IMO WORLD-WIDE RADIONAVIGATION SYSTEM (WWRNS) GALILEO receiver performance standards. Submitted by the European Commission

Size: px
Start display at page:

Download "IMO WORLD-WIDE RADIONAVIGATION SYSTEM (WWRNS) GALILEO receiver performance standards. Submitted by the European Commission"

Transcription

1 INTERNATIONAL MARITIME ORGANIZATION E IMO SUB-COMMITTEE ON SAFETY OF NAVIGATION 50th session Agenda item 13 2 April 2004 Original: ENGLISH WORLD-WIDE RADIONAVIGATION SYSTEM (WWRNS) GALILEO receiver performance standards Submitted by the European Commission SUMMARY Executive summary: GALILEO will be the European contribution to the Global Navigation Satellite System (GNSS). GALILEO is a global, civil-controlled system that will provide position, velocity and timing information to multimodal users. The GALILEO program is moving ahead to the development of the final system, deployment and operation, expected in It is the intention that GALILEO will be offered to IMO for recognition as part of the world-wide radionavigation system in due course. This document proposes to initiate the development of GALILEO receiver performance standards to facilitate the use of GALILEO by the maritime sector at the earliest opportunity following the declaration that the system is operational and its recognition as part of the WWRNS. The document also presents, for consideration by the Sub-Committee, the first draft preliminary performance standard for receivers utilising the GALILEO Open Service. Action to be taken: Paragraphs 12, 13 and 14 Related documents: NAV 49/13, MSC 76/INF.4, Res. A.815(19), Res. A.915(22), MSC 78/11/5 INTRODUCTION 1 As reported at MSC 76 and subsequently at MSC 78, the GALILEO program, developed by the European Commission in conjunction with the European Space Agency, is moving ahead to the development of the final system. GALILEO will be a civil-controlled satellite system that provides global position, velocity and timing information to multimodal users. The maritime community is expected to form a small but extremely important section of the overall GALILEO user base. Initial analyses, reported at NAV 49, indicate that GALILEO, standalone, will meet For reasons of economy, this document is printed in a limited number. Delegates are kindly asked to bring their copies to meetings and not to request additional copies.

2 - 2 - the maritime requirements for general navigation in the ocean, coastal, port approach and restricted waters operations, as specified in resolution A.915(22). 2 The overall program is being managed by the GALILEO Joint Undertaking (GJU) which was established as a joint undertaking (an international organisation) under Article 171 of the EC Treaty. The European Community, represented by the European Commission, and the European Space Agency are the GJU s founding members. The GJU is acting as the single management structure of the development phase of GALILEO program. 3 The first phase of the development and implementation of Galileo infrastructure is well underway. This phase, which will run from 2003 to 2005, aims to validate the technical options for the system and to create the conditions necessary for the rapid deployment of the infrastructure. This first phase will include the launch of two test satellites, as well as the consolidation of the mission requirements, and the development of a limited number of operational satellites and ground-based infrastructure. 4 The final two phases of the GALILEO program are:.1 the deployment and validation phase, which will run from 2006 to 2007, wherein the operator will construct and launch the GALILEO satellites and install and test the ground infrastructure; and.2 the operational phase which will run from 2008 onwards, when GALILEO services will be available for use. Validation and certification will allow the use of GALILEO for safety of life applications. 5 In parallel to the system development itself, there are a number of ongoing activities vital to enable the use of the system and to ensure its acceptability to the relevant international institutions, States and users alike. These activities include: the development of standards for each of the potential user sectors, within the wellestablished structures set-up for this purpose; establishment of a framework for the certification of the system, services and equipment; and work to ensure the interoperability of GALILEO with the other global and regional components of GNSS GPS,GLONASS and SBAS systems. GALILEO SERVICES 6 The satellite-only services planned for GALILEO will be provided worldwide and will be independent of other systems. These services, which will require the broadcast of ten signals in the lower L-band (E5a and E5b), in the middle L-band (E6) and in the upper L-band (E2-L1-E1), are:.1 The Open Service (OS) - providing positioning, navigation and timing services, free of direct user charge, for mass market navigation applications and competitive to the GPS Standard Positioning Service and its evolutions. The OS can be used on one (L1), two (L1 and E5a) or three (L1, E5a and E5b) frequencies;.2 A Safety of Life Service (SoL) compliant to different standards in the aeronautical, maritime and rail domains. The SoL includes Integrity and

3 - 3 - Authentication capabilities. The SoL includes service guarantees. The SoL service will require use of at least two frequencies (L1 and E5b) and may be augmented by the use of a third frequency at E5a;.3 A Commercial Service (CS) - generates commercial revenue by providing added value over the Open Service, such as by dissemination of encrypted navigation related data (0.5 kbps), ranging and timing for professional use - with service guarantees. The CS will be based on the OS plus two encrypted signals on the E6 band;.4 A Public Regulated Service (PRS) - for applications devoted to European/National security, regulated or critical applications and activities of strategic importance. The PRS will provide robust and encrypted signals, under Member States control. PRS will be a dual frequency services using the L1 and E6 bands; and.5 A Search and Rescue Support Service (SAR) - provides assistance to the COSPAS-SARSAT system by detecting Emergency Beacons and forwarding Return Link Messages to the Emergency Beacons. 7 For marine navigation purposes, the Open Service and the Safety of Life service will be of most interest. 8 Noting that GALILEO satellite-only services will not meet fully all application requirements, it will be possible to enhance these satellite-only services on a local-basis using local components to augment the signals to provide improved performance and/or additional functionality to meet the requirements of more demanding applications. In the maritime sector, one potential local component could be based on an extension of the IALA DGNSS system to provide differential corrections and integrity messages for GALILEO signals in addition to those provided for GPS. As well as enhancement of the systems themselves, this would require development of the relevant standards, such as RTCM SC-104 and ITU M Such an approach could be termed DGALILEO. In addition to the MF beacon system, other delivery mechanisms could also be considered such as the automatic identification system (AIS). GALILEO FOR MARITIME APPLICATIONS In parallel with the GALILEO system development activities, a number of contracts have been launched by the European Commission and ESA to promote the use of GALILEO for different types of applications in the Maritime domain. The main projects are as follows : -GALILEI (EC 5 th Framework Programme) : Studies were performed to identify the possible use of GALILEO services for Fisheries Monitoring Systems and for Long range AIS in the area of surveillance of dangerous goods transportation. The studies highlights the potential Galileo contributions in terms of service guarantees and authentication possibilities. -EGNOS TRAN (ESA) deals with EGNOS and AIS integration for Maritime navigation in northern latitudes

4 GALEWAT (ESA) aims at establishing an operational platform for inland waterways navigation based on EGNOS and AIS -LOPOS (ESA) aimed at demonstrating the attractiveness of integrity and accuracy for harbour operations -NAUPLIOS (EC 5 th Framework Programme). The main objective is to demonstrate the added value of the GALILEO positioning and SAR services for maritime transportation of goods and hazardous materials. -MARGAL (EC 6 th Framework Programme) The proect addresses the issue of the utilisation of GNSS (GPS, EGNOS, Galileo) in various maritime applications including; Vessel Transport Systems (VTS) - both in oceans and inland waterways, AIS, utilisation of IALA beacons for new services and seamless navigationthe contract was launched on Feburary 2004 for a duration of 2 years and consists of requirements consolidation, design, implementation and demonstration /dissemination activities. -MarNIS (EC - 6th Framework Programme). The project aims at the development of a mandatory systematic use of modern localisation and telecommunication techniques for all the operators of the maritime sector. This use shall allow both a better observance of all the legislation of all sorts that rules the sector and an easier communication between ship and shore to solve a vast array of issues related to the handling of the ship, its cargo or its passengers and its crew. Given the range of applications possibly benefiting from the introduction of GALILEO service, it is important that some work is initiated towards the production of relevant IMO standards enabling the use of Galileo as discussed in the last part of the present paper. MARITIME STANDARDIZATION 9 It is the intention to offer GALILEO Open Service and Safety of Life service to IMO for consideration as components of the WWRNS. It is anticipated that the procedures for the recognition of these services will be similar to those followed for the GPS and GLONASS systems, except that the performance baseline is now expected to be based on the requirements specified in resolution A.915(22). Proposals will be made to IMO, together with the relevant supporting information, in due course. 10 In parallel, it is the intention of the GJU to support the development of receiver performance standards for GALILEO services, using the process followed by GPS and GLONASS as a model. A project with this objective, called GEM, has been initiated by the GJU. Three tiers of receiver performance standards are proposed:.1 a standard for standalone GALILEO open service receivers (combinations of L1, E5a and E5b frequencies);.2 a standard for standalone GALILEO safety of life service receivers (both L1 and E5b frequencies with an option for E5a); and.3 at a later stage, a standard for DGALILEO receivers as an extension of the current DGPS/DGLONASS receiver standard.

