PRM SRM. Grav. Wave ReadOut

Size: px
Start display at page:

Download "PRM SRM. Grav. Wave ReadOut"

Transcription

1 Nov. 6-9,2 The 22nd Advanced ICFA Beam Dynamics Workshop on Ground Motion in Future Accelerators November 6-9, 2 SLAC Passive Ground Motion Attenuation and Inertial Damping in Gravitational Wave Detectors Presented by: V. Sannibale, A. Bertolini, G. Cella, S. Marka, R. de Salvo, A. Takamori, LI project California Institute of Technology, USA Universitá di Pisa, Italy University of Tokyo, Japan LI-G324--R

2 Nov. 6-9,2 Interferometer Topology ETMY Input Mode cleaner 4/2 ITMY 2 4/2 Laser units: m PRM SRM BS ITMX ETMX LI II Output Mode cleaner Grav. Wave ReadOut ITFs Comparison. LI I LI II Laser Power : W 8W Recycling Factor : 5 Arm Finesse : 5 2 Arm Power : ο 5kW ο 8kW Mirror Substrate : Fused Silica (Q ο 7 ) Sapphire (Q ο 8 ) Suspension Wires : steel Fused Silica LI-G324--R

3 Nov. 6-9,2 LI Sites: (Hanford and Livingston) LI-G324--R

4 Nov. 6-9,2 LI II sensitivity Curve ffl Inspiral NS/NS binaries : 2Mpc LII, 45 Mpc LI II ffl Inspiral NS/BH binaries : 4Mpc LII, Mpc LI II ffl Inspiral BH/BH binaries : Mpc LII, 2 Mpc LI II ffl Inspiral BH/BH merge Mpc Mfi/Mfi : S/N=.5 LII, S/N=LIII ffl Spinning NS,f ο 2 Hz, Galactic Core : ffl > 5 5 LII,ffl > 2 6 LIII LIII could reach a sensitivity able to allow a quantitative comparison with astrophysical models LI-G324--R

5 Nov. 6-9,2 Seismic Attenuation System (SAS): Principle Typical Linear Mechanical Oscillator Transfer Function Rigid Body Mode Resonance Detector Sensitivity Band Transmissibility Flat Response /f^2 Roll off Inertia of the Distributed Mass Internal Resonances. 5mHz Hz Hz 6Hz General Recipe to Improve Passive Seismic Isolation ffl Move down in frequency, lower as possible the rigid body modes ffl Move up in frequency, higher as possible the internal modes. ffl Damp the internal modes. ffl attenuate all the DOF (Crosstalk/Coupling Issues). ffl Active Control to damp the rigid body modes. LI-G324--R

6 Nov. 6-9,2 SAS : Performances/Goals 6 Horizontal Spectral density (m/sqrt(hz)) Mirror Thermal Noise Pendulum Thermal Noise Thermal Noise Long SAS Seismic Noise Short SAS Seismc Noise 2... Frequency (Hz) ffi ~x(ν ' 6 Hz) ο 8 p m Hz ffix rms ' 7 m rms High Reliability and robustness => uninterrupt running time of the order of months LI-G324--R

7 Nov. 6-9,2 Monolithic Geometric Anti-Spring : (Principle/ Advantages) Frame Wire Monolithic Blades Wire Side View Frame Monolithic Blades Top/Bottom View Blade Clamp F x F y mg ffl Very Low Vertical Frequency Resonance (hard task to get very low res. freq. on the vertical DOF for heavy payloads and high internal mode frequency, in a reasonable space). ffl Mechanical Stable System ffl Good Thermal Stability ffl Simple, Compact, Relatively Low Cost. LI-G324--R

8 Nov. 6-9,2 Monolithic Geometric Anti-Spring : (Design) LI-G324--R

9 Nov. 6-9,2 Monolithic Geometric Anti-Spring : (Prototype) LI-G324--R

10 Nov. 6-9,2 Monolithic Geometric Anti-Spring : (Vertical Transfer Function) 2 Vertical Mode (~35mHz) Magnitude 2 2 /f Slope Internal Blade Mode 3 Simple Pendulum Transfer Function Frequency (Hz) LI-G324--R

11 Nov. 6-9,2 Monolithic Geometric Anti-Spring : (Working Point/Thermal Stability).8.6 Resonant Frequency(Hz) Blade Compression Initial position -2.mm -4.5mm -6.mm Fitted Curve Working Point(mm) Displacement (mm).5.2. Sensitivity :.42mm/C Temperature (Degree Celsius) LI-G324--R

12 Nov. 6-9,2 Monolithic Geometric Anti-Spring : (Transfer Function/Quality Factor) 4 Rotation of Load 2 Isolation Ratio[dB] -2-4 Main GASF f=.236 (Hz) Q=4 Pitch of Load Monolithic GASF -6 Unidentified -8 st. Internal. Frequency[Hz]..5 Measured Fitted Output Signal [a.u.] Main GASF f=.236(hz) Q= Time(sec) 8 2 LI-G324--R

