Recent Work at the Stanford Engineering Test Facility

Size: px
Start display at page:

Download "Recent Work at the Stanford Engineering Test Facility"

Transcription

1 1 Recent Work at the Stanford Engineering Test Facility Tarmigan Casebolt, Dan DeBra, Matt DeGree, William East, Brian Lantz, Norna Robertson, and the SEI team March 22, 2006 Special thanks to SUS, Calum, Janeen, Caroline, Justin, Tim

2 Various Activities 2 Low noise GS-13, use a simple op-amp follower circuit Noise is ~6e-12 m/rthz at 1 Hz, 3e-13 m/rthz at 10 Hz Matt DeGree working on tickle testing, automated check of all the sensors and actuators. William East measuring thermal behavior of actuators. BSC is OK Large DC offset, measure 32 mdeg of temp rise. Scale to typical ETF operation, get 6e-4 degrees Scale to BSC, softer springs, HEPI input motion: 2e-6 degrees Quad pendulum frame interactions (Brian and Tarm)

3 Quad Pendulum Frame 3 Received a frame from Caltech Install on the Tech Demo Study the impact of frame resonances on the system Not so great Try to improve the interaction Electronic damping (OK) Passive Constrained Layer damping (Great)

4 Installation installed 12/16/05 Upside down ge sta 2y e2 g sta x stage 1 x, global x top view of frame installation G

5 Interaction Performance Tests 5 Goal: Try to understand the impact of the frame vibrations on the system performance. But: Testing in air makes performance measures difficult. So: Predict performance by: Measuring mechanical transfer function of stage, and Multiplying by calculated suppression of the isolation loop. We see that: Mechanical transfer function is worse. Control loop performance is worse.

6 Largest Coupling to rx & ry 6 TF mag (dspace center SS/dspace center drive) 10 0 Stage 2 Rotation plant, rx pend frame dummy mass freq (Hz) Coupled frame modes at 61 and 73 Hz s, stage 1 and stage 2 damped, stage 1 isolated

7 Performance Impact of resonances To predict performance: multiply passive transmission by the sensitivity 10!1 ETF Stage 2! transmission (norm(plant) * sensitivity), rx, before and after 2. Much worse at peaks G Somewhat worse between Hz with pendulum frame mag (V/V) 10!2 with dummy masses (scaled) 10!3 10!4 Note: I have equalized passive transmission at 10 Hz by dividing dummy mass by dummy masses pendulum frame created by design_txty_stg2_ on 18!Dec!2005

8 What to do? 8 SUS - Working to increase the frequency of the modes Damp the modes: Actively, using existing sensors, or using new sensors Passively with constrained layer damping

9 Active damping control loop 9 Final control stg2 V Mag (cnt/cnt) Freq (Hz)

10 Result of active damping Impact of Frame Damping on Stage 2 rotation mode rx 10 10!1 mag TF (super out/ drive in) 10!2 10!3 10!4 original frame damping created by plot_frame_damper_ on 10!Jan!2006 data _1 and _ freq (Hz)

11 Requires many irritating notches Notch alignment for stg2 V3 Mag (V/V) !1 10! Freq (Hz) created by design_stg2_framedamping_ on 20!Dec!2005 data = tf_121705_1_stg2_cen_all

12 12 Passive damping of frame mode Use vibrational motion to create to create shear in a lossy material (Dyad 601 by SoundCoat) Lossy material placed between frame and something which moves differently. FEA modeling courtesy of Tim Haylor at Rutherford Labs

13 Test setup Constrained Layer t stru stru t stru t top bracket foot 13

14 Damping strut performance 14 Impact of Frame Damping on Stage 2 rotation mode rx 10!1 mag TF (super out/ drive in) 10!2 10!3 10!4 original frame damping 10.2 cm 2 created by plot_frame_damper_031506_btl on 16!Mar!2006 data _1 and _ freq (Hz)

15 Optimizing the layer Impact of Frame Damping on Stage 2 rotation mode rx f = 60.9 Hz Q = 654 original frame damping 2.56 cm 2 frame damping 5.11 cm 2 frame damping 10.2 cm 2 mag TF (super out/ drive in) f = 61.7 Hz Q = 67.6 f = 62.3 Hz Q = 57.8 f = 63.7 Hz Q = freq (Hz) created by plot_frame_damper_ on 20 Mar 2006 data _1, _1, _1, and _1

16 Conclusions 16 System works with the quad pendulum frame. It will work better if the peaks are smaller amplitude and higher frequency. Demonstrated 2 ways to improve the damping. We prefer the constrained layer: much easier for Advance LIGO operations. Eager to help the SUS team get it working in vacuum. Making good progress dealing with the issues identified at the last set of reviews.