5 The initial draft of the first tier standard is provided in the Annex for consideration by the Sub-Committee as the starting point in the standard development process. The initial draft of the second tier standard is in preparation and will be available in the near future. ACTION REQUESTED OF THE SUB-COMMITTEE 12 The Sub-Committee is invited to note the intention to offer GALILEO for consideration as a component of the WWRNS and the intention of the GJU to develop standards to support this offer. 13 The Sub-Committee is invited to note the preliminary draft receiver performance standard for the GALILEO open service and the GALILEO safety of life service provided at annexes 1 and 2 as a starting point for the work. 14 The Sub-Committee is also invited to consider the most appropriate mechanism to establish a working group to develop GALILEO receiver performance standards for the GALIEO Open Service and GALILEO Safety of Life Service. 15 The GJU, through the GEM Project, requests to participate in the working group and undertakes to provide preliminary draft standards as input to the working group and to provide technical support to the working group in the further development and completion of those standards. ***

6

7 ANNEX 1 PRELIMINARY DRAFT RECOMMENDATION FOR PERFORMANCE STANDARDS FOR SHIPBORNE GALILEO RECEIVER EQUIPMENT UTILISING THE OPEN SERVICE 1 INTRODUCTION 1.1 GALILEO is the European satellite positioning, velocity and timing system currently under development. GALILEO is being designed as a wholly civil system, operated under public control. The GALILEO space segment will comprise 30 medium earth orbit (MEO) satellites in 3 circular orbits at an altitude of 23616km. Each orbit will have an inclination of 56 and will contain 9 operational satellites plus one operational spare. Thios geometry will ensure that a minimum of TBD satellites will be in view to users world-wide with a position dilution of precision (PDOP) TBD. 1.2 GALILEO will transmit 10 navigation signals and 1 search and rescue (SAR) signal. The SAR signal will be broadcast in one of the frequency bands reserved for the emergency services ( MHz) whereas the 10 navigation signals will be provided in the radionavigation satellite service (RNSS) allocated bands: 4 signals will occupy the frequency range MHz (E5a-E5b) 3 signals will occupy the frequency range MHz (E6) 3 signals will occupy the frequency range MHz (L1). 1.3 The GALILEO Open Service will provide positioning, navigation and timing services, free of direct user charges. The Open Service can be used on one (L1), two (L1 and E5a or L1 and E5b) or three (L1, E5a and E5b) frequencies. Each frequency carries two signals; the first is a tracking signal the so-called pilot signal that contains no data but increases the tracking robustness at the receiver whereas the other carries a navigation data message. 1.4 GALILEO receiver equipment intended to use the Open Service for navigation purposes on ships of speeds not exceeding 70 knots, in addition to the general requirements specified in resolution A.694(17), shall comply with the following minimum performance requirements. 1.5 These standards cover the basic requirements of position fixing only, either for navigation purposes or as input to other functions. The standards do not cover the other computational facilities which may be in the equipment nor cover the requirements for any other systems that may take input from the GALILEO receiver. 2 GALILEO OPEN SERVICE RECEIVER EQUIPMENT 2.1 The words GALILEO Open Service receiver equipment as used in these performance standards include all the components and units necessary for the system properly to perform its intended functions relating to the GALILEO Open Service. The equipment shall include the following minimum facilities:.1 antenna capable of receiving GALILEO Open Service signals;.2 GALILEO Open Service receiver and processor;.3 means of accessing the computed latitude/longitude position;.4 data control and interface; I:\NAV\50\13.DOC

8 ANNEX 1 Page 2.5 position display and, if required, other forms of output. 2.2 The antenna design should be suitable for fitting at a position on the ship which ensures a clear view of the satellite constellation. 3 PERFORMANCE STANDARDS FOR GALILEO OPEN SERVICE RECEIVER EQUIPMENT The GALILEO Open Service receiver equipment shall:.1 be capable of receiving and processing the GALILEO Open Service positioning and velocity, and timing signals on: i) for a single frequency receiver, the L1 frequency alone. The receiver shall use a simple ionospheric model broadcast to the receiver by the constellation to generate ionospheric corrections; ii) for a dual frequency receiver, either the L1 and E5b frequencies or the L1 and E5a frequencies. The receiver shall use dual frequency processing to generate ionospheric corrections; iii) for a triple frequency receiver, all of the L1, E5a and E5b frequencies. the receiver shall use dual frequency processing to generate ionospheric corrections;.2 provide position information in latitude and longitude in degrees, minutes and thousandths of minutes in the International Terrestrial Frame System (ITRF TBD) datum. Means may be provided for transforming the computed position into data compatible with the navigational chart in use. Where this facility exists, the display shall indicate that the coordinate conversion is being performed and should identify the coordinate system in which the position is expressed;.3 provide time referenced to universal time coordinated (UTC) (TBD);.4 be provided with at least one output from which position information can be supplied to other equipment. The output of position information should be based on the TBD datum and should be in accordance with international standards;.5 have static accuracy such that, for a horizontal dilution of precision (HDOP) 4 or a PDOP 6, the position of the antenna is determined to within: i) 15m horizontal (95%) and 35m vertical (95%) for single frequency operations on the L1 frequency; ii) 10m horizontal (95%) and 10m vertical (95%) for dual frequency operations on L1 and E5a or L1 and E5b frequencies; iii) 10m horizontal (95%) and 10m vertical (95%) for triple frequency operations on the L1, E5a and E5b frequencies;.6 have dynamic accuracy under the conditions of sea states and motion likely to be experienced in ships such that, for a HDOP 4 or a PDOP 6, the position of the ship is determined to within:

9 ANNEX 1 Page 3 i) 15m horizontal (95%) and 35m vertical (95%) for single frequency operations on the L1 frequency; ii) 10m horizontal (95%) and 10m vertical (95%) for dual frequency operations on L1 and E5a or L1 and E5b frequencies; iii) 10m horizontal (95%) and 10m vertical (95%) for triple frequency operations on the L1, E5a and E5b frequencies;.7 have position resolution equal or better than minutes of latitude and longitude;.8 have timing accuracy such that time is determined within 50ns of UTC;.9 have velocity accuracy of better than 50ms-1 for the single frequency service and TBD for the dual and triple frequency services;.10 be capable of selecting automatically the appropriate satellite-transmitted signals to determine the ship s position and velocity, and time with the required accuracy and update rate;.11 be capable of acquiring satellite signals with input signals having carrier levels in the range of 128dBm to 118dBm (TBD). Once the satellite signals have been acquired, the equipment should continue to operate satisfactorily with satellite signals having carrier levels down to 131dBm (TBD);.12 be capable of operating satisfactorily under normal interference conditions;.13 be capable of acquiring position, velocity and time to the required accuracy within 100 seconds when there is no valid almanac data (cold start);.14 be capable of acquiring position, velocity and time to the required accuracy within 30 seconds when there is valid almanac data (warm start);.15 be capable of re-acquiring position, velocity and time to the required accuracy within 1 second when there has been a service interruption of 60 seconds or less;.16 be capable of re-acquiring position, velocity and time to the required accuracy within 100 seconds when there has been a service interruption of 24 hours or more but power to the receiver has not been lost;.17 generate and output to a display and digital interface a new position solution at least once every 1 second for conventional craft and at least once every 0.5 seconds for high speed craft;.18 generate and output to the digital interface course over the ground (COG), speed over the ground and UTC. Such outputs should have a validity mark aligned with that on the position output. The accuracy requirements for COG and SOG should not be inferior to the relevant performance standards for heading (Resolution A.424 (XI) for conventional craft and resolution A.821(19) for high speed craft) and speed and distance measuring equipment (SDME) (resolution A.824(19)). I:\NAV\50\13.DOC

10 ANNEX 1 Page 4 4 INTEGRITY CHECKING, FAILURE WARNINGS AND STATUS INDICATIONS 4.1 The equipment shall also indicate whether the performance of GALILEO is outside the bounds of requirements for general navigation in the ocean, coastal, port approach and restricted waters, and inland waterway phases of the voyage as specified in Appendix 2 to Resolution A.915(22). The GALILEO receiver shall as a minimum:.1 provide a warning within 5 seconds if a new position has not been calculated for more than 1 second for conventional craft and 0.5 seconds for high speed craft;.2 provide a warning of loss of position;.3 use receiver autonomous integrity monitoring (RAIM) to provide an alarm within 10 seconds if an alert limit of 25m is exceeded for a period of longer than TBD with a probability of detection of better than % over any three hour period. Under such conditions the last known position and the time of last valid fix, with the explicit indication of the state so that no ambiguity can exist, should be output until normal operation is resumed. 5 PROTECTION Precautions should be taken to ensure that no permanent damage can result from an accidental short circuit or grounding of the antenna or any of its input or output connections or any of the GALILEO receiver equipment inputs or outputs for a duration of 5 minutes or less. ***