13 Nov. 6-9,2 Inverted Pendulum (IP): (Principle/ Advantages) dx M g l Leg Table Flexural Joint Restoring Torque of the Flex. Joint Balanced by the Torque of the Gravit. Field ν = vut k g 2ß M l ; M < kl g ffl Very Low Horizontal Frequency Resonance (ν ' 2 mhz) ffl Large Dynamic Range in the 2 Horizontal Degrees of Freedom ffl Ideal for Applying an Active Control System in 3 D.O.F. ffl Small Forces Required to offset (by dx ) the table with very large payload M (F = M! 2 dx) LI-G324--R

14 Nov. 6-9,2 Inverted Pendulum Prototype: (Design) LI-G324--R

15 Nov. 6-9,2 Inverted Pendulum : (Working Point) Frequency (Hz) ω k g ( M L M Load Load + + m m LegEff 3 LegEff 2 ) Load (kg) Minimum Resonant Frequency Achieved : ν ' mhz (Horiz. DOF) LI-G324--R

16 Nov. 6-9,2 Inverted Pendulum : (Horizontal Transfer Function) 2 Translational Mode 2 /f Slope Internal Modes Magnitude Frequency (Hz) Simple Undim. Model LI-G324--R

17 Nov. 6-9,2 Control Requirements ffl Mirrors RMS Local Positioning System to Provide a Coarse and Fine Alignment System. ffl Mirrors RMS Velocity Reduction to allow the ITF Locking. ffl Mirrors RMS Displacement Reduction to assure ITF Long Term Stability. => Inertial Damping and DC Relative Positioning Control Main Related Issues ffl Rigid Body Modes Main Source of Residual Displacement and Residual Velocity. ffl Crosstalk and Coupling of the Degrees of freedom ffl Actuators/Sensors Dynamic Range and Sensitivity. LI-G324--R

18 Nov. 6-9,2 Position Sensor : (LVDT) Linear Variable Differential Transformer (Logic Scheme) Modulation Secondary Winding Primary Winding + - Mixer Amplifier Lowpass Filter Sensitivity LVDT # 3 : Sensitivity Spectral Density (um/sqrt(hz)) 2 3 Low Pass Filter Cutoff Probable Internal Resonance of the Measurement Setup Frequency (Hz) LI-G324--R

19 Nov. 6-9,2 Inertial Sensor: (Folded Pendulum Accelerometer) l g F M m F L! = s ( M l m l +2fl) g m + M LI-G324--R

20 Nov. 6-9,2 Inertial Sensor: (Folded Pendulum Accelerometer) (Sensitivity) 5 5 Amplitude (V) -5 - Sensitivity : 5 mv/ug Acceleration (ug) Acceleration Spectral Density (ugrms/sqrt(hz)) BC Geophone Position Sensor Noise Actuator Noise Folded Pendulum Acc Frequency (Hz) LI-G324--R

21 Nov. 6-9,2 SAS-SUS Longitudinal Control Diagram Digital Control System ELECTROSTATIC DRIVER LSC:Error Signal DAC DAC COIL DRIVER SAS-SUS SUS LI II Four Stage GASF CHAIN (Passive) IP TABLE COIL DRIVER STEPPER MOTOR DRIVER SAS LVDT DRIVER ACCELER. DRIVER DAC Nonlinear feedback (Threshold Actuation) ADC DAC f=hz f=2hz f=2hz f=hz ELECTROSTATIC DRIVER Suspension f=-4mhz f=2hz VOICECOILS,2,3 ACCELEROM.,2,3 STEPPER MOTORS,2,3 LVDT,2,3 + + DAC DAC DC f=-4mhz ADC LSC:Error Signal -4mHz 4-6Hz Digital Signal Analog Signal Digital Control System Timing Board LI-G324--R

22 Nov. 6-9,2 LI-SAS Prototype Chain (Side View) LI-G324--R

23 Nov. 6-9,2 LI-SAS Prototype Chain (Top View) LI-G324--R

24 Nov. 6-9,2 LI-SAS Prototype Chain (Bottom View) LI-G324--R

25 Nov. 6-9,2 LI-SAS Prototype Chain (Actuators LVDT's) LI-G324--R

26 Nov. 6-9,2 SAS IP Sensor Actuator Map (X; Y and y ) y z x θ y Acceleration Sensor Position Sensor Voice Coil Accutator LEG3 LEG LEG2 LVDT LVDT3 LVDT2 ACT ACT2 ACT3 LI-G324--R

