PAGIS Task 97111-02-02-2-00 1. 0 INTRODUCTION This EMI Protection Design Guidelines report has been prepared

More information

(2) New Standard IEEE P (3) Core : (4) Windings :

(2) New Standard IEEE P (3) Core : (4) Windings : (d) Electrical characteristics (such as short-circuit withstand, commutating reactance, more number of windings, etc); (e) Longer life expectancy; (f) Energy efficiency; (g) more demanding environment.

More information

Charge-Sensing Particle Detector PN 2-CB-CDB-PCB

Charge-Sensing Particle Detector PN 2-CB-CDB-PCB Charge-Sensing Particle Detector PN 2-CB-CDB-PCB-001-011 Introduction The charge-sensing particle detector (CSPD, Figure 1) is a highly charge-sensitive device intended to detect molecular ions directly.

More information

ITU-T K.40. Protection against lightning electromagnetic pulses in telecommunication centres SERIES K: PROTECTION AGAINST INTERFERENCE

ITU-T K.40. Protection against lightning electromagnetic pulses in telecommunication centres SERIES K: PROTECTION AGAINST INTERFERENCE I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T K.40 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (01/2018) SERIES K: PROTECTION AGAINST INTERFERENCE Protection against lightning

More information

) ROTECTION AGAINST,%-0 IN TELECOMMUNICATIONS CENTRES SERIES K: PROTECTION AGAINST INTERFERENCE. ITU-T Recommendation K.40

) ROTECTION AGAINST,%-0 IN TELECOMMUNICATIONS CENTRES SERIES K: PROTECTION AGAINST INTERFERENCE. ITU-T Recommendation K.40 INTERNATIONAL TELECOMMUNICATION UNION )454 + TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (10/96) SERIES K: PROTECTION AGAINST INTERFERENCE 0ROTECTION AGAINST,%-0 IN TELECOMMUNICATIONS CENTRES ITU-T

More information

Transmission of Electrical Energy

Transmission of Electrical Energy Transmission of Electrical Energy Electrical energy is carries by conductors such as overhead transmission lines and underground cables. The conductors are usually aluminum cable steel reinforced (ACSR),

More information

CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION)

CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION) 147 CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION) 6.1 INTRODUCTION The electrical and electronic devices, circuits and systems are capable of emitting the electromagnetic

More information

Stake-less earth / ground testing

Stake-less earth / ground testing APPLICATION NOTE Stake-less earth / ground testing NEW DET14C and DET24C CLAMPS GETTING-AROUND ANY CHALLENGE What is stake-less testing? How does it work? Where and how can it be used? What are the potential

More information

Application Note (Revision NEW) Original Instructions. EMI Control in Electronic Governing Systems

Application Note (Revision NEW) Original Instructions. EMI Control in Electronic Governing Systems Application Note 50532 (Revision NEW) Original Instructions EMI Control in Electronic Governing Systems General Precautions Read this entire manual and all other publications pertaining to the work to

More information

Millikelvin measurement platform for SQUIDs and cryogenic sensors

Millikelvin measurement platform for SQUIDs and cryogenic sensors Cryoconference 2010 Millikelvin measurement platform for SQUIDs and cryogenic sensors M. Schmidt, J. Beyer, D. Drung, J.-H. Storm Physikalisch-Technische Bundesanstalt, Abbe Str. 2-22, 10587 Berlin, Germany

More information

Copenhagen, May 17 th Light Rail and EMC. Dr.-Ing. Lorenz Jung, Siemens AG, Mobility Division. Siemens AG 2016 All rights reserved.