11 ANNEX 2 PRELIMINARY DRAFT RECOMMENDATION FOR PERFORMANCE STANDARDS FOR SHIPBORNE GALILEO RECEIVER EQUIPMENT UTILISING THE SAFETY OF LIFE SERVICE 1 INTRODUCTION 1.1 GALILEO is the European satellite positioning, velocity and timing system currently under development. GALILEO is being designed as a wholly civil system, operated under public control. The GALILEO space segment will comprise 30 medium earth orbit (MEO) satellites in 3 circular orbits at an altitude of 23616km. Each orbit will have an inclination of 56 and will contain 9 operational satellites plus one operational spare. This geometry will ensure that a minimum of TBD satellites will be in view to users world-wide with a position dilution of precision (PDOP) TBD. 1.2 GALILEO will transmit 10 navigation signals and 1 search and rescue (SAR) signal. The SAR signal will be broadcast in one of the frequency bands reserved for the emergency services ( MHz) whereas the 10 navigation signals will be provided in the radionavigation satellite service (RNSS) allocated bands: 4 signals will occupy the frequency range MHz (E5a-E5b) 3 signals will occupy the frequency range MHz (E6) 3 signals will occupy the frequency range MHz (L1). 1.3 The GALILEO Safety of Life Service will monitor the integrity of all of the signals broadcast on the L1, E5a (TBC) and E5b signals. In addition to the position, navigation and timing services provided on the L1, E5a and E5b signals, the GALILEO Safety of Life Service will provide integrity an integrity services on the L1 and E5b frequencies. 1.4 The Safety of Life Service can be used on one (L1 or E5b), two (L1 and E5b or L1 and E5a (TBC)) or three (L1, E5a and E5b) frequencies. Each of the L1 and E5b frequencies carries two signals; the first is a tracking signal the so-called pilot signal that contains no data but increases the tracking robustness at the receiver whereas the other carries a navigation data message together with an integrity message. The E5a frequency carries the tracking signal and the navigation data message but does not include integrity data. 1.5 GALILEO receiver equipment intended to use the Safety of Life Service for navigation purposes on ships of speeds not exceeding 70 knots, in addition to the general requirements specified in Resolution A.694(17), shall comply with the following minimum performance requirements. 1.6 These standards cover the basic requirements of position fixing only, either for navigation purposes or as input to other functions. The standards do not cover the other computational facilities which may be in the equipment nor cover the requirements for any other systems that may take input from the GALILEO receiver. 2 GALILEO OPEN SERVICE RECEIVER EQUIPMENT 2.1 The words GALILEO Safety of Life Service receiver equipment as used in these performance standards include all the components and units necessary for the system properly to perform its intended functions relating to the GALILEO Safety of Life Service. The equipment shall include the following minimum facilities:.1 antenna capable of receiving GALILEO Safety of Life Service signals; I:\NAV\50\13.DOC

12 ANNEX 2 Page 2.2 GALILEO Safety of Life Service receiver and processor;.3 means of accessing the computed latitude/longitude position;.4 data control and interface; and.5 position display and, if required, other forms of output. 2.2 The antenna design should be suitable for fitting at a position on the ship which ensures a clear view of the satellite constellation. 3 PERFORMANCE STANDARDS FOR GALILEO OPEN SERVICE RECEIVER EQUIPMENT The GALILEO Safety of Life Service receiver equipment shall:.1 be capable of receiving and processing the GALILEO Safety of Life Service positioning, velocity and timing signals on: i) for a single frequency receiver, the L1 frequency or the E5b frequency alone. This receiver shall also be capable of receiving the GALILEO integrity message on either the L1 or E5b frequency corresponding to its frequency of operation. The receiver shall use a simple ionospheric model broadcast to the receiver by the constellation to generate ionospheric corrections; ii) for a dual frequency receiver, either the L1 and E5b frequencies or the L1 and E5a frequencies (TBC). The receiver shall be capable of receiving the GALILEO integrity message on either both the L1 and E5b or the L1 frequency-alone corresponding to its frequencies of operation. The receiver shall use dual frequency processing to generate ionospheric corrections; iii) for a triple frequency receiver, all of the L1, E5a and E5b frequencies. The receiver shall also be capable of receiving the GALILEO integrity message on both the L1 and E5b frequencies. The receiver shall use dual frequency processing to generate ionospheric corrections;.2 provide position information in latitude and longitude in degrees, minutes and thousandths of minutes in the International Terrestrial Frame System (ITRF TBD) datum. Means may be provided for transforming the computed position into data compatible with the navigational chart in use. Where this facility exists, the display shall indicate that the coordinate conversion is being performed and should identify the coordinate system in which the position is expressed;.3 provide time referenced to universal time coordinated (UTC) (TBD);.4 be provided with at least one output from which position information can be supplied to other equipment. The output of position information should be based on the TBD datum and should be in accordance with international standards;.5 have static accuracy such that, for a horizontal dilution of precision (HDOP) 4 or a PDOP 6, the position of the antenna is determined to within: i) 15m horizontal (95%) and 35m vertical (95%) for single frequency operations on the L1 or the E5b frequency;

13 ANNEX 2 Page 3 ii) 10m horizontal (95%) and 10m vertical (95%) for dual frequency operations on either the L1 and E5a or the L1 and E5b frequencies; iii) 10m horizontal (95%) and 10m vertical (95%) for triple frequency operations on the L1, E5a and E5b frequencies;.6 have dynamic accuracy under the conditions of sea states and motion likely to be experienced in ships such that, for a HDOP 4 or a PDOP 6, the position of the ship is determined to within: i) 15m horizontal (95%) and 35m vertical (95%) for single frequency operations on the L1 frequency; ii) 10m horizontal (95%) and 10m vertical (95%) for dual frequency operations on the L1 and E5a or the L1 and E5b frequencies; iii) 10m horizontal (95%) and 10m vertical (95%) for triple frequency operations on the L1, E5a and E5b frequencies;.7 have position resolution equal or better than minutes of latitude and longitude;.8 have timing accuracy such that time is determined within 50ns of UTC;.9 have velocity accuracy of better than 50cms -1 for the single frequency service and TBD for the dual and triple frequency services;.10 be capable of selecting automatically the appropriate satellite-transmitted signals to determine the ship s position and velocity, and time with the required accuracy and update rate;.11 be capable of acquiring satellite signals with input signals having carrier levels in the range of 128dBm to 118dBm (TBD). Once the satellite signals have been acquired, the equipment should continue to operate satisfactorily with satellite signals having carrier levels down to 131dBm (TBD);.12 be capable of operating satisfactorily under normal interference conditions;.13 be capable of acquiring position, velocity and time to the required accuracy within 100 seconds when there is no valid almanac data (cold start);.14 be capable of acquiring position, velocity and time to the required accuracy within 30 seconds when there is valid almanac data (warm start);.15 be capable of re-acquiring position, velocity and time to the required accuracy within 1 second when there has been a service interruption of 60 seconds or less;.16 be capable of re-acquiring position, velocity and time to the required accuracy within 100 seconds when there has been a service interruption of 24 hours or more but power to the receiver has not been lost;.17 generate and output to a display and digital interface a new position solution at least once every 1 second for conventional craft and at least once every 0.5 seconds for high speed craft; I:\NAV\50\13.DOC

14 ANNEX 2 Page 4.18 generate and output to the digital interface course over the ground (COG), speed over the ground and UTC. Such outputs should have a validity mark aligned with that on the position output. The accuracy requirements for COG and SOG should not be inferior to the relevant performance standards for heading (resolution A.424 (XI) for conventional craft and resolution A.821(19) for high speed craft) and speed and distance measuring equipment (SDME) (resolution A.824(19)). 4 INTEGRITY CHECKING, FAILURE WARNINGS AND STATUS INDICATIONS 4.1 The equipment shall also indicate whether the performance of GALILEO is outside the bounds of requirements for general navigation in the ocean, coastal, port approach and restricted waters, and inland waterway phases of the voyage as specified in Appendix 2 to Resolution A.915(22). The GALILEO Safety of Life receiver shall as a minimum:.1 provide a warning within 5 seconds if a new position has not been calculated for more than 1 second for conventional craft and 0.5 seconds for high speed craft;.2 provide a warning of loss of position;.3 use a combination of the GALILEO integrity message and receiver autonomous integrity monitoring (RAIM) to provide an alarm within 10 seconds if an alert limit of 25m is exceeded for a period of longer than TBD with a probability of detection of better than % over any three hour period. Under such conditions the last known position and the time of last valid fix, with the explicit indication of the state so that no ambiguity can exist, should be output until normal operation is resumed. 5 PROTECTION Precautions should be taken to ensure that no permanent damage can result from an accidental short circuit or grounding of the antenna or any of its input or output connections or any of the GALILEO receiver equipment inputs or outputs for a duration of 5 minutes or less.