17 Largest Coupling to rx & ry 17 TF mag (dspace center SS/dspace center drive) 10 0 Stage 2 Rotation plant, ry pend frame dummy mass freq (Hz) Coupled frame modes at 61 and 73 Hz s, stage 1 and stage 2 damped, stage 1 isolated

18 TF mag (dspace center SS/dspace center drive) 10 0 Stage 2 Rotation plant, Y Stage 2 Rotation plant, X Smaller coupling in other DOF TF mag (dspace center SS/dspace center drive) pend frame dummy mass pend frame dummy mass freq (Hz) freq (Hz) _xyzrz, STAGE 2 ISOLATED IN rx and ry 18 STAGE 2 ISOLATED IN rx and ry

19 Improved Active Damping 19 Sensors on the frame tip give better signal for active frame damping Compare sensors for frame damping, V3 drive 10 1 TF mag (dspace readout/dspace drive) !1 10!2 local GS13 frametip 1 * freq (Hz) created by plot_aux_framedamping_sensors on 20!Jan! grams + preamp +cable + mount + can

20 Changing the undamped Frame 20 10!1 Impact of Undamped Frame on Stage 2 rotation mode rx f = 60.9 Hz Q = 684 f = 61.2 Hz Q = !2 f = 60.9 Hz Q = 285 mag TF (super out/ drive in) 10!3 10!4 dec 17 March 10 March freq (Hz) created by plot_frame_damper_ on 16!Mar!2006

21 Servo for rx ETF Stage 2, rx G basic control mag (V/V) !2 plant notches plant*10 controller/10 notch openloop*10 sens open loop sensitivity 10! phase (degree) 50 0!50 ty_stg2_ on 18!Dec!2005

22 Servo for rx 10 2 ETF Stage 2, rx G pendulum frame To notice: 1. Servo amplifies above 13 Hz. 2. Hair about 70 Hz Hz attenuation is modest: 4. Big notches 5. It works. Dummy mass loop is: 1. Better performance. 2. More robust. 3. Easier to design. mag (V/V) phase (degree) mag (V/V) ! !50 plant*10 controller/10 notch openloop*10 sens 10! !2 plant*10 controller/10 notch openloop*10 ETF Stage 2, rx dummy masses ty_stg2_ on 18!Dec!2005

Control Servo Design for Inverted Pendulum

Control Servo Design for Inverted Pendulum JGW-T1402132-v2 Jan. 14, 2014 Control Servo Design for Inverted Pendulum Takanori Sekiguchi 1. Introduction In order to acquire and keep the lock of the interferometer, RMS displacement or velocity of

More information

Enhanced LIGO HAM ISI Prototype Preliminary Performance Review T

Enhanced LIGO HAM ISI Prototype Preliminary Performance Review T Enhanced LIGO HAM ISI Prototype Preliminary Performance Review T-8251-1 Jeff Kissel, Brian Lantz October 7, 28 Abstract As of May 28, both L1 and H1 interferometers have had an active seismic isolation

More information

Update to HEPI controls: Bias-hold and Watchdog

Update to HEPI controls: Bias-hold and Watchdog Update to HEPI controls: 1 Bias-hold and Brian Lantz, Hugo Paris, et. al. Dec 10, 2014 Plan: 1. Describe suggested changes (today) 2. Update parameters (and plans) based on comments. - many parameters

More information

Seismic Noise & Vibration Isolation Systems. AIGO Summer Workshop School of Physics, UWA Feb Mar. 2, 2010

Seismic Noise & Vibration Isolation Systems. AIGO Summer Workshop School of Physics, UWA Feb Mar. 2, 2010 Seismic Noise & Vibration Isolation Systems AIGO Summer Workshop School of Physics, UWA Feb. 28 - Mar. 2, 2010 Seismic noise Ground noise: X =α/f 2 ( m/ Hz) α: 10-6 ~ 10-9 @ f = 10 Hz, x = 1 0-11 m GW

More information

The X-arm interferometer test of HEPI at LIGO Livingston

The X-arm interferometer test of HEPI at LIGO Livingston The X-arm interferometer test of HEPI at LIGO Livingston J. Giaime, Louisiana State University & LIGO Livingston. 1 G040358-00-D, LSC meeting, LIGO Hanford, 18 August 2004. Development history Decades

More information

External seismic pre-isolation retrofit design

External seismic pre-isolation retrofit design External seismic pre-isolation retrofit design J. Giaime, B. Lantz, C. Hardham, R. Adhikari, E. Daw, D. DeBra, M. Hammond, K. Mason, D. Coyne, D. Shoemaker April 3, 2002 T020040-00-D Contents 1 Introduction

More information

Optical bench Seismic Isolation System (SAS) Prototyped for the HAM chambers of the Advanced LIGO Interferometers

Optical bench Seismic Isolation System (SAS) Prototyped for the HAM chambers of the Advanced LIGO Interferometers Optical bench Seismic Isolation System (SAS) Prototyped for the HAM chambers of the Advanced LIGO Interferometers Hannover, October 24th 2007 Benjamin Abbott (1), Yoichi Aso (3), Valerio Boschi (1,4),

More information

Conventional geophone topologies and their intrinsic physical limitations, determined