27 Nov. 6-9,2 Multiple Input Multiple Output System Diagonalization G(s) ^ _p D^ _v H(s) ^ u_ S^ q ffl ^H(s) Mechanical System with n eigenmodes. ffl u Sensor vector with n components. ffl v Actuators vector with n components. u = ^H(s) v Idea: Find two matrices ^S, ^D which diagonalize ^H(s) q = ^S ^H(s) ^D p ffl q Sensor vector each one sensitive to just one eigenmode. ffl p Actuators vector each one acting on just one eigenmode. ffl ^G(s) = ^S ^H(s) ^D Diagonalized System. LI-G324--R

28 Nov. 6-9,2 LVDT Sensors Diagonalization (Direct Transfer Functions) 2 LI SAS: LVDT Rotational Mode (theta) Magnitude 2 3 Two Translational Modes (x, y) Frequency (Hz) LI-G324--R

29 Nov. 6-9,2 LVDT Sensors Diagonalization (Diagonalized Transfer Functions) LI SAS: LVDT Diagonalization 2 Magnitude Two Translational Modes (x. y) Rotational Mode (theta) Frequency (Hz) LI-G324--R

30 Nov. 6-9,2 Normal Mode Ring-Down (Yaw Mode) Amplitude (A.U.) LVTP IP Diagonalization (Yaw Mode Ring Down) f =242.mHz Q = Fit Data time(s) LI-G324--R

31 Nov. 6-9,2 Normal Mode Ring-Down (Y Mode) 3 LVTP IP Diagonalization (Y Mode Ring Down) Amplitude (A.U.) Fit Data.4.2. f =47.8mHz Q = time(s) LI-G324--R

32 Nov. 6-9,2 Normal Mode Ring-Down (X Mode) LVTP IP Diagonalization (X Mode Ring Down) Amplitude (A.U.) Fit Data..8.6 f =45.6mHz Q = time(s) LI-G324--R

33 Nov. 6-9,2 SAS Control : (Recent Results) ffl Position Sensor Diagonalization working ffl Actuator Diagonalization Working ffl Closed the Loops in the 3 DOF Example: Residual Seismic Noise Spectral Density DOF : y (Very Preliminary Result) Relative Seismic Noise Spec. Dens (Vrms/Sqrt(Hz)) Gain too high 3 2 Frequency (Hz) LI-G324--R

The VIRGO suspensions

The VIRGO suspensions INSTITUTE OF PHYSICSPUBLISHING Class. Quantum Grav. 19 (2002) 1623 1629 CLASSICAL ANDQUANTUM GRAVITY PII: S0264-9381(02)30082-0 The VIRGO suspensions The VIRGO Collaboration (presented by S Braccini) INFN,

More information

Control Servo Design for Inverted Pendulum

Control Servo Design for Inverted Pendulum JGW-T1402132-v2 Jan. 14, 2014 Control Servo Design for Inverted Pendulum Takanori Sekiguchi 1. Introduction In order to acquire and keep the lock of the interferometer, RMS displacement or velocity of

More information

The AEI 10 m Prototype. June Sina Köhlenbeck for the 10m Prototype Team

The AEI 10 m Prototype. June Sina Köhlenbeck for the 10m Prototype Team The AEI 10 m Prototype June 2014 - Sina Köhlenbeck for the 10m Prototype Team The 10m Prototype Seismic attenuation system Suspension Platform Inteferometer SQL Interferometer Suspensions 2 The AEI 10

More information

Virgo status and commissioning results

Virgo status and commissioning results Virgo status and commissioning results L. Di Fiore for the Virgo Collaboration 5th LISA Symposium 13 july 2004 VIRGO is an French-Italian collaboration for Gravitational Wave research with a 3 km long

More information

Mechanical modeling of the Seismic Attenuation System for AdLIGO

Mechanical modeling of the Seismic Attenuation System for AdLIGO Mechanical modeling of the Seismic Attenuation System for AdLIGO Candidato: Valerio Boschi Relatore interno: Prof. Virginio Sannibale Relatore esterno: Prof. Diego Passuello 1 Introduction LIGO Observatories

More information

VIRGO. The status of VIRGO. & INFN - Sezione di Roma 1. 1 / 6/ 2004 Fulvio Ricci

VIRGO. The status of VIRGO. & INFN - Sezione di Roma 1. 1 / 6/ 2004 Fulvio Ricci The status of VIRGO Fulvio Ricci Dipartimento di Fisica - Università di Roma La Sapienza & INFN - Sezione di Roma 1 The geometrical effect of Gravitational Waves The signal the metric tensor perturbation

More information

7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7)

7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7) Journal of Physics: Conference Series (8) 4 doi:.88/74-6596///4 Lock Acquisition Studies for Advanced Interferometers O Miyakawa, H Yamamoto LIGO Laboratory 8-34, California Institute of Technology, Pasadena,