RESOLUTION MSC.233(82) (adopted on 5 December 2006) ADOPTION OF THE PERFORMANCE STANDARDS FOR SHIPBORNE GALILEO RECEIVER EQUIPMENT

RESOLUTION MSC.233(82) (adopted on 5 December 2006) ADOPTION OF THE PERFORMANCE STANDARDS FOR SHIPBORNE GALILEO RECEIVER EQUIPMENT MSC 82/24/Add.2 RESOLUTION MSC.233(82) THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) of the Convention on the International Maritime Organization concerning the functions of the Committee, RECALLING

More information

RESOLUTION MSC.112(73) (adopted on 1 December 2000) ADOPTION OF THE REVISED PERFORMANCE STANDARDS FOR SHIPBORNE GLOBAL POSITIONING SYSTEM (GPS)

RESOLUTION MSC.112(73) (adopted on 1 December 2000) ADOPTION OF THE REVISED PERFORMANCE STANDARDS FOR SHIPBORNE GLOBAL POSITIONING SYSTEM (GPS) MSC 73/21/Add.3 RESOLUTION MSC.112(73) FOR SHIPBORNE GLOBAL POSITIONING SYSTEM THE MARITIME SAFETY COMMITTEE, RECALLING Article (28(b) of the Convention on the International Maritime Organization concerning

More information

RESOLUTION MSC.401(95) (Adopted on 8 June 2015) PERFORMANCE STANDARDS FOR MULTI-SYSTEM SHIPBORNE RADIONAVIGATION RECEIVERS

RESOLUTION MSC.401(95) (Adopted on 8 June 2015) PERFORMANCE STANDARDS FOR MULTI-SYSTEM SHIPBORNE RADIONAVIGATION RECEIVERS ANNEX 17 MSC 95/22/Add.2 Annex 17, page 1 THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) of the Convention on the International Maritime Organization concerning the functions of the Committee,

More information

GALILEO Research and Development Activities. Second Call. Area 1A. Statement of Work

GALILEO Research and Development Activities. Second Call. Area 1A. Statement of Work GALILEO Research and Development Activities Second Call Area 1A GNSS Introduction in the Maritime Sector Statement of Work Rue du Luxembourg, 3 B 1000 Brussels Tel +32 2 507 80 00 Fax +32 2 507 80 01 www.galileoju.com

More information

RESOLUTION MSC.114(73) (adopted on 1 December 2000) ADOPTION OF THE REVISED PERFORMANCE STANDARDS FOR SHIPBORNE DGPS AND DGLONASS MARITIME RADIO

RESOLUTION MSC.114(73) (adopted on 1 December 2000) ADOPTION OF THE REVISED PERFORMANCE STANDARDS FOR SHIPBORNE DGPS AND DGLONASS MARITIME RADIO MSC 73/21/Add.3 RESOLUTION MSC.114(73) FOR SHIPBORNE DGPS AND DGLONASS MARITIME RADIO BEACON RECEIVER EQUIPMENT THE MARITIME SAFETY COMMITTEE, RECALLING Article (28(b) of the Convention on the International

More information

ANNEX 12. RESOLUTION MSC.74(69) (adopted on 12 May 1998) ADOPTION OF NEW AND AMENDED PERFORMANCE STANDARDS

ANNEX 12. RESOLUTION MSC.74(69) (adopted on 12 May 1998) ADOPTION OF NEW AND AMENDED PERFORMANCE STANDARDS RESOLUTION MSC.74(69) (adopted on 12 May 1998) ADOPTION OF NEW AND AMENDED PERFORMANCE STANDARDS THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) of the Convention on the International Maritime Organization

More information

Market strategy update in Maritime segment. This presentation can be interpreted only together with the oral comments accompanying it

Market strategy update in Maritime segment. This presentation can be interpreted only together with the oral comments accompanying it Market strategy update in Maritime segment This presentation can be interpreted only together with the oral comments accompanying it 2 Market sub-segments and applications Recreational navigation: GNSS

More information

New Funding Opportunities to Support Safety of Navigation: EGNOS and Galileo

New Funding Opportunities to Support Safety of Navigation: EGNOS and Galileo New Funding Opportunities to Support Safety of Navigation: EGNOS and Galileo e-navigation Underway 31 January-2 February 2017 GSA 2016 The European GNSS Agency (GSA) today: Staff: about 145 Nationalities:

More information

GNSS Programme. Overview and Status in Europe

GNSS Programme. Overview and Status in Europe GNSS Programme Overview and Status in Europe Inaugural Forum Satellite Positioning Research and Application Center 23 April 2007 Tokyo Presented by Thomas Naecke (European Commission) Prepared by Daniel

More information

GMDSS modernisation and e-navigation: spectrum needs

GMDSS modernisation and e-navigation: spectrum needs ETSI Workshop "Future Evolution of Marine Communication", 7-8 November 2017, Sophia Antipolis, France GMDSS modernisation and e-navigation: spectrum needs Karlis Bogens BR Terrestrial Services Department

More information

Overview of the global GNSS market and status of Galileo

Overview of the global GNSS market and status of Galileo 2012 GNSS.asia workshop Overview of the global GNSS market and status of Galileo 6 November, 2012 Taipei Justyna Redelkiewicz, European GNSS Agency European GNNS Agency supports European Commission in

More information

IMO WORLDWIDE RADIONAVIGATION SYSTEM (WWRNS) Study on Communication Techniques for High Accuracy DGPS in the Republic of Korea

IMO WORLDWIDE RADIONAVIGATION SYSTEM (WWRNS) Study on Communication Techniques for High Accuracy DGPS in the Republic of Korea INTERNATIONAL MARITIME ORGANIZATION E IMO SUB-COMMITTEE ON SAFETY OF NAVIGATION 52nd session Agenda item 12 NAV 52/INF.8 12 May 2006 ENGLISH ONLY WORLDWIDE RADIONAVIGATION SYSTEM (WWRNS) Study on Communication

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 61108-1 Second edition 2003-07 Maritime navigation and radiocommunication equipment and systems Global navigation satellite systems (GNSS) Part 1: Global positioning system (GPS)

More information

DRAFT REVISION OF IMO RESOLUTION A.860(20)

DRAFT REVISION OF IMO RESOLUTION A.860(20) DRAFT REVISION OF IMO RESOLUTION A.860(20) MARITIME POLICY FOR A FUTURE GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) THE ASSEMBLY, RECALLING Article 15(j) of the Convention on the International Maritime Organization

More information

Status of the European EGNOS and Galileo Programmes. Frank Udnaes Galileo policy and Infrastructure group EC DG-TREN. June 2008

Status of the European EGNOS and Galileo Programmes. Frank Udnaes Galileo policy and Infrastructure group EC DG-TREN. June 2008 Status of the European EGNOS and Galileo Programmes Frank Udnaes Galileo policy and Infrastructure group EC DG-TREN EUROPEAN COMMISSION z June 2008 Galileo An infrastructure 30 satellite Constellation

More information

N-10 Multi-system Shipborne Radionavigation Receivers

N-10 Multi-system Shipborne Radionavigation Receivers Guideline No.: N-10(201610) N-10 Multi-system Shipborne Radionavigation Receivers Issued date: October 28, 2016 China Classification Society Foreword This Guideline is a part of CCS Rules, which contains

More information

Galileo. 7th ITFS, Rome, Italy, 3-5 November Dr. Stefan Bedrich. Kayser-Threde GmbH Wolfratshauser Str Munich

Galileo. 7th ITFS, Rome, Italy, 3-5 November Dr. Stefan Bedrich. Kayser-Threde GmbH Wolfratshauser Str Munich Kayser-Threde GmbH Wolfratshauser Str. 48 81379 Munich spacetech@kayser-threde.com Galileo 7th ITFS, Rome, Italy, 3-5 November 2009 Dr. Stefan Bedrich w w w. k a y s e r - t h r e d e. c o m Outline Motivation

More information

European GNSS Applications in H2020

European GNSS Applications in H2020 European GNSS Applications in H2020 Countdown to H2020 12.12.2013, Brussels Carmen Aguilera European GNSS Agency Agenda European GNSS Agency EU-GNSS market potential FP7- experience and results H2020 opportunities

More information

RECOMMENDATION ITU-R M *

RECOMMENDATION ITU-R M * Rec. ITU-R M.823-3 1 RECOMMENDATION ITU-R M.823-3 * Technical characteristics of differential transmissions for global navigation satellite systems from maritime radio beacons in the frequency band 283.5-315