Conventional geophone topologies and their intrinsic physical limitations, determined Magnetic innovation in velocity sensing Low -frequency with passive Conventional geophone topologies and their intrinsic physical limitations, determined by the mechanical construction, limit their velocity

More information

Servo Loop Bandwidth, Motor Sizing and Power Dissipation. Mark Holcomb Senior Engineer, Motion Control Specialist Celera Motion

Servo Loop Bandwidth, Motor Sizing and Power Dissipation. Mark Holcomb Senior Engineer, Motion Control Specialist Celera Motion Servo Loop Bandwidth, Motor Sizing and Power Dissipation Mark Holcomb Senior Engineer, Motion Control Specialist Celera Motion Professional Background University of Buffalo, 1994 MS ME Active Systems product

More information

Active Vibration Isolation of an Unbalanced Machine Tool Spindle

Active Vibration Isolation of an Unbalanced Machine Tool Spindle Active Vibration Isolation of an Unbalanced Machine Tool Spindle David. J. Hopkins, Paul Geraghty Lawrence Livermore National Laboratory 7000 East Ave, MS/L-792, Livermore, CA. 94550 Abstract Proper configurations

More information

Cleveland State University MCE441: Intr. Linear Control Systems. Lecture 12: Frequency Response Concepts Bode Diagrams. Prof.

Cleveland State University MCE441: Intr. Linear Control Systems. Lecture 12: Frequency Response Concepts Bode Diagrams. Prof. Cleveland State University MCE441: Intr. Linear Control Systems Lecture 12: Concepts Bode Diagrams Prof. Richter 1 / 2 Control systems are affected by signals which are often unpredictable: noise, disturbances,

More information

LIGO PROJECT. Piezo-Electric Actuator Initial Performance Tests. Eric Ponslet April 13, Abstract

LIGO PROJECT. Piezo-Electric Actuator Initial Performance Tests. Eric Ponslet April 13, Abstract Piezo-Electric Actuator Initial Performance Tests Eric Ponslet April 13, 1998 Abstract This report briefly describes the setup and results from a series of tests performed on a commercially available piezo-electric

More information

DRAFT Expected performance of type-bp SAS in bkagra

DRAFT Expected performance of type-bp SAS in bkagra DRAFT Expected performance of type-bp SAS in bkagra December 27, 216 Yoshinori Fujii Table of Contents 1 Expected performance of type-bp SAS in bkagra 2 1.1 Overview.................................................

More information

Lab Manual. Experiment FREQUENCY SWEEP. Created by Hong-Van Tran

Lab Manual. Experiment FREQUENCY SWEEP. Created by Hong-Van Tran Lab Manual Experiment FREQUENCY SWEEP Created by Hong-Van Tran Lab of Electromechanical Energy Department of Precision Engineering. National Chung Hsing University April 19, 2018 CONTENTS DESCRIBE... pape

More information

ACTIVE VIBRATION CONTROL OF HARD-DISK DRIVES USING PZT ACTUATED SUSPENSION SYSTEMS. Meng-Shiun Tsai, Wei-Hsiung Yuan and Jia-Ming Chang

ACTIVE VIBRATION CONTROL OF HARD-DISK DRIVES USING PZT ACTUATED SUSPENSION SYSTEMS. Meng-Shiun Tsai, Wei-Hsiung Yuan and Jia-Ming Chang ICSV14 Cairns Australia 9-12 July, 27 ACTIVE VIBRATION CONTROL OF HARD-DISK DRIVES USING PZT ACTUATED SUSPENSION SYSTEMS Abstract Meng-Shiun Tsai, Wei-Hsiung Yuan and Jia-Ming Chang Department of Mechanical

More information

Vibration Fundamentals Training System

Vibration Fundamentals Training System Vibration Fundamentals Training System Hands-On Turnkey System for Teaching Vibration Fundamentals An Ideal Tool for Optimizing Your Vibration Class Curriculum The Vibration Fundamentals Training System

More information

Classical Control Design Guidelines & Tools (L10.2) Transfer Functions

Classical Control Design Guidelines & Tools (L10.2) Transfer Functions Classical Control Design Guidelines & Tools (L10.2) Douglas G. MacMartin Summarize frequency domain control design guidelines and approach Dec 4, 2013 D. G. MacMartin CDS 110a, 2013 1 Transfer Functions

More information

7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7)

7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7) Journal of Physics: Conference Series (8) 4 doi:.88/74-6596///4 Lock Acquisition Studies for Advanced Interferometers O Miyakawa, H Yamamoto LIGO Laboratory 8-34, California Institute of Technology, Pasadena,

More information

The AEI 10 m Prototype. June Sina Köhlenbeck for the 10m Prototype Team

The AEI 10 m Prototype. June Sina Köhlenbeck for the 10m Prototype Team The AEI 10 m Prototype June 2014 - Sina Köhlenbeck for the 10m Prototype Team The 10m Prototype Seismic attenuation system Suspension Platform Inteferometer SQL Interferometer Suspensions 2 The AEI 10