Copenhagen, May 17 th Light Rail and EMC. Dr.-Ing. Lorenz Jung, Siemens AG, Mobility Division. Siemens AG 2016 All rights reserved. Copenhagen, May 17 th 2016 Light Rail and EMC Dr.-Ing. Lorenz Jung, Siemens AG, siemens.com Contents Light Rail and EMC (Management and special Topics) EMC: Definition and Coupling Model Normative EMC

More information

POWER DELEGATOR SERIES 7200A POWER DISTRIBUTION UNIT WITH POWER CONDITIONING GENERAL SPECIFICATIONS

POWER DELEGATOR SERIES 7200A POWER DISTRIBUTION UNIT WITH POWER CONDITIONING GENERAL SPECIFICATIONS POWER DELEGATOR SERIES 7200A POWER DISTRIBUTION UNIT WITH POWER CONDITIONING GENERAL SPECIFICATIONS 1.0 SCOPE The following specification describes the features, design, and application of the Series 7200A

More information

Control Cable installation: Best Practice

Control Cable installation: Best Practice Control Cable installation: Best Practice Years of experience has taught Irri-Gator Product s technical personnel that it is virtually impossible to predict an installation s sensitivity to surges (whether

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 60728-11 1997 AMENDMENT 1 2000-10 Amendment 1 Cabled distribution systems for television and sound signals Part 11: Safety Amendement 1 Systèmes de distribution par câbles destinés

More information

SRA 2250/6 RESISTOR ARS-01 RESISTOR AUTOMATICS

SRA 2250/6 RESISTOR ARS-01 RESISTOR AUTOMATICS ELECTRICAL ENGINEERING DIVISION Distribution Network Department SRA 2250/6 RESISTOR ARS-01 RESISTOR AUTOMATICS ELA T150.2 en SRA 2250/6 Resistor specification The SRA 2250/6 Resistor is intended to increase

More information

WIRELESS INSULATOR POLLUTION MONITORING SYSTEM

WIRELESS INSULATOR POLLUTION MONITORING SYSTEM SYSTEM OVERVIEW Pollution monitoring of high voltage insulators in electrical power transmission and distribution systems, switchyards and substations is essential in order to minimise the risk of power

More information

INTERNATIONAL TELECOMMUNICATION UNION SERIES K: PROTECTION AGAINST INTERFERENCE

INTERNATIONAL TELECOMMUNICATION UNION SERIES K: PROTECTION AGAINST INTERFERENCE INTERNTIONL TELECOMMUNICTION UNION TELECOMMUNICTION STNDRDIZTION SECTOR OF ITU K.21 (10/2000) SERIES K: PROTECTION GINST INTERFERENCE Resistibility of telecommunication equipment installed in customer

More information

)454 + "/.$).' #/.&)'52!4)/.3!.$ %!24().' ).3)$%! 4%,%#/--5.)#!4)/. "5),$).' 02/4%#4)/.!'!).34 ).4%2&%2%.#% )454 Recommendation +

)454 + /.$).' #/.&)'52!4)/.3!.$ %!24().' ).3)$%! 4%,%#/--5.)#!4)/. 5),$).' 02/4%#4)/.!'!).34 ).4%2&%2%.#% )454 Recommendation + INTERNATIONAL TELECOMMUNICATION UNION )454 + TELECOMMUNICATION (05/96) STANDARDIZATION SECTOR OF ITU 02/4%#4)/.!'!).34 ).4%2&%2%.#% "/.$).' #/.&)'52!4)/.3!.$ %!24().' ).3)$%! 4%,%#/--5.)#!4)/. "5),$).'