More information

The EU Satellite Navigation programmes status Applications for the CAP

The EU Satellite Navigation programmes status Applications for the CAP The EU Satellite Navigation programmes status Applications for the CAP Michaël MASTIER European Commission DG ENTR GP3 GNSS Applications, Security and International aspects GPS Workshop 2010 Montpellier

More information

Introduction to Galileo PRS

Introduction to Galileo PRS Introduction to Galileo PRS Fabio Covello 20/09/2017 ESA UNCLASSIFIED - For Official Use Galileo mission figures The Galileo Space Segment: 30 satellites (full constellation) Walker 24/3/1 constellation

More information

The Galileo and EGNOS Programmes

The Galileo and EGNOS Programmes The Galileo and EGNOS Programmes Dominic Hayes European Commission ignss, Gold Coast, 14 July 2015 The European GNSS Programmes 2 Organisation and Contractual Frameworks European Union Member States (28)

More information

RESOLUTION MSC.278(85) (adopted on 1 December 2008) ADOPTION OF THE NEW MANDATORY SHIP REPORTING SYSTEM "OFF THE COAST OF PORTUGAL - COPREP"

RESOLUTION MSC.278(85) (adopted on 1 December 2008) ADOPTION OF THE NEW MANDATORY SHIP REPORTING SYSTEM OFF THE COAST OF PORTUGAL - COPREP MSC 85/26/Add.1 RESOLUTION MSC.278(85) SYSTEM OFF THE COAST OF PORTUGAL COPREP THE MARITIME SAFETY COMMITTEE, RECALLING Article 28 of the Convention on the International Maritime Organization concerning

More information

IMO RESOLUTION A.1001(25) Adopted on 29 November 2007 (Agenda item 9)

IMO RESOLUTION A.1001(25) Adopted on 29 November 2007 (Agenda item 9) INTERNATIONAL MARITIME ORGANIZATION E IMO ASSEMBLY 25th session Agenda item 9 A 25/Res.1001 3 January 2008 Original: ENGLISH RESOLUTION A.1001(25) Adopted on 29 November 2007 (Agenda item 9) CRITERIA FOR

More information

ROUTEING OF SHIPS, SHIP REPORTING AND RELATED MATTERS. Establishment of a Mandatory Ship Reporting System in the

ROUTEING OF SHIPS, SHIP REPORTING AND RELATED MATTERS. Establishment of a Mandatory Ship Reporting System in the INTERNATIONAL MARITIME ORGANIZATION E SUB-COMMITTEE ON SAFETY OF NAVIGATION 48th session Agenda item 3 IMO NAV 48/3/2 11 April 2002 Original: ENGLISH ROUTEING OF SHIPS, SHIP REPORTING AND RELATED MATTERS

More information

Report of Working Group B: Enhancement of Global Navigation Satellite Systems Services Performance

Report of Working Group B: Enhancement of Global Navigation Satellite Systems Services Performance Report of : Enhancement of Global Navigation Satellite Systems Services Performance 1. The Working Group on Enhancement of Global Navigation Satellite Systems (GNSS) Service Performance (WG-B) of the International

More information

EUROPEAN COMMISSION Mission High Level Definition

EUROPEAN COMMISSION Mission High Level Definition Mission High Level Definition April 3, 2001 Issue 2.0, 3 rd April 2001 Table of Contents Abstract... 1 1. Introduction... 2 1.1 Scope and Objective of the Document... 2 1.2 Approval and Management of the

More information

This circular summarizes the various important aspects of the LRIT system with a view to enabling companies to ensure compliance in a timely manner.

This circular summarizes the various important aspects of the LRIT system with a view to enabling companies to ensure compliance in a timely manner. Luxembourg, 29/10/2008 CIRCULAR CAM 02/2008 N/Réf. : AH/63353 Subject : Long-Range Identification and Tracking of Ships (LRIT) To : All ship owners, ship operators and designated persons of Luxembourg

More information

GNSS augmentation systems in the maritime sector

GNSS augmentation systems in the maritime sector GNSS augmentation systems in the maritime sector Michael Fairbanks, The General Lighthouse Authorities of the UK and Ireland Nick Ward, The General Lighthouse Authorities of the UK and Ireland William

More information

European Radio Navigation Plan. Gilles LEQUEUX, European Commission Policy Development and Strategies

European Radio Navigation Plan. Gilles LEQUEUX, European Commission Policy Development and Strategies European Radio Navigation Plan Gilles LEQUEUX, European Commission Policy Development and Strategies CONTEXT - BENEFITS Space Strategy for Europe Introduction of EGNSS in EU sectoral policies Better strategic

More information

ICG-12 Kyoto Japan WG-B December Dr. Lisa Mazzuca

ICG-12 Kyoto Japan WG-B December Dr. Lisa Mazzuca ICG-12 Kyoto Japan WG-B December 5 2017 Dr. Lisa Mazzuca MEOSAR: SPACE SEGMENT BDS & Cospas-Sarsat: C-S JC-31 (Oct 2017) China Working Papers BDS 406 MHz MEOSAR REPEATER TECHNOLOGY STATUS (JC31-9/2) Executive

More information

GALILEO JOINT UNDERTAKING

GALILEO JOINT UNDERTAKING GALILEO Research and development activities First call Activity A User receiver preliminary development STATEMENT OF WORK GJU/03/094/issue2/OM/ms Issue 2 094 issue2 6th FP A SOW 1 TABLE OF CONTENTS 1.

More information

ESA/CNES/ARIANESPACE Service Optique CSG, S. Martin. IGNSS 2018 Sydney

ESA/CNES/ARIANESPACE Service Optique CSG, S. Martin. IGNSS 2018 Sydney ESA/CNES/ARIANESPACE Service Optique CSG, S. Martin IGNSS 2018 Sydney GALILEO SERVICES Open Service (OS) Freely accessible service for positioning, navigation and timing Public Regulated Service (PRS)

More information

Fisheries and Marine Resources (Automatic Identification System) Regulations

Fisheries and Marine Resources (Automatic Identification System) Regulations Fisheries and Marine Resources (Automatic Identification System) Regulations 2016 GN No. 116 of 2016 Government Gazette of Mauritius No. 47of 28 May 2016 THE FISHERIES AND MARINE RESOURCES ACT Regulations

More information

MINIMIZING DELAYS IN SEARCH AND RESCUE RESPONSE TO DISTRESS ALERTS

MINIMIZING DELAYS IN SEARCH AND RESCUE RESPONSE TO DISTRESS ALERTS INTERNATIONAL MARITIME ORGANIZATION 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: 020 7735 7611 Fax: 020 7587 3210 IMO E Ref. T2-OSS/1.4 MSC.1/Circ.1248 16 October 2007 MINIMIZING DELAYS IN SEARCH AND

More information

This document is a preview generated by EVS

This document is a preview generated by EVS INTERNATIONAL STANDARD IEC 61108-3 Edition 1.0 2010-05 colour inside Maritime navigation and radiocommunication equipment and systems Global navigation satellite systems (GNSS) Part 3: Galileo receiver

More information

Digital broadcasting systems under development within ITU-R of interest for the maritime community

Digital broadcasting systems under development within ITU-R of interest for the maritime community Digital broadcasting systems under development within ITU-R of interest for the maritime community Christian RISSONE ANFR rissone@anfr.fr IHO, WWNWS 5 Monaco, 2 nd October 2013 1 Background for the 500

More information

TECHNICAL COMMITTEE 80: MARITIME NAVIGATION AND RADIOCOMMUNICATION EQUIPMENT AND SYSTEMS INTERNATIONAL ELECTROTECHNICAL COMMISSION

TECHNICAL COMMITTEE 80: MARITIME NAVIGATION AND RADIOCOMMUNICATION EQUIPMENT AND SYSTEMS INTERNATIONAL ELECTROTECHNICAL COMMISSION TECHNICAL COMMITTEE 80: MARITIME NAVIGATION AND RADIOCOMMUNICATION EQUIPMENT AND SYSTEMS INTERNATIONAL ELECTROTECHNICAL COMMISSION IEC TECHNICAL COMMITTEE 80: MARITIME NAVIGATION AND RADIOCOMMUNICATION

More information

UPDATE ON GALILEO DEVELOPMENTS AND THE AVAILABLE SERVICES

UPDATE ON GALILEO DEVELOPMENTS AND THE AVAILABLE SERVICES UPDATE ON GALILEO DEVELOPMENTS AND THE AVAILABLE SERVICES 3 rd EUPOS Council and Technical Meeting The third meeting of the Positioning Knowledge Exchange Network (PosKEN) Prague, The Czech Republic 14-16

More information

Report of the Working Group B: Enhancement of Global Navigation Satellite Systems (GNSS) Services Performance