More information

Vibration studies of a superconducting accelerating

Vibration studies of a superconducting accelerating Vibration studies of a superconducting accelerating module at room temperature and at 4.5 K Ramila Amirikas, Alessandro Bertolini, Wilhelm Bialowons Vibration studies on a Type III cryomodule at room temperature

More information

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp Op Amp Fundamentals When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp In general, the parameters are interactive. However, in this unit, circuit input

More information

First and second order systems. Part 1: First order systems: RC low pass filter and Thermopile. Goals: Department of Physics

First and second order systems. Part 1: First order systems: RC low pass filter and Thermopile. Goals: Department of Physics slide 1 Part 1: First order systems: RC low pass filter and Thermopile Goals: Understand the behavior and how to characterize first order measurement systems Learn how to operate: function generator, oscilloscope,

More information

Exam Signal Detection and Noise

Exam Signal Detection and Noise Exam Signal Detection and Noise Tuesday 27 January 2015 from 14:00 until 17:00 Lecturer: Sense Jan van der Molen Important: It is not allowed to use a calculator. Complete each question on a separate piece

More information

Using a Negative Impedance Converter to Dampen Motion in Test Masses

Using a Negative Impedance Converter to Dampen Motion in Test Masses Using a Negative Impedance Converter to Dampen Motion in Test Masses Isabella Molina, Dr.Harald Lueck, Dr.Sean Leavey, and Dr.Vaishali Adya University of Florida Department of Physics Max Planck Institute

More information

Noise from Pulsating Supercavities Prepared by:

Noise from Pulsating Supercavities Prepared by: Noise from Pulsating Supercavities Prepared by: Timothy A. Brungart Samuel E. Hansford Jules W. Lindau Michael J. Moeny Grant M. Skidmore Applied Research Laboratory The Pennsylvania State University Flow

More information

Magnetic Levitation System

Magnetic Levitation System Introduction Magnetic Levitation System There are two experiments in this lab. The first experiment studies system nonlinear characteristics, and the second experiment studies system dynamic characteristics

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics E1 - Filters type and design» Filter taxonomy and parameters» Design flow and tools» FilterCAD example» Basic II order cells

More information

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr.

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr. Servo Tuning Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa Thanks to Dr. Jacob Tal Overview Closed Loop Motion Control System Brain Brain Muscle

More information

An Alternative to Pyrotechnic Testing For Shock Identification

An Alternative to Pyrotechnic Testing For Shock Identification An Alternative to Pyrotechnic Testing For Shock Identification J. J. Titulaer B. R. Allen J. R. Maly CSA Engineering, Inc. 2565 Leghorn Street Mountain View, CA 94043 ABSTRACT The ability to produce a

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics E1 - Filters type and design» Filter taxonomy and parameters» Design flow and tools» FilterCAD example» Basic II order cells

More information

EE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

EE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load EE4902 C200 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

Rectilinear System. Introduction. Hardware

Rectilinear System. Introduction. Hardware Rectilinear System Introduction This lab studies the dynamic behavior of a system of translational mass, spring and damper components. The system properties will be determined first making use of basic

More information

Exercise 2: Temperature Measurement

Exercise 2: Temperature Measurement Exercise 2: Temperature Measurement EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain and demonstrate the use of an RTD in a temperature measurement application by using

More information

Summary of Cantilever Blade Wire Clamp Testing

Summary of Cantilever Blade Wire Clamp Testing LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO Laboratory / LIGO Scientific Collaboration ADVANCED LIGO 9th October 2003 Summary of Cantilever Blade Wire Clamp Testing M. Perreur-Lloyd, C. Cantley,

More information

Improving seismic isolation in Advanced LIGO using a ground rotation sensor

Improving seismic isolation in Advanced LIGO using a ground rotation sensor Improving seismic isolation in Advanced LIGO using a ground rotation sensor 04/16/2016 Krishna Venkateswara for UW- Michael Ross, Charlie Hagedorn, and Jens Gundlach aligo SEI team LIGO-G1600083 1 Contents

More information

Fig m Telescope

Fig m Telescope Taming the 1.2 m Telescope Steven Griffin, Matt Edwards, Dave Greenwald, Daryn Kono, Dennis Liang and Kirk Lohnes The Boeing Company Virginia Wright and Earl Spillar Air Force Research Laboratory ABSTRACT

More information

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore)

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore) Laboratory 9 Operational Amplifier Circuits (modified from lab text by Alciatore) Required Components: 1x 741 op-amp 2x 1k resistors 4x 10k resistors 1x l00k resistor 1x 0.1F capacitor Optional Components:

More information

The VIRGO suspensions

The VIRGO suspensions INSTITUTE OF PHYSICSPUBLISHING Class. Quantum Grav. 19 (2002) 1623 1629 CLASSICAL ANDQUANTUM GRAVITY PII: S0264-9381(02)30082-0 The VIRGO suspensions The VIRGO Collaboration (presented by S Braccini) INFN,

More information

A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses.