More information

Licensed Electricians Practical Assessment (LEP)

Licensed Electricians Practical Assessment (LEP) Licensed Electricians Practical Assessment (LEP) Surname: Date: Given Names: Time: Assessment Time (includes 10 minutes reading time): At the end of this time you will be asked to stop. 4 hours Have you

More information

GROUNDED ELECTRICAL POWER DISTRIBUTION. Excerpt from Inverter Charger Series Manual BY: VIJAY SHARMA ENGINEER

GROUNDED ELECTRICAL POWER DISTRIBUTION. Excerpt from Inverter Charger Series Manual BY: VIJAY SHARMA ENGINEER GROUNDED ELECTRICAL POWER DISTRIBUTION Excerpt from Inverter Charger Series Manual BY: VIJAY SHARMA ENGINEER .0 Conductors for Electrical Power Distribution For single-phase transmission of AC power or

More information

WHY YOU NEED A CURRENT BALUN

WHY YOU NEED A CURRENT BALUN HF OPERATORS WHY YOU NEED A CURRENT BALUN by John White VA7JW NSARC HF Operators 1 What is a Balun? A BALUN is a device typically inserted at the feed point of a dipole-like antenna wire dipoles, Yagi

More information

Field Instrument Cable. Electrical Noise

Field Instrument Cable. Electrical Noise Field Instrument Cable Electrical Noise 1 Electrical Noise Instrument Cables are Susceptible to 4 Types of Noise: Static Magnetic Cross-Talk Common Mode 2 Static Noise Static Noise is caused by an electric

More information

Overview of Grounding for Industrial and Commercial Power Systems Presented By Robert Schuerger, P.E.

Overview of Grounding for Industrial and Commercial Power Systems Presented By Robert Schuerger, P.E. Overview of Grounding for Industrial and Commercial Power Systems Presented By Robert Schuerger, P.E. HP Critical Facility Services delivered by EYP MCF What is VOLTAGE? Difference of Electric Potential

More information

150Hz to 1MHz magnetic field coupling to a typical shielded cable above a ground plane configuration

150Hz to 1MHz magnetic field coupling to a typical shielded cable above a ground plane configuration 150Hz to 1MHz magnetic field coupling to a typical shielded cable above a ground plane configuration D. A. Weston Lowfreqcablecoupling.doc 7-9-2005 The data and information contained within this report

More information

Conduit measured transfer impedance and shielding effectiveness (typically achieved in the RS103 and CS114 tests)

Conduit measured transfer impedance and shielding effectiveness (typically achieved in the RS103 and CS114 tests) Conduit measured transfer impedance and shielding effectiveness (typically achieved in the RS3 and CS4 tests) D. A. Weston K. McDougall conduitse.doc 5-2-27 The data and information contained within this

More information

The Generators and Electric Motor Monitoring and Diagnostics Systems

The Generators and Electric Motor Monitoring and Diagnostics Systems The Generators and Electric Motor Monitoring and Diagnostics Systems MDR and PGU-DM 1 The «MDR» - Motor Diagnostics Relay the Universal System for Insulation Monitoring in Electric Machines PD-Monitor

More information

Safety earthing. Sector Energy PTI NC. Copyright Siemens AG All rights reserved. Theodor Connor

Safety earthing. Sector Energy PTI NC. Copyright Siemens AG All rights reserved. Theodor Connor Safety earthing Sector Energy PTI NC Theodor Connor Copyright Siemens AG 2008. All rights reserved. Content Introduction Theoretical background Soil Analysis Design of earthing system Measurements on earthing

More information

THE FIELDS OF ELECTRONICS

THE FIELDS OF ELECTRONICS THE FIELDS OF ELECTRONICS THE FIELDS OF ELECTRONICS Understanding Electronics Using Basic Physics Ralph Morrison A Wiley-Interscience Publication JOHN WILEY & SONS, INC. This book is printed on acid-free

More information

High precision measurement system for current and voltage IHC-A/B-RM01/03

High precision measurement system for current and voltage IHC-A/B-RM01/03 Measurement Offset-free and low-noise 16 bit data acquisition system ISA-ASIC Internal sample rate 3,500 Hz Communication Standard RS232- or RS485 interface Advantages Direct measurement on the bus bar

More information

Method for Static and Dynamic Resistance Measurements of HV Circuit Breaker

Method for Static and Dynamic Resistance Measurements of HV Circuit Breaker Method for Static and Dynamic Resistance Measurements of HV Circuit Breaker Zoran Stanisic Megger Sweden AB Stockholm, Sweden Zoran.Stanisic@megger.com Abstract S/DRM testing methods usually use long,