More information

PUSHING THE ADVANCED VIRGO INTERFEROMETER TO THE LIMIT

PUSHING THE ADVANCED VIRGO INTERFEROMETER TO THE LIMIT HIGH-PERFORMANCE VIBRATION ISOLATION FOR GRAVITATIONAL WAVE DETECTORS PUSHING THE ADVANCED VIRGO INTERFEROMETER TO THE LIMIT After fifty years of building gravitational wave detectors with everincreasing

More information

GAS (Geometric Anti Spring) filter and LVDT (Linear Variable Differential Transformer) Enzo Tapia Lecture 2. KAGRA Lecture 2 for students

GAS (Geometric Anti Spring) filter and LVDT (Linear Variable Differential Transformer) Enzo Tapia Lecture 2. KAGRA Lecture 2 for students GAS (Geometric Anti Spring) filter and LVDT (Linear Variable Differential Transformer) Enzo Tapia Lecture 2 1 Vibration Isolation Systems GW event induces a relative length change of about 10^-21 ~ 10^-22

More information

How to Build a Gravitational Wave Detector. Sean Leavey

How to Build a Gravitational Wave Detector. Sean Leavey How to Build a Gravitational Wave Detector Sean Leavey Supervisors: Dr Stefan Hild and Prof Ken Strain Institute for Gravitational Research, University of Glasgow 6th May 2015 Gravitational Wave Interferometry

More information

Development of Optical lever system of the 40 meter interferometer

Development of Optical lever system of the 40 meter interferometer LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note x/xx/99 LIGO-T99xx- - D Development of Optical lever system

More information

Model Independent Numerical Procedure for the Diagonalization of a Multiple Input Multiple Output Dynamic System

Model Independent Numerical Procedure for the Diagonalization of a Multiple Input Multiple Output Dynamic System 1588 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 4, AUGUST 2011 Model Independent Numerical Procedure for the Diagonalization of a Multiple Input Multiple Output Dynamic System Gianluca Persichetti,

More information

The VIRGO injection system

The VIRGO injection system INSTITUTE OF PHYSICSPUBLISHING Class. Quantum Grav. 19 (2002) 1829 1833 CLASSICAL ANDQUANTUM GRAVITY PII: S0264-9381(02)29349-1 The VIRGO injection system F Bondu, A Brillet, F Cleva, H Heitmann, M Loupias,

More information

Seismic Noise & Vibration Isolation Systems. AIGO Summer Workshop School of Physics, UWA Feb Mar. 2, 2010

Seismic Noise & Vibration Isolation Systems. AIGO Summer Workshop School of Physics, UWA Feb Mar. 2, 2010 Seismic Noise & Vibration Isolation Systems AIGO Summer Workshop School of Physics, UWA Feb. 28 - Mar. 2, 2010 Seismic noise Ground noise: X =α/f 2 ( m/ Hz) α: 10-6 ~ 10-9 @ f = 10 Hz, x = 1 0-11 m GW

More information

Angular control of Advanced Virgo suspended benches

Angular control of Advanced Virgo suspended benches Angular control of Advanced Virgo suspended benches Michał Was for the DET and SBE team LAPP/IN2P3 - Annecy Michał Was (LAPP/IN2P3 - Annecy) GWADW, Elba, 2016 May 25 1 / 12 Suspended benches in Advanced

More information

Superattenuator seismic isolation measurements by Virgo interferometer: a comparison with the future generation antenna requirements

Superattenuator seismic isolation measurements by Virgo interferometer: a comparison with the future generation antenna requirements European Commission FP7, Grant Agreement 211143 Superattenuator seismic isolation measurements by Virgo interferometer: a comparison with the future generation antenna requirements ET-025-09 S.Braccini

More information

Interferometer signal detection system for the VIRGO experiment. VIRGO collaboration

Interferometer signal detection system for the VIRGO experiment. VIRGO collaboration Interferometer signal detection system for the VIRGO experiment VIRGO collaboration presented by Raffaele Flaminio L.A.P.P., Chemin de Bellevue, Annecy-le-Vieux F-74941, France Abstract VIRGO is a laser

More information

DRAFT Expected performance of type-bp SAS in bkagra

DRAFT Expected performance of type-bp SAS in bkagra DRAFT Expected performance of type-bp SAS in bkagra December 27, 216 Yoshinori Fujii Table of Contents 1 Expected performance of type-bp SAS in bkagra 2 1.1 Overview.................................................