A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses. A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses. Plus-polarization Cross-polarization 2 Any system

More information

Experiment: P34 Resonance Modes 1 Resonance Modes of a Stretched String (Power Amplifier, Voltage Sensor)

Experiment: P34 Resonance Modes 1 Resonance Modes of a Stretched String (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P34-1 Experiment: P34 Resonance Modes 1 Resonance Modes of a Stretched String (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows

More information

MEAS Silicon MEMS Piezoresistive Accelerometer and its Benefits

MEAS Silicon MEMS Piezoresistive Accelerometer and its Benefits MEAS Silicon MEMS Piezoresistive Accelerometer and its Benefits Piezoresistive Accelerometers 1. Bonded Strain Gage type (Gages bonded to metal seismic mass using epoxy) Undamped circa 1950 s Fluid (oil)

More information

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load ECE4902 C2012 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

high, thin-walled buildings in glass and steel

high, thin-walled buildings in glass and steel a StaBle MiCroSCoPe image in any BUildiNG: HUMMINGBIRd 2.0 Low-frequency building vibrations can cause unacceptable image quality loss in microsurgery microscopes. The Hummingbird platform, developed earlier

More information

Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for

Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for x(t), which is not a very good sinusoidal oscillator. A

More information

Natural Frequencies and Resonance

Natural Frequencies and Resonance Natural Frequencies and Resonance A description and applications of natural frequencies and resonance commonly found in industrial applications Beaumont Vibration Institute Annual Seminar Beaumont, TX

More information

ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 433 CONTROL SYSTEMS ANALYSIS AND DESIGN LABORATORY EXPERIENCES

ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 433 CONTROL SYSTEMS ANALYSIS AND DESIGN LABORATORY EXPERIENCES ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 433 CONTROL SYSTEMS ANALYSIS AND DESIGN LABORATORY EXPERIENCES EXPERIMENT 4: ERROR SIGNAL CHARACTERIZATION In this laboratory experience we will use the two

More information

FORCED HARMONIC MOTION Ken Cheney

FORCED HARMONIC MOTION Ken Cheney FORCED HARMONIC MOTION Ken Cheney ABSTRACT The motion of an object under the influence of a driving force, a restoring force, and a friction force is investigated using a mass on a spring driven by a variable

More information

Signal Characteristics and Conditioning

Signal Characteristics and Conditioning Signal Characteristics and Conditioning Starting from the sensors, and working up into the system:. What characterizes the sensor signal types. Accuracy and Precision with respect to these signals 3. General

More information

Effectively Using the EM 6992 Near Field Probe Kit to Troubleshoot EMI Issues

Effectively Using the EM 6992 Near Field Probe Kit to Troubleshoot EMI Issues Effectively Using the EM 6992 Near Field Probe Kit to Troubleshoot EMI Issues Introduction The EM 6992 Probe Kit includes three magnetic (H) field and two electric (E) field passive, near field probes

More information

Modeling and Control of Mold Oscillation

Modeling and Control of Mold Oscillation ANNUAL REPORT UIUC, August 8, Modeling and Control of Mold Oscillation Vivek Natarajan (Ph.D. Student), Joseph Bentsman Department of Mechanical Science and Engineering University of Illinois at UrbanaChampaign

More information

Response spectrum Time history Power Spectral Density, PSD

Response spectrum Time history Power Spectral Density, PSD A description is given of one way to implement an earthquake test where the test severities are specified by time histories. The test is done by using a biaxial computer aided servohydraulic test rig.

More information

ME 3200 Mechatronics I Laboratory Lab 8: Angular Position and Velocity Sensors

ME 3200 Mechatronics I Laboratory Lab 8: Angular Position and Velocity Sensors ME 3200 Mechatronics I Laboratory Lab 8: Angular Position and Velocity Sensors In this exercise you will explore the use of the potentiometer and the tachometer as angular position and velocity sensors.

More information

Frequency Stabilized Lasers for LIDAR 6/29/2016 Mark Notcutt and SLS Team Stable Laser Systems Boulder CO

Frequency Stabilized Lasers for LIDAR 6/29/2016 Mark Notcutt and SLS Team Stable Laser Systems Boulder CO Frequency Stabilized Lasers for LIDAR 6/29/2016 Mark Notcutt and SLS Team Stable Laser Systems Boulder CO Lasers stabilized to Fabry-Perot cavities: good Signal to Noise Compact Frequency stabilized lasers

More information

Applications of Passivity Theory to the Active Control of Acoustic Musical Instruments

Applications of Passivity Theory to the Active Control of Acoustic Musical Instruments Applications of Passivity Theory to the Active Control of Acoustic Musical Instruments Edgar Berdahl, Günter Niemeyer, and Julius O. Smith III Acoustics 08 Conference, Paris, France June 29th-July 4th,

More information

Optimizing Performance Using Slotless Motors. Mark Holcomb, Celera Motion

Optimizing Performance Using Slotless Motors. Mark Holcomb, Celera Motion Optimizing Performance Using Slotless Motors Mark Holcomb, Celera Motion Agenda 1. How PWM drives interact with motor resistance and inductance 2. Ways to reduce motor heating 3. Locked rotor test vs.