Report of the Working Group B: Enhancement of Global Navigation Satellite Systems (GNSS) Services Performance Report of the Working Group B: Enhancement of Global Navigation Satellite Systems (GNSS) Services Performance 1. The Working Group on Enhancement of Global Navigation Satellite Systems (GNSS) Service Performance

More information

ASSEMBLY 37TH SESSION

ASSEMBLY 37TH SESSION International Civil Aviation Organization WORKING PAPER A37-WP/195 1 22/9/10 (Information paper) ASSEMBLY 37TH SESSION TECHNICAL COMMISSION Agenda Item 35: The Global Air Traffic Management (ATM) System

More information

NMEA2000- Par PGN. Mandatory Request, Command, or Acknowledge Group Function Receive/Transmit PGN's

NMEA2000- Par PGN. Mandatory Request, Command, or Acknowledge Group Function Receive/Transmit PGN's PGN Number Category Notes - Datum Local geodetic datum and datum offsets from a reference datum. T The Request / Command / Acknowledge Group type of 126208 - NMEA - Request function is defined by first

More information

Galileo Programme Update

Galileo Programme Update Galileo Programme Update Pieter De Smet, European Commission ICTP Conference, Prague, 10 November, 2014 1 December 2014 The European GNSS Programmes 2 Secure Foundations ü A stable 7 years perspective

More information

FieldGenius Technical Notes GPS Terminology

FieldGenius Technical Notes GPS Terminology FieldGenius Technical Notes GPS Terminology Almanac A set of Keplerian orbital parameters which allow the satellite positions to be predicted into the future. Ambiguity An integer value of the number of

More information

Experiences with Fugro's Real Time GPS/GLONASS Orbit/Clock Decimeter Level Precise Positioning System

Experiences with Fugro's Real Time GPS/GLONASS Orbit/Clock Decimeter Level Precise Positioning System Return to Session Directory DYNAMIC POSITIONING CONFERENCE October 13-14, 2009 Sensors Experiences with Fugro's Real Time GPS/GLONASS Orbit/Clock Decimeter Level Precise Positioning System Ole Ørpen and

More information

GUIDELINES ON ANNUAL TESTING OF THE AUTOMATIC IDENTIFICATION SYSTEM (AIS)

GUIDELINES ON ANNUAL TESTING OF THE AUTOMATIC IDENTIFICATION SYSTEM (AIS) INTERNATIONAL MARITIME ORGANIZATION 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: 020 7735 7611 Fax: 020 7587 3210 IMO E Ref. T1/10 MSC.1/Circ.1252 22 October 2007 GUIDELINES ON ANNUAL TESTING OF THE AUTOMATIC

More information

CONSIDERATION OF THE OUTCOME OF WRC-12 AND PREPARATION OF INITIAL ADVICE ON A DRAFT IMO POSITION ON WRC-2015 AGENDA ITEMS

CONSIDERATION OF THE OUTCOME OF WRC-12 AND PREPARATION OF INITIAL ADVICE ON A DRAFT IMO POSITION ON WRC-2015 AGENDA ITEMS E JOINT IMO/ITU EXPERTS GROUP ON MARITIME RADIOCOMMUNICATION MATTERS 8th session Agenda item 5 IMO/ITU EG 8/5/8 5 September 2012 ENGLISH ONLY CONSIDERATION OF THE OUTCOME OF WRC-12 AND PREPARATION OF INITIAL

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 61993-2 First edition 2001-12 Maritime navigation and radiocommunication equipment and systems Automatic identification systems (AIS) Part 2: Class A shipborne equipment of the

More information

GALILEO Research and Development Activities. Second Call. Area 3. Coordination of Galileo Research & Development activities.

GALILEO Research and Development Activities. Second Call. Area 3. Coordination of Galileo Research & Development activities. GALILEO Research and Development Activities Second Call Area 3 Coordination of Galileo Research & Development activities Statement of Work Rue du Luxembourg, 3 B 1000 Brussels Tel +32 2 507 80 00 Fax +32

More information

Draft performance standards for shipborne "BeiDou" BDS receiver equipment

Draft performance standards for shipborne BeiDou BDS receiver equipment IMO NAV 59 Summary Report Introduction The 59th session of the IMO Sub-Committee on Safety of Navigation (NAV 59) was held from 2nd to 6th September 2013, at the IMO headquarters in London. This briefing

More information

The experimental evaluation of the EGNOS safety-of-life services for railway signalling

The experimental evaluation of the EGNOS safety-of-life services for railway signalling Computers in Railways XII 735 The experimental evaluation of the EGNOS safety-of-life services for railway signalling A. Filip, L. Bažant & H. Mocek Railway Infrastructure Administration, LIS, Pardubice,

More information

NMEA 2000 Parameter Group Numbers and Description as of August 2007 NMEA 2000 DB Ver

NMEA 2000 Parameter Group Numbers and Description as of August 2007 NMEA 2000 DB Ver Category General & or Mandatory ISO Acknowledgment This message is provided by ISO 11783 for a handshake mechanism between transmitting and receiving devices. This message is the possible response to acknowledge

More information

RECOMMENDATION ITU-R M.825-3*, **

RECOMMENDATION ITU-R M.825-3*, ** Rec. ITU-R M.825-3 1 RECOMMENDATION ITU-R M.825-3*, ** CHARACTERISTICS OF A TRANSPONDER SYSTEM USING DIGITAL SELECTIVE CALLING TECHNIQUES FOR USE WITH VESSEL TRAFFIC SERVICES AND SHIP-TO-SHIP IDENTIFICATION

More information

Global Navigation Satellite Systems (GNSS)

Global Navigation Satellite Systems (GNSS) Global Navigation Satellite Systems (GNSS) Pat Norris MRAeS, FRIN LogicaCMG Business Development Manager Chairman, RAeS Space Group LogicaCMG 2006. All rights reserved 2 Global Navigation Satellite Systems

More information

Dynamic Positioning TCommittee

Dynamic Positioning TCommittee RETURN TO DIRETORetr Dynamic Positioning TCommittee PMarine Technology Society DYNAMIC POSITIONING CONFERENCE October 17 18, 2000 ADVANCES IN TECHNOLOGY Removal of GPS Selective Availability - Consequences

More information

The Mid-term Review of the European Satellite Radio Navigation Programmes Galileo and EGNOS: Questions and Answers

The Mid-term Review of the European Satellite Radio Navigation Programmes Galileo and EGNOS: Questions and Answers MEMO/11/26 Brussels, 18 th January 2011 The Mid-term Review of the European Satellite Radio Navigation Programmes Galileo and EGNOS: Questions and Answers See also IP/11/42 For the full text of the Communication

More information

DYNAMIC POSITIONING CONFERENCE October 7-8, Sensors II. Redundancy in Dynamic Positioning Systems Based on Satellite Navigation

DYNAMIC POSITIONING CONFERENCE October 7-8, Sensors II. Redundancy in Dynamic Positioning Systems Based on Satellite Navigation Return to Session Directory DYNAMIC POSITIONING CONFERENCE October 7-8, 2008 Sensors II Redundancy in Dynamic Positioning Systems Based on Satellite Navigation Ole Ørpen, Tor Egil Melgård, Arne Norum Fugro

More information

ANNEX ANNEX. Accompanying the document. Commission Implementing Regulation

ANNEX ANNEX. Accompanying the document. Commission Implementing Regulation Ref. Ares(2018)3546601-04/07/2018 EUROPEAN COMMISSION Brussels, XXX [ ](2018) XXX draft ANNEX ANNEX Accompanying the document Commission Implementing Regulation on technical specifications for vessel tracking

More information

GUIDANCE FOR THE PRESENTATION AND DISPLAY OF AIS APPLICATION-SPECIFIC MESSAGES INFORMATION

GUIDANCE FOR THE PRESENTATION AND DISPLAY OF AIS APPLICATION-SPECIFIC MESSAGES INFORMATION E 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0)20 7735 7611 Fax: +44 (0)20 7587 3210 Ref. T2-OSS/2.7.1 SN.1/Circ.290 2 June 2010 GUIDANCE FOR THE PRESENTATION AND DISPLAY OF AIS APPLICATION-SPECIFIC

More information

GUIDELINES ON THE DESIGN AND USE OF PORTABLE PILOT UNITS INTERNATIONAL MARITIME PILOTS ASSOCIATION

GUIDELINES ON THE DESIGN AND USE OF PORTABLE PILOT UNITS INTERNATIONAL MARITIME PILOTS ASSOCIATION GUIDELINES ON THE DESIGN AND USE OF PORTABLE PILOT UNITS INTERNATIONAL MARITIME PILOTS ASSOCIATION WITH TECHNICAL INPUT FROM Comité International Radio-Maritime (CIRM) 2 FOREWORD With the increasing use