More information

Advanced Virgo commissioning challenges. Julia Casanueva on behalf of the Virgo collaboration

Advanced Virgo commissioning challenges. Julia Casanueva on behalf of the Virgo collaboration Advanced Virgo commissioning challenges Julia Casanueva on behalf of the Virgo collaboration GW detectors network Effect on Earth of the passage of a GW change on the distance between test masses Differential

More information

TNI mode cleaner/ laser frequency stabilization system

TNI mode cleaner/ laser frequency stabilization system LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T000077-00- R 8/10/00 TNI mode cleaner/ laser frequency

More information

Arm Cavity Finesse for Advanced LIGO

Arm Cavity Finesse for Advanced LIGO LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T070303-01-D Date: 2007/12/20 Arm Cavity Finesse

More information

CHAPTER 3. Multi-stage seismic attenuation system

CHAPTER 3. Multi-stage seismic attenuation system CHAPTER 3 Multi-stage seismic attenuation system With the detection of gravitational waves, mankind has made its most precise distance measurement to date. This would not have been achievable without the

More information

Improving seismic isolation in Advanced LIGO using a ground rotation sensor

Improving seismic isolation in Advanced LIGO using a ground rotation sensor Improving seismic isolation in Advanced LIGO using a ground rotation sensor 04/16/2016 Krishna Venkateswara for UW- Michael Ross, Charlie Hagedorn, and Jens Gundlach aligo SEI team LIGO-G1600083 1 Contents

More information

A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses.

A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses. A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses. Plus-polarization Cross-polarization 2 Any system

More information

Virgo and the quest for low frequency sensitivity in GW detectors. Adalberto Giazotto INFN Pisa

Virgo and the quest for low frequency sensitivity in GW detectors. Adalberto Giazotto INFN Pisa Virgo and the quest for low frequency sensitivity in GW detectors Adalberto Giazotto INFN Pisa What we found established when we entered in the GW business in 1982 and afterword? 1) Indirect Evidence of

More information

Optical bench Seismic Isolation System (SAS) Prototyped for the HAM chambers of the Advanced LIGO Interferometers

Optical bench Seismic Isolation System (SAS) Prototyped for the HAM chambers of the Advanced LIGO Interferometers Optical bench Seismic Isolation System (SAS) Prototyped for the HAM chambers of the Advanced LIGO Interferometers Hannover, October 24th 2007 Benjamin Abbott (1), Yoichi Aso (3), Valerio Boschi (1,4),

More information

Possibility of Upgrading KAGRA

Possibility of Upgrading KAGRA The 3 rd KAGRA International Workshop @ Academia Sinica May 22, 2017 Possibility of Upgrading KAGRA Yuta Michimura Department of Physics, University of Tokyo with much help from Kentaro Komori, Yutaro

More information

GROUND MOTION IN THE INTERACTION. ensured that the final focus quadrupoles on both. rms amplitudes higher than some fraction of the

GROUND MOTION IN THE INTERACTION. ensured that the final focus quadrupoles on both. rms amplitudes higher than some fraction of the GROUND MOTION IN THE INTERACTION REGION C.Montag, DESY Abstract Ground motion and according quadrupole vibration is of great importance for all Linear Collider schemes currently under study, since these

More information

Noise Budget Development for the LIGO 40 Meter Prototype

Noise Budget Development for the LIGO 40 Meter Prototype Noise Budget Development for the LIGO 40 Meter Prototype Ryan Kinney University of Missouri-Rolla, Department of Physics, 1870 Miner Circle, Rolla, MO 65409, USA Introduction LIGO 40 meter prototype What

More information

LIGO. LIGO Output Mode Cleaner HAM Seismic Attenuation System.

LIGO. LIGO Output Mode Cleaner HAM Seismic Attenuation System. LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY Laboratory / Scientific Collaboration - T050084-00-R May 24 2005 Output Mode Cleaner HAM Seismic Attenuation System. A. Bertolini, R. DeSalvo, C. Galli,

More information

External seismic pre-isolation retrofit design

External seismic pre-isolation retrofit design External seismic pre-isolation retrofit design J. Giaime, B. Lantz, C. Hardham, R. Adhikari, E. Daw, D. DeBra, M. Hammond, K. Mason, D. Coyne, D. Shoemaker April 3, 2002 T020040-00-D Contents 1 Introduction

More information

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011 Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs Josef Frisch Pohang, March 14, 2011 Room Temperature / Superconducting Very different pulse structures RT: single bunch or short bursts

More information

Tilt sensor and servo control system for gravitational wave detection.

Tilt sensor and servo control system for gravitational wave detection. 1 Submitted to Classical and Quantum Gravity, October 2001 Tilt sensor and servo control system for gravitational wave detection. Y. Cheng, J. Winterflood, L. Ju, D.G. Blair Department of Physics, University

More information

Development of the accelerometer for cryogenic experiments II

Development of the accelerometer for cryogenic experiments II Development of the accelerometer for cryogenic experiments II ICRR Univ. of Tokyo, KEK A, Dept. of advanced materials science Univ. of Tokyo B K. Yamamoto, H. Hayakawa, T. Uchiyama, S. Miyoki, H. Ishitsuka,