More information

Introduction (cont )

Introduction (cont ) Active Filter 1 Introduction Filters are circuits that are capable of passing signals within a band of frequencies while rejecting or blocking signals of frequencies outside this band. This property of

More information

A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis

A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis M. Sofian D. Hazry K. Saifullah M. Tasyrif K.Salleh I.Ishak Autonomous System and Machine Vision Laboratory, School of Mechatronic,

More information

MEMS-FABRICATED ACCELEROMETERS WITH FEEDBACK COMPENSATION

MEMS-FABRICATED ACCELEROMETERS WITH FEEDBACK COMPENSATION MEMS-FABRICATED ACCELEROMETERS WITH FEEDBACK COMPENSATION Yonghwa Park*, Sangjun Park*, Byung-doo choi*, Hyoungho Ko*, Taeyong Song*, Geunwon Lim*, Kwangho Yoo*, **, Sangmin Lee*, Sang Chul Lee*, **, Ahra

More information

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following:

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following: Islamic University of Gaza Faculty of Engineering Electrical Engineering department Control Systems Design Lab Eng. Mohammed S. Jouda Eng. Ola M. Skeik Experiment 3 PID Controller Overview This experiment

More information

Friday, 1/27/17 Constraints on A(jω)

Friday, 1/27/17 Constraints on A(jω) Friday, 1/27/17 Constraints on A(jω) The simplest electronic oscillators are op amp based, and A(jω) is typically a simple op amp fixed gain amplifier, such as the negative gain and positive gain amplifiers

More information

FlexLab and LevLab: A Portable Lab for Dynamics and Control Teaching

FlexLab and LevLab: A Portable Lab for Dynamics and Control Teaching FlexLab and LevLab: A Portable Lab for Dynamics and Control Teaching Lei Zhou, Mohammad Imani Nejad, David L. Trumper Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,

More information

Investigate and Optimize Your Structures with Kistler's Modal Portfolio

Investigate and Optimize Your Structures with Kistler's Modal Portfolio Investigate and Optimize Your Structures with Kistler's Modal Portfolio Source: NASA Modal Analysis Accelerometers, Impact Hammers, Impedance Heads, Force Sensors and Electronics for Your Modal Analysis

More information

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine A description is given of one way to implement an earthquake test where the test severities are specified by the sine-beat method. The test is done by using a biaxial computer aided servohydraulic test

More information

Parametric signal amplification

Parametric signal amplification Parametric signal amplification ET meeting @ Birmingham Mar 27, 2017 K.Somiya Observation of high freq GW sources [Kiuchi, 2010] BNS merger with different models D=100Mpc BNS merger appears above the cavity

More information

Project 7: Seismic Sensor Amplifier and Geophone damping

Project 7: Seismic Sensor Amplifier and Geophone damping Project 7: Seismic Sensor Amplifier and Geophone damping This project is similar to the geophone amplifier except that its bandwidth extends from DC to about 20Hz. Seismic sensors for earthquake detection

More information

GAS (Geometric Anti Spring) filter and LVDT (Linear Variable Differential Transformer) Enzo Tapia Lecture 2. KAGRA Lecture 2 for students

GAS (Geometric Anti Spring) filter and LVDT (Linear Variable Differential Transformer) Enzo Tapia Lecture 2. KAGRA Lecture 2 for students GAS (Geometric Anti Spring) filter and LVDT (Linear Variable Differential Transformer) Enzo Tapia Lecture 2 1 Vibration Isolation Systems GW event induces a relative length change of about 10^-21 ~ 10^-22

More information

Elmo HARmonica Hands-on Tuning Guide

Elmo HARmonica Hands-on Tuning Guide Elmo HARmonica Hands-on Tuning Guide September 2003 Important Notice This document is delivered subject to the following conditions and restrictions: This guide contains proprietary information belonging

More information

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout 1. Objectives The objective in this experiment is to design a controller for

More information

Electronics basics for MEMS and Microsensors course

Electronics basics for MEMS and Microsensors course Electronics basics for course, a.a. 2017/2018, M.Sc. in Electronics Engineering Transfer function 2 X(s) T(s) Y(s) T S = Y s X(s) The transfer function of a linear time-invariant (LTI) system is the function

More information

Angular control of Advanced Virgo suspended benches

Angular control of Advanced Virgo suspended benches Angular control of Advanced Virgo suspended benches Michał Was for the DET and SBE team LAPP/IN2P3 - Annecy Michał Was (LAPP/IN2P3 - Annecy) GWADW, Elba, 2016 May 25 1 / 12 Suspended benches in Advanced

More information

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor)