More information

International Maritime Organization DRAFT IMO POSITION ON WRC-19 AGENDA ITEMS CONCERNING MATTERS RELATING TO MARITIME SERVICES

International Maritime Organization DRAFT IMO POSITION ON WRC-19 AGENDA ITEMS CONCERNING MATTERS RELATING TO MARITIME SERVICES 2 nd ITU INTER-REGIONAL WORKSHOP ON WRC-19 PREPARATION Geneva, 20 22 November 2018 Document 12 November 2018 English only International Maritime Organization DRAFT IMO POSITION ON WRC-19 AGENDA ITEMS CONCERNING

More information

The European Satellite Radio Navigation Programmes Galileo and EGNOS: Questions and Answers

The European Satellite Radio Navigation Programmes Galileo and EGNOS: Questions and Answers MEMO/11/326 Brussels, 23 May 2011 The European Satellite Radio Navigation Programmes Galileo and EGNOS: Questions and Answers What is satellite navigation? Satellite navigation is based on the principle

More information

Report on EGNOS application as effective augmentation system for marine positioning in inland and pilot navigation. Submitted by Germany and Poland *

Report on EGNOS application as effective augmentation system for marine positioning in inland and pilot navigation. Submitted by Germany and Poland * E SUB-COMMITTEE ON NAVIGATION, COMMUNICATIONS AND SEARCH AND RESCUE 4th session Agenda item 6 NCSR 4/INF.16/Rev.2 28 February 2017 ENGLISH ONLY GUIDELINES ASSOCIATED WITH MULTI-SYSTEM SHIPBORNE RADIONAVIGATION

More information

Current status of Quasi-Zenith Satellite System. Japan Aerospace Exploration Agency QZSS Project Team

Current status of Quasi-Zenith Satellite System. Japan Aerospace Exploration Agency QZSS Project Team Current status of Quasi-Zenith Satellite System Japan Aerospace Exploration Agency QZSS Project Team 1 Quasi-Zenith Satellite System The QZSS is a regional space-based PNT (Positioning, Navigation and

More information

Integration of AIS functionalities

Integration of AIS functionalities Integration of AIS functionalities by John O. Klepsvik FARGIS 05 March 01, 2005 WORLD CLASS through people, technology and dedication WORLD CLASS through people, technology and dedication KONGSBERG March

More information

GNSS Signal Structures

GNSS Signal Structures GNSS Signal Structures Tom Stansell Stansell Consulting Tom@Stansell.com Bangkok, Thailand 23 January 2018 S t a n s e l l C o n s u l t i n g RL Introduction It s a pleasure to speak with you this morning.

More information

RECOMMENDATION ITU-R M.632-3*

RECOMMENDATION ITU-R M.632-3* Rec. ITU-R M.632-3 1 RECOMMENDATION ITU-R M.632-3* TRANSMISSION CHARACTERISTICS OF A SATELLITE EMERGENCY POSITION-INDICATING RADIO BEACON (SATELLITE EPIRB) SYSTEM OPERATING THROUGH GEOSTATIONARY SATELLITES

More information

International Maritime Organization

International Maritime Organization 1st ITU Inter-regional Workshop on WRC-19 Preparation Geneva, 21-22 November 2017 Received: 9 November 2017 Document 10 November 2017 English only International Maritime Organization DRAFT IMO POSITION

More information

COMMISSION IMPLEMENTING REGULATION (EU)

COMMISSION IMPLEMENTING REGULATION (EU) 28.7.2012 Official Journal of the European Union L 202/5 REGULATIONS COMMISSION IMPLEMENTING REGULATION (EU) No 689/2012 of 27 July 2012 amending Regulation (EC) No 415/2007 concerning the technical specifications

More information

European GNSS Evolution

European GNSS Evolution Ref. Ares(204)902599 - /06/204 European GNSS Evolution Hermann Ebner Galileo and EGNOS Programme Management DG Enterprise and Industry Content Introduction 2 2 Major Challenges for EGNSS Evolution 3 EGNSS

More information

Galileo & EGNOS Programmes Status

Galileo & EGNOS Programmes Status Galileo & EGNOS Programmes Status Ugo Celestino, European Commission EURO-MEDITERRANEAN TRANSPORT FORUM GNSS WORKING GROUP 16 th October 2012 17 October, 2012 The European GNSS Programmes 2 Table of contents

More information

EUROPEAN GNSS (GALILEO) INITIAL SERVICES NAVIGATION SOLUTIONS POWERED BY E U R O P E OPEN SERVICE QUARTERLY PERFORMANCE REPORT

EUROPEAN GNSS (GALILEO) INITIAL SERVICES NAVIGATION SOLUTIONS POWERED BY E U R O P E OPEN SERVICE QUARTERLY PERFORMANCE REPORT NAVIGATION SOLUTIONS POWERED BY E U R O P E EUROPEAN GNSS (GALILEO) INITIAL SERVICES OPEN SERVICE QUARTERLY PERFORMANCE REPORT JANUARY - MARCH 2018 TABLE OF CONTENTS 1 INTRODUCTION... 1 2 EXECUTIVE SUMMARY...

More information

GPS (GNSS) Telecom Time Now and Future 2011 Telcordia-NIST-ATIS Workshop on Synchronization in Telecommunications Systems May 10-12, 2011

GPS (GNSS) Telecom Time Now and Future 2011 Telcordia-NIST-ATIS Workshop on Synchronization in Telecommunications Systems May 10-12, 2011 GPS (GNSS) Telecom Time Now and Future 2011 Telcordia-NIST-ATIS Workshop on Synchronization in Telecommunications Systems May 10-12, 2011 Marc A. Weiss, Ph.D. Time and Frequency Division National Institute

More information

GALILEO READY TO LINK WITH INSPIRE

GALILEO READY TO LINK WITH INSPIRE GALILEO READY TO LINK WITH INSPIRE INSPIRE CONFERENCE 2016 Barcelona 28 September 2016 Alina Hriscu Market Development European GNSS Agency (GSA) Agenda European GNSS Agency (GSA) E GNSS Services, Signals

More information

AMENDMENTS TO RESOLUTION A.705(17) PROMULGATION OF MARITIME SAFETY INFORMATION

AMENDMENTS TO RESOLUTION A.705(17) PROMULGATION OF MARITIME SAFETY INFORMATION E 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0)20 7735 7611 Fax: +44 (0)20 7587 3210 AMENDMENTS TO RESOLUTION A.705(17) PROMULGATION OF MARITIME SAFETY INFORMATION MSC.1/Circ.1287/Rev.1 24 June

More information

FURUNO DEEPSEA WORLD Class-A Universal AIS Automatic Identification System. The future today with FURUNO's electronics technology.

FURUNO DEEPSEA WORLD Class-A Universal AIS Automatic Identification System. The future today with FURUNO's electronics technology. R FURUNO DEEPSEA WORLD Class-A Universal AIS Automatic Identification System Model FA-100 The AIS improves the safety of navigation by assisting in the efficient navigation of ships, protection of the

More information

METIS Second Master Training & Seminar. Augmentation Systems Available in Egypt

METIS Second Master Training & Seminar. Augmentation Systems Available in Egypt METIS Second Master Training & Seminar Augmentation Systems Available in Egypt By Eng. Ramadan Salem M. Sc. Surveying and Geodesy Email: ramadan_salem@link.net Page 1 Augmentation Systems Available in

More information

GUIDANCE ON THE COSPAS-SARSAT INTERNATIONAL 406 MHz BEACON REGISTRATION DATABASE

GUIDANCE ON THE COSPAS-SARSAT INTERNATIONAL 406 MHz BEACON REGISTRATION DATABASE E ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0)20 7735 7611 Fax: +44 (0)20 7587 3210 GUIDANCE ON THE COSPAS-SARSAT INTERNATIONAL 406 MHz BEACON REGISTRATION DATABASE MSC.1/Circ.1210/Rev.1 21 November

More information

ICG 9 PRAGUE 10 November 2014

ICG 9 PRAGUE 10 November 2014 ICG 9 PRAGUE 10 November 2014 GNSS and applications GNSS is technology powerfully enabler of a multitude of applications. Italy, recognizing that, have undertaken initiatives to develop pre-operational

More information

Challenges and Solutions for GPS Receiver Test

Challenges and Solutions for GPS Receiver Test Challenges and Solutions for GPS Receiver Test Presenter: Mirin Lew January 28, 2010 Agenda GPS technology concepts GPS and GNSS overview Assisted GPS (A-GPS) Basic tests required for GPS receiver verification

More information

DYNAMIC POSITIONING CONFERENCE October 7-8, Sensors I. Integrating Other GNSS with GPS and its Implication for DP Positioning