More information

High Votage Module AC/DC/Impulse Test System

High Votage Module AC/DC/Impulse Test System TSGADI Series High Votage Module AC/DC/Impulse Test System A digital control and measuring system is used to be control the difference output AC/DC/Impulse and related protection device such as over voltage

More information

1 Introduction. 1.1 General installation information

1 Introduction. 1.1 General installation information 1 Introduction Nearly every electrical component emits electromagnetic radiation during its operation. This has effects on the quality of the useful signals especially at the communication level, in which

More information

Suppression of Powerline Noise with Isolation Transformers

Suppression of Powerline Noise with Isolation Transformers Published and presented at EMC EXPO87, May 19-21, 1987, San Diego, CA Abstract Suppression of Powerline Noise with Isolation Transformers Bruce C. Gabrielson and Mark J. Reimold Sachs/Freeman Associates,

More information

Grounding and Bonding

Grounding and Bonding Grounding and Bonding 2017 Communications Academy Joe Blaschka Jr., PE Grounding/Bonding What is it? Why do we do it? What does the National Electrical Code say? What about fixed locations? What about

More information

Power systems 2: Transformation

Power systems 2: Transformation Power systems 2: Transformation Introduction In this series of articles, we will be looking at each of the main stages of the electrical power system in turn. s you will recall from our Introduction to

More information

The Lightning Event. White Paper

The Lightning Event. White Paper The Lightning Event White Paper The Lightning Event Surge Protection Solutions for PTC 1 The Lightning Event There are volumes of information available on what we believe lightning is and how we think

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 621213 QUESTION BANK -------------------------------------------------------------------------------------------------------------- Sub. Code : EE2353 Semester

More information

EMC TEST REPORT. for. Coliy Technology Co.,Ltd. Fluxgate Gaussmeter

EMC TEST REPORT. for. Coliy Technology Co.,Ltd. Fluxgate Gaussmeter Page 1 of 48 EMC TEST REPORT for Coliy Technology Co.,Ltd. Fluxgate Gaussmeter Prepared for : Coliy Technology Co.,Ltd. Address : Block B,9 th Floor,Xinzhongtai Business Building,Gushu 2nd Road,Xi Town,Bao

More information

Grounding and Lightning arrestors

Grounding and Lightning arrestors CHAPTER - Four Grounding and Lightning arrestors 4.1. Introduction Electrical connection of neutral point of a supply system or the non current carrying part of electrical equipments to the general mass

More information

Primary Metering. What is Primary Metering?

Primary Metering. What is Primary Metering? NWEMS Primary Metering August 22, 2018 Bill Unbehaun, Tacoma Power Exchanging Expertise Since 1893 What is Primary Metering? Metering energy flow past a point at high voltage above 600v Both PTs and CTs

More information

Designing an MR compatible Time of Flight PET Detector Floris Jansen, PhD, Chief Engineer GE Healthcare

Designing an MR compatible Time of Flight PET Detector Floris Jansen, PhD, Chief Engineer GE Healthcare GE Healthcare Designing an MR compatible Time of Flight PET Detector Floris Jansen, PhD, Chief Engineer GE Healthcare There is excitement across the industry regarding the clinical potential of a hybrid

More information

GIS Instrument Transformers: EMC Conformity Tests for a Reliable Operation in an Upgraded Substation

GIS Instrument Transformers: EMC Conformity Tests for a Reliable Operation in an Upgraded Substation GIS Instrument Transformers: EMC Conformity Tests for a Reliable Operation in an Upgraded Substation W. Buesch 1) G. Palmieri M.Miesch J. Marmonier O. Chuniaud ALSTOM LTD 1) ALSTOM LTD High Voltage Equipment

More information