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) 72 Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) Equipment List Qty Items Part Numbers 1 PASCO 750 Interface 1 Voltage Sensor CI-6503 1 AC/DC Electronics Laboratory EM-8656 2 Banana

More information

Part 2: Second order systems: cantilever response

Part 2: Second order systems: cantilever response - cantilever response slide 1 Part 2: Second order systems: cantilever response Goals: Understand the behavior and how to characterize second order measurement systems Learn how to operate: function generator,

More information

PRM SRM. Grav. Wave ReadOut

PRM SRM. Grav. Wave ReadOut Nov. 6-9,2 The 22nd Advanced ICFA Beam Dynamics Workshop on Ground Motion in Future Accelerators November 6-9, 2 SLAC Passive Ground Motion Attenuation and Inertial Damping in Gravitational Wave Detectors

More information

Good Modal Practices

Good Modal Practices Good Modal Practices 92-315 Introduction Transducer Considerations Proper Excitation Ensuring Data Gathered is Good Post Processing Tips and Tricks Wrap Up Dr. C. Novak University of Windsor Good Modal

More information

Quantum States of Light and Giants

Quantum States of Light and Giants Quantum States of Light and Giants MIT Corbitt, Bodiya, Innerhofer, Ottaway, Smith, Wipf Caltech Bork, Heefner, Sigg, Whitcomb AEI Chen, Ebhardt-Mueller, Rehbein QEM-2, December 2006 Ponderomotive predominance

More information

Vibration Isolation for Scanning Tunneling Microscopy

Vibration Isolation for Scanning Tunneling Microscopy Vibration Isolation for Scanning Tunneling Microscopy Catherine T. Truett Department of Physics, Michigan State University East Lansing, Michigan 48824 ABSTRACT Scanning Tunneling Microscopy measures tunneling

More information

Material Parameter Measurement (MPM)

Material Parameter Measurement (MPM) Material Parameter Measurement (MPM) C4 Software Module and Accessory of the KLIPPEL ANALYZER SYSTEM (Document Revision 1.3) FEATURES Measure E modulus and damping Evaluate raw materials Specify loudspeaker

More information

Acoustic Resonance Lab

Acoustic Resonance Lab Acoustic Resonance Lab 1 Introduction This activity introduces several concepts that are fundamental to understanding how sound is produced in musical instruments. We ll be measuring audio produced from

More information

Rejecting Rotational Disturbances on Small Disk Drives Using Rotational Accelerometers

Rejecting Rotational Disturbances on Small Disk Drives Using Rotational Accelerometers Rejecting Rotational Disturbances on Small Disk Drives Using Rotational Accelerometers Danny Abramovitch Hewlett-Packard Labs DYA--ifac_96a.doc--9/19/97--Slide 1 DYA--ifac_96a.doc--9/19/97--Slide 2 Problem:

More information

SPEED SENSORS SIGNAL CONDITIONERS. Standard & Custom Sensors, Signal Conditioners and Interface Electronics

SPEED SENSORS SIGNAL CONDITIONERS. Standard & Custom Sensors, Signal Conditioners and Interface Electronics for INNOVATIVE SENSOR SOLUTIONS Standard & Custom Sensors, Signal Conditioners and Interface Electronics SPEED SENSORS Magnetic Speed Sensors (Active & Passive) Hall Effect Speed Sensors, GBR (Zero Speed)

More information

Akiyama-Probe (A-Probe) technical guide This technical guide presents: how to make a proper setup for operation of Akiyama-Probe.

Akiyama-Probe (A-Probe) technical guide This technical guide presents: how to make a proper setup for operation of Akiyama-Probe. Akiyama-Probe (A-Probe) technical guide This technical guide presents: how to make a proper setup for operation of Akiyama-Probe. Version: 2.0 Introduction To benefit from the advantages of Akiyama-Probe,

More information

INTERFEROMETRIC SENSING AND CONTROL

INTERFEROMETRIC SENSING AND CONTROL INTERFEROMETRIC SENSING AND CONTROL IN LIGO Nergis Mavalvala October 1998 Introduction to control systems Length and alignment sensing Noise Sensitivity Length control system Noise suppression More tricks?

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Spring 2008 Sean Lynch Lambros Samouris Tom Groshans History of Op Amps Non Named for their originally intended functions: performing mathematical operations and amplification Addition

More information

Section 7 - Measurement of Transient Pressure Pulses

Section 7 - Measurement of Transient Pressure Pulses Section 7 - Measurement of Transient Pressure Pulses Special problems are encountered in transient pressure pulse measurement, which place stringent requirements on the measuring system. Some of these

More information

The period is the time required for one complete oscillation of the function.