More information

Active Vibration Isolation of an Unbalanced Machine Tool Spindle

Active Vibration Isolation of an Unbalanced Machine Tool Spindle Active Vibration Isolation of an Unbalanced Machine Tool Spindle David. J. Hopkins, Paul Geraghty Lawrence Livermore National Laboratory 7000 East Ave, MS/L-792, Livermore, CA. 94550 Abstract Proper configurations

More information

Our 10m Interferometer Prototype

Our 10m Interferometer Prototype Our 10m Interferometer Prototype KAGRA f2f, February 14, 2014 Fumiko Kawaoze AEI 10 m Prototype 1 10m Prototype Interferometer Standard Quantum Limit experiment Macroscopic Quantum mechanics Thermal Noise

More information

Some Progress In The Development Of An Optical Readout System For The LISA Gravitational Reference Sensor

Some Progress In The Development Of An Optical Readout System For The LISA Gravitational Reference Sensor Some Progress In The Development Of An Optical Readout System For The LISA Gravitational Reference Sensor Fausto ~cernese*', Rosario De ~ osa*~, Luciano Di Fiore*, Fabio ~arufi*', Adele La ~ana*' and Leopoldo

More information

Alignment control of GEO 600

Alignment control of GEO 600 INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 1 (4) S441 S449 CLASSICAL AND QUANTUM GRAVITY PII: S64-9381(4)683-1 Alignment of GEO 6 HGrote 1, G Heinzel 1,AFreise 1,SGoßler 1, B Willke 1,HLück 1,

More information

Using a Negative Impedance Converter to Dampen Motion in Test Masses

Using a Negative Impedance Converter to Dampen Motion in Test Masses Using a Negative Impedance Converter to Dampen Motion in Test Masses Isabella Molina, Dr.Harald Lueck, Dr.Sean Leavey, and Dr.Vaishali Adya University of Florida Department of Physics Max Planck Institute

More information

Quantum States of Light and Giants

Quantum States of Light and Giants Quantum States of Light and Giants MIT Corbitt, Bodiya, Innerhofer, Ottaway, Smith, Wipf Caltech Bork, Heefner, Sigg, Whitcomb AEI Chen, Ebhardt-Mueller, Rehbein QEM-2, December 2006 Ponderomotive predominance

More information

The VIRGO detection system

The VIRGO detection system LIGO-G050017-00-R Paolo La Penna European Gravitational Observatory INPUT R =35 R=0.9 curv =35 0m 95 MOD CLEAN ER (14m )) WI N d:yag plar=0 ne.8 =1λ 064nm 3km 20W 6m 66.4m M odulat or PR BS N I sing lefrequ

More information

R. De Rosa INFN Napoli For the VIRGO collaboration

R. De Rosa INFN Napoli For the VIRGO collaboration R. De Rosa INFN Napoli For the VIRGO collaboration The lesson of VIRGO+ and VIRGO Science Runs; The Technical Design Report of the Advanced VIRGO project; Conclusion. CSN2 - Frascati, 16-18 Aprile 2012

More information

Vibration measurement in the cryogenic interferometric gravitational wave detector (CLIO interferometer)

Vibration measurement in the cryogenic interferometric gravitational wave detector (CLIO interferometer) Vibration measurement in the cryogenic interferometric gravitational wave detector (CLIO interferometer) ICRR Univ. of Tokyo, Dept. of geophysics Kyoto University A, KEK B, Dept. of advanced materials

More information

Commissioning of Advanced Virgo

Commissioning of Advanced Virgo Commissioning of Advanced Virgo VSR1 VSR4 VSR5/6/7? Bas Swinkels, European Gravitational Observatory on behalf of the Virgo Collaboration GWADW Takayama, 26/05/2014 B. Swinkels Adv. Virgo Commissioning

More information

arxiv: v1 [physics.ins-det] 10 Jul 2017

arxiv: v1 [physics.ins-det] 10 Jul 2017 arxiv:1707.02903v1 [physics.ins-det] 10 Jul 2017 Passive-performance, analysis, and upgrades of a 1-ton seismic attenuation system G Bergmann 1, C M Mow-Lowry 1,4, V B Adya 2, A Bertolini 5, M M Hanke

More information

Advanced LIGO optical configuration investigated in 40meter prototype

Advanced LIGO optical configuration investigated in 40meter prototype Advanced LIGO optical configuration investigated in 4meter prototype LSC meeting at LLO Mar. 22, 25 O. Miyakawa, Caltech and the 4m collaboration LIGO- G5195--R LSC meeting at LLO, March 25 1 Caltech 4

More information

Downselection of observation bandwidth for KAGRA

Downselection of observation bandwidth for KAGRA Downselection of observation bandwidth for KAGRA MG13, Stockholm Jul. 2012 K.Somiya, K.Agatsuma, M.Ando, Y.Aso, K.Hayama, N.Kanda, K.Kuroda, H.Tagoshi, R.Takahashi, K.Yamamoto, and the KAGRA collaboration