DYNAMIC POSITIONING CONFERENCE October 7-8, Sensors I. Integrating Other GNSS with GPS and its Implication for DP Positioning Return to Session Directory DYNAMIC POSITIONING CONFERENCE October 7-8, 2008 Sensors I Integrating Other GNSS with GPS and its Implication for DP Positioning Dr. David Russell Veripos/Subsea 7 (Aberdeen,

More information

Satellite navigation applications: opportunities from the European GNSS. Fiammetta Diani Deputy Head of Market Development European GNSS Agency

Satellite navigation applications: opportunities from the European GNSS. Fiammetta Diani Deputy Head of Market Development European GNSS Agency Satellite navigation applications: opportunities from the European GNSS Fiammetta Diani Deputy Head of Market Development European GNSS Agency FP7 success story in Lithuania COSUDEC Coastal Surveying of

More information

RESOLUTION A.820(19) adopted on 23 November 1995 PERFORMANCE STANDARDS FOR NAVIGATIONAL RADAR EQUIPMENT FOR HIGH-SPEED CRAFT

RESOLUTION A.820(19) adopted on 23 November 1995 PERFORMANCE STANDARDS FOR NAVIGATIONAL RADAR EQUIPMENT FOR HIGH-SPEED CRAFT INTERNATIONAL MARITIME ORGANIZATION A 19/Res. 820 15 December 1995 Original: ENGLISH ASSEMBLY 19th session Agenda item 10 NOT TO BE REMOVED \ FROM THE IMO LIBRARY RESOLUTION A.820(19) adopted on 23 November

More information

IMO ANY OTHER BUSINESS. Progress on standards development by the IEC. Submitted by the International Electrotechnical Commission

IMO ANY OTHER BUSINESS. Progress on standards development by the IEC. Submitted by the International Electrotechnical Commission INTERNATIONAL MARITIME ORGANIZATION E IMO SUB-COMMITTEE ON SAFETY OF NAVIGATION 54th session Agenda item 24 NAV 54/24/1 16 April 2008 Original: ENGLISH ANY OTHER BUSINESS Progress on standards development

More information

A new Modular and Open Concept for the Maritime Integrated PNT System

A new Modular and Open Concept for the Maritime Integrated PNT System A new Modular and Open Concept for the Maritime Integrated PNT System T. Noack German Aerospace Center Institute of Communications and Navigation www.dlr.de Chart 2 MTS-2012 Maritime Integrated PNT Unit

More information

GALILEO Applications. Andreas Schütz Training on GNSS T131 / T151 Bangkok, January 14th 2019

GALILEO Applications. Andreas Schütz Training on GNSS T131 / T151 Bangkok, January 14th 2019 GALILEO Applications Andreas Schütz Training on GNSS T131 / T151 Bangkok, January 14th 201 Overview GNSS Downstream Applications overview The GALILEO Open Service The GALILEO Public Regulated Service The

More information

L AGENCE NATIONALE DES FREQUENCES (ANFR) From Titanic to satellite from Morse to digital Entry in a new era for the maritime community

L AGENCE NATIONALE DES FREQUENCES (ANFR) From Titanic to satellite from Morse to digital Entry in a new era for the maritime community L AGENCE NATIONALE DES FREQUENCES (ANFR) From Titanic to satellite from Morse to digital Entry in a new era for the maritime community ITU regional seminar 6-8 June 2018 St-Petersburg, Russian Federation

More information

GALILEO Research and Development Activities. Second Call. Area 3. Statement of Work

GALILEO Research and Development Activities. Second Call. Area 3. Statement of Work GALILEO Research and Development Activities Second Call Area 3 Innovation by Small and Medium Enterprises Statement of Work Rue du Luxembourg, 3 B 1000 Brussels Tel +32 2 507 80 00 Fax +32 2 507 80 01

More information

DRAFT ASSEMBLY RESOLUTION A. (26)

DRAFT ASSEMBLY RESOLUTION A. (26) DRAFT ASSEMBLY RESOLUTION A. (26) PROMULGATION OF MARITIME SAFETY INFORMATION The ASSEMBLY, RECALLING Article 15(j) of the Convention on the International Maritime Organization concerning the functions

More information

Bundesrepublik Deutschland Federal Republic of Germany. GPS receiver modul integrated into an AIS SART

Bundesrepublik Deutschland Federal Republic of Germany. GPS receiver modul integrated into an AIS SART Bundesrepublik Deutschland Federal Republic of Germany Bundesamt für Seeschifffahrt und Hydrographie Conformance test report of a GPS receiver modul integrated into an AIS SART Equipment under test: FT-Tec

More information

WELCOME TO Galileo: At the Dawn of a New Age of GNSS Services

WELCOME TO Galileo: At the Dawn of a New Age of GNSS Services Mapping from UAVs WELCOME TO Galileo: At the Dawn of a New Age of GNSS Services Marco Lisi, Dr. eng. Senior Manager European Space Agency Jeremie Godet Head of Sector Galileo Implementation DG GROW European

More information

ESA/CNES/ARIANESPACE-Service Optique CSG, S. Martin ABUJA, OCTOBER 2018

ESA/CNES/ARIANESPACE-Service Optique CSG, S. Martin ABUJA, OCTOBER 2018 ESA/CNES/ARIANESPACE-Service Optique CSG, S. Martin ABUJA, OCTOBER 2018 GALILEO - SOME KEY FEATURES CIVIL Not managed by Defence DUAL FREQUENCY (L1/L5 ) Less impact from solar conditions/ionosphere DIGITAL

More information

EGNOS status and performance in the context of marine navigation requirements

EGNOS status and performance in the context of marine navigation requirements EGNOS status and performance in the context of marine navigation requirements J. Cydejko Gdynia Maritime University, Gdynia, Poland ABSTRACT: The current status of EGNOS (December 2006) is described as

More information

ATTACHMENT E. How to Conduct a GMDSS Inspection.

ATTACHMENT E. How to Conduct a GMDSS Inspection. Page 1 of 7 NOTE: This document is an excerpt from The Report and Order In the Matter of Amendment of the Commission's Rules Concerning the Inspection of Radio Installations on Large Cargo and Small Passenger

More information

Sperry Marine Northrop Grumman

Sperry Marine Northrop Grumman Sperry Marine 2005 Northrop Grumman Table of Contents CHAPTER 1: CHAPTER 2: CHAPTER 3: CHAPTER 4: CHAPTER 5: CHAPTER 6: WHERE ARE YOU GOING? TRANSMITTING HEADING DEVICES DETERMINING HEADING BY SATELLITE

More information

Future Generation of AIS Considers Integration of AIS and VDE. TEXAS V Workshop Canadian Embassy, Washington DC 7-8 November 2012

Future Generation of AIS Considers Integration of AIS and VDE. TEXAS V Workshop Canadian Embassy, Washington DC 7-8 November 2012 Future Generation of AIS Considers Integration of AIS and VDE TEXAS V Workshop Canadian Embassy, Washington DC 7-8 November 2012 1 Rationale for the Integration of AIS and VDE (VHF Data Exchange) Protects

More information

Demonstrator of a Data Processing Centre (DPC) for satellite-based AIS services

Demonstrator of a Data Processing Centre (DPC) for satellite-based AIS services Page 1 Demonstrator of a Data Processing Centre (DPC) for satellite-based AIS services 19/20 April 2012 gfabritius@cls.fr Overview of the presentation Page 2 Introducing CLS Introducing AIS / SAT-AIS Scope

More information

Bundesrepublik Deutschland Federal Republic of Germany. GPS receiver modul integrated into an AIS transponder

Bundesrepublik Deutschland Federal Republic of Germany. GPS receiver modul integrated into an AIS transponder Bundesrepublik Deutschland Federal Republic of Germany Bundesamt für Seeschifffahrt und Hydrographie Conformance test report of a GPS receiver modul integrated into an AIS transponder Equipment under test:

More information

REVISED QUESTIONNAIRE ON SHORE-BASED FACILITIES FOR THE GLOBAL MARITIME DISTRESS AND SAFETY SYSTEM (GMDSS)

REVISED QUESTIONNAIRE ON SHORE-BASED FACILITIES FOR THE GLOBAL MARITIME DISTRESS AND SAFETY SYSTEM (GMDSS) E 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0)20 7735 7611 Fax: +44 (0)20 7587 3210 MSC.1/Circ.1382/Rev.2 24 June 2013 REVISED QUESTIONNAIRE ON SHORE-BASED FACILITIES FOR THE GLOBAL MARITIME DISTRESS

More information

IALA S WORK IN E-NAVIGATION. Michael Card

IALA S WORK IN E-NAVIGATION. Michael Card IALA S WORK IN E-NAVIGATION Michael Card e-navigation origins The early work of IALA on e-navigation Multiple Initiatives EfficienSea 2 STM Validation IHO S-100 and IALA S-200 Smart Navigation VDES development

More information