The period is the time required for one complete oscillation of the function. Trigonometric Curves with Sines & Cosines + Envelopes Terminology: AMPLITUDE the maximum height of the curve For any periodic function, the amplitude is defined as M m /2 where M is the maximum value and

More information

Velocity and Acceleration Measurements

Velocity and Acceleration Measurements Lecture (8) Velocity and Acceleration Measurements Prof. Kasim M. Al-Aubidy Philadelphia University-Jordan AMSS-MSc Prof. Kasim Al-Aubidy 1 Introduction: The measure of velocity depends on the scale of

More information

Fatigue testing. Fatigue design

Fatigue testing. Fatigue design Fatigue testing Lecture at SP Technical Research Institute of Sweden April 14, 2008 Gunnar Kjell SP Building Technology and Mechanics E-mail: gunnar.kjell@sp.se Fatigue design Need for material data (Distribution

More information

Teaching Mechanical Students to Build and Analyze Motor Controllers

Teaching Mechanical Students to Build and Analyze Motor Controllers Teaching Mechanical Students to Build and Analyze Motor Controllers Hugh Jack, Associate Professor Padnos School of Engineering Grand Valley State University Grand Rapids, MI email: jackh@gvsu.edu Session

More information

Investigation of effects associated with electrical charging of fused silica test mass

Investigation of effects associated with electrical charging of fused silica test mass Investigation of effects associated with electrical charging of fused silica test mass V. Mitrofanov, L. Prokhorov, K. Tokmakov Moscow State University P. Willems LIGO Project, California Institute of

More information

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING Objectives: To familiarize the student with the concepts of signal conditioning. At the end of the lab, the student should be able to: Understand the

More information

Testbed for prototypes of the LISA point-ahead angle mechanism

Testbed for prototypes of the LISA point-ahead angle mechanism Testbed for prototypes of the LISA point-ahead angle mechanism, Benjamin Sheard, Gerhard Heinzel and Karsten Danzmann Albert-Einstein-Institut Hannover 7 th LISA Symposium Barcelona, 06/16/2008 Point-ahead

More information

ECE 203 LAB 6: INVERTED PENDULUM

ECE 203 LAB 6: INVERTED PENDULUM Version 1.1 1 of 15 BEFORE YOU BEGIN EXPECTED KNOWLEDGE Basic Circuit Analysis EQUIPMENT AFG Oscilloscope Programmable Power Supply MATERIALS Three 741 Opamps TIP41 NPN power transistor TIP42 PNP power

More information

Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst

Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst Lab Summary There are three basic configurations for operational amplifiers. If the amplifier is multiplying the amplitude of the signal, the multiplication

More information

Chapter 2 The Test Benches

Chapter 2 The Test Benches Chapter 2 The Test Benches 2.1 An Active Hydraulic Suspension System Using Feedback Compensation The structure of the active hydraulic suspension (active isolation configuration) is presented in Fig. 2.1.

More information

Sfwr Eng/TRON 3DX4, Lab 4 Introduction to Computer Based Control

Sfwr Eng/TRON 3DX4, Lab 4 Introduction to Computer Based Control Announcements: Sfwr Eng/TRON 3DX4, Lab 4 Introduction to Computer Based Control First lab Week of: Mar. 10, 014 Demo Due Week of: End of Lab Period, Mar. 17, 014 Assignment #4 posted: Tue Mar. 0, 014 This

More information

Embedded Surface Mount Triaxial Accelerometer

Embedded Surface Mount Triaxial Accelerometer Embedded Surface Mount Triaxial Accelerometer Robert D. Sill Senior Scientist PCB Piezotronics Inc. 951 Calle Negocio, Suite A San Clemente CA, 92673 (877) 679 0002 x2954 rsill@pcb.com Abstract 18566 59

More information

Six degree of freedom active vibration isolation using quasi-zero stiffness magnetic levitation

Six degree of freedom active vibration isolation using quasi-zero stiffness magnetic levitation Six degree of freedom active vibration isolation using quasi-zero stiffness magnetic levitation Tao Zhu School of Mechanical Engineering The University of Adelaide South Australia 5005 Australia A thesis

More information

LIGO Photodiode Development and Optical Platform for LIGO Photodetectors Testing

LIGO Photodiode Development and Optical Platform for LIGO Photodetectors Testing LIGO Photodiode Development and Optical Platform for LIGO Photodetectors Testing EOPM EOAM PBS EOPM EOAM Ke-Xun Sun Photodiodes --- with Rana Adhikari, Peter Fritschel, Osamu Miyakawa, Allan Weinstein,

More information

Mechanical modeling of the Seismic Attenuation System for AdLIGO

Mechanical modeling of the Seismic Attenuation System for AdLIGO Mechanical modeling of the Seismic Attenuation System for AdLIGO Candidato: Valerio Boschi Relatore interno: Prof. Virginio Sannibale Relatore esterno: Prof. Diego Passuello 1 Introduction LIGO Observatories

More information

Noise Budget Development for the LIGO 40 Meter Prototype

Noise Budget Development for the LIGO 40 Meter Prototype Noise Budget Development for the LIGO 40 Meter Prototype Ryan Kinney University of Missouri-Rolla, Department of Physics, 1870 Miner Circle, Rolla, MO 65409, USA Introduction LIGO 40 meter prototype What

More information