More information

Inverted pendulum as low frequency pre-isolation for advanced gravitational wave detectors

Inverted pendulum as low frequency pre-isolation for advanced gravitational wave detectors Nuclear Instruments and Methods in Physics Research A NUCLEAR 1 INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A Inverted pendulum as low frequency pre-isolation for advanced gravitational wave detectors

More information

Mystery noise in GEO600. Stefan Hild for the GEO600 team. 14th ILIAS WG1 meeting, October 2007, Hannover

Mystery noise in GEO600. Stefan Hild for the GEO600 team. 14th ILIAS WG1 meeting, October 2007, Hannover Mystery noise in GEO600 Stefan Hild for the GEO600 team 14th ILIAS WG1 meeting, October 2007, Hannover Intro: What is mystery noise? There is a big gap between the uncorrelated sum (pink) of all known

More information

Modeling of Alignment Sensing and Control for Advanced LIGO

Modeling of Alignment Sensing and Control for Advanced LIGO LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T0900511-v4 Modeling of Alignment Sensing and Control

More information

Module 4 TEST SYSTEM Part 2. SHAKING TABLE CONTROLLER ASSOCIATED SOFTWARES Dr. J.C. QUEVAL, CEA/Saclay

Module 4 TEST SYSTEM Part 2. SHAKING TABLE CONTROLLER ASSOCIATED SOFTWARES Dr. J.C. QUEVAL, CEA/Saclay Module 4 TEST SYSTEM Part 2 SHAKING TABLE CONTROLLER ASSOCIATED SOFTWARES Dr. J.C. QUEVAL, CEA/Saclay DEN/DM2S/SEMT/EMSI 11/03/2010 1 2 Electronic command Basic closed loop control The basic closed loop

More information

Response spectrum Time history Power Spectral Density, PSD

Response spectrum Time history Power Spectral Density, PSD A description is given of one way to implement an earthquake test where the test severities are specified by time histories. The test is done by using a biaxial computer aided servohydraulic test rig.

More information

Passive, Nonlinear, Mechanical Structures for Seismic Attenuation

Passive, Nonlinear, Mechanical Structures for Seismic Attenuation Passive, Nonlinear, Mechanical Structures for Seismic Attenuation Riccardo DeSalvo LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 e-mail: desalvo@ligo.caltech.edu Gravitational

More information

A SIMPLE FORCE BALANCE ACCELEROMETER/SEISMOMETER BASED ON A TUNING FORK DISPLACEMENT SENSOR. D. Stuart-Watson and J. Tapson

A SIMPLE FORCE BALANCE ACCELEROMETER/SEISMOMETER BASED ON A TUNING FORK DISPLACEMENT SENSOR. D. Stuart-Watson and J. Tapson A SIMPLE FORCE BALANCE ACCELEROMETER/SEISMOMETER BASED ON A TUNING FORK DISPLACEMENT SENSOR D. Stuart-Watson and J. Tapson Department of Electrical Engineering, University of Cape Town, Rondebosch 7701,

More information

Modeling and Commisioning of the 10m Prototype Autoalignment System

Modeling and Commisioning of the 10m Prototype Autoalignment System Modeling and Commisioning of the 10m Prototype Autoalignment System Luis F. Ortega Albert Einstein Institute Max Planck Insitute Leibniz Universität and University of Florida Department of Physics (Dated:

More information

LIGO PROJECT. Piezo-Electric Actuator Initial Performance Tests. Eric Ponslet April 13, Abstract

LIGO PROJECT. Piezo-Electric Actuator Initial Performance Tests. Eric Ponslet April 13, Abstract Piezo-Electric Actuator Initial Performance Tests Eric Ponslet April 13, 1998 Abstract This report briefly describes the setup and results from a series of tests performed on a commercially available piezo-electric

More information

Advanced Virgo Technical Design Report

Advanced Virgo Technical Design Report Advanced Virgo Technical Design Report VIR xxxa 12 Issue 1 The Virgo Collaboration March 21, 2012 Contents 1 ISC 1 1.1 General description of the sub-system........................ 1 1.2 Input from other

More information

Installation and Characterization of the Advanced LIGO 200 Watt PSL

Installation and Characterization of the Advanced LIGO 200 Watt PSL Installation and Characterization of the Advanced LIGO 200 Watt PSL Nicholas Langellier Mentor: Benno Willke Background and Motivation Albert Einstein's published his General Theory of Relativity in 1916,

More information

Part 2: Second order systems: cantilever response

Part 2: Second order systems: cantilever response - cantilever response slide 1 Part 2: Second order systems: cantilever response Goals: Understand the behavior and how to characterize second order measurement systems Learn how to operate: function generator,

More information

Results from the Stanford 10 m Sagnac interferometer

Results from the Stanford 10 m Sagnac interferometer INSTITUTE OF PHYSICSPUBLISHING Class. Quantum Grav. 19 (2002) 1585 1589 CLASSICAL ANDQUANTUM GRAVITY PII: S0264-9381(02)30157-6 Results from the Stanford 10 m Sagnac interferometer Peter T Beyersdorf,

More information

Enhanced LIGO HAM ISI Prototype Preliminary Performance Review T

Enhanced LIGO HAM ISI Prototype Preliminary Performance Review T Enhanced LIGO HAM ISI Prototype Preliminary Performance Review T-8251-1 Jeff Kissel, Brian Lantz October 7, 28 Abstract As of May 28, both L1 and H1 interferometers have had an active seismic isolation

More information

Stable Recycling Cavities for Advanced LIGO

Stable Recycling Cavities for Advanced LIGO Stable Recycling Cavities for Advanced LIGO Guido Mueller University of Florida 08/16/2005 Table of Contents Stable vs. unstable recycling cavities Design of stable recycling cavity Design drivers Spot

More information

MEMS-FABRICATED ACCELEROMETERS WITH FEEDBACK COMPENSATION

MEMS-FABRICATED ACCELEROMETERS WITH FEEDBACK COMPENSATION MEMS-FABRICATED ACCELEROMETERS WITH FEEDBACK COMPENSATION Yonghwa Park*, Sangjun Park*, Byung-doo choi*, Hyoungho Ko*, Taeyong Song*, Geunwon Lim*, Kwangho Yoo*, **, Sangmin Lee*, Sang Chul Lee*, **, Ahra

More information

Wavelength Control and Locking with Sub-MHz Precision

Wavelength Control and Locking with Sub-MHz Precision Wavelength Control and Locking with Sub-MHz Precision A PZT actuator on one of the resonator mirrors enables the Verdi output wavelength to be rapidly tuned over a range of several GHz or tightly locked

More information

high, thin-walled buildings in glass and steel

high, thin-walled buildings in glass and steel a StaBle MiCroSCoPe image in any BUildiNG: HUMMINGBIRd 2.0 Low-frequency building vibrations can cause unacceptable image quality loss in microsurgery microscopes. The Hummingbird platform, developed earlier

More information

Designing Optical Layouts for AEI s 10 meter Prototype. Stephanie Wiele August 5, 2008

Designing Optical Layouts for AEI s 10 meter Prototype. Stephanie Wiele August 5, 2008 Designing Optical Layouts for AEI s 10 meter Prototype Stephanie Wiele August 5, 2008 This summer I worked at the Albert Einstein Institute for Gravitational Physics as a member of the 10 meter prototype

More information

The Principle and Simulation of Moving-coil Velocity Detector. Yong-hui ZHAO, Li-ming WANG and Xiao-ling YAN

The Principle and Simulation of Moving-coil Velocity Detector. Yong-hui ZHAO, Li-ming WANG and Xiao-ling YAN 17 nd International Conference on Electrical and Electronics: Techniques and Applications (EETA 17) ISBN: 978-1-6595-416-5 The Principle and Simulation of Moving-coil Velocity Detector Yong-hui ZHAO, Li-ming

More information

OPTICS IN MOTION. Introduction: Competing Technologies: 1 of 6 3/18/2012 6:27 PM.

OPTICS IN MOTION. Introduction: Competing Technologies:  1 of 6 3/18/2012 6:27 PM. 1 of 6 3/18/2012 6:27 PM OPTICS IN MOTION STANDARD AND CUSTOM FAST STEERING MIRRORS Home Products Contact Tutorial Navigate Our Site 1) Laser Beam Stabilization to design and build a custom 3.5 x 5 inch,

More information

Omar E ROOD 1, Han-Sheng CHEN 2, Rodney L LARSON 3 And Richard F NOWAK 4 SUMMARY

Omar E ROOD 1, Han-Sheng CHEN 2, Rodney L LARSON 3 And Richard F NOWAK 4 SUMMARY DEVELOPMENT OF HIGH FLOW, HIGH PERFORMANCE HYDRAULIC SERVO VALVES AND CONTROL METHODOLOGIES IN SUPPORT OF FUTURE SUPER LARGE SCALE SHAKING TABLE FACILITIES Omar E ROOD 1, Han-Sheng CHEN 2, Rodney L LARSON

More information

Virgo change request. Title: EIB seismic attenuation system. VIRGO CHRQ xxx/yyyy

Virgo change request. Title: EIB seismic attenuation system. VIRGO CHRQ xxx/yyyy Virgo change request Title: EIB seismic attenuation system Responsible: Name: J.F.J. van den Brand Email jo@nikhef.nl Institution: Nikhef National Institute for Subatomic Physics Procedure start date:

More information

Low-Level RF. S. Simrock, DESY. MAC mtg, May 05 Stefan Simrock DESY

Low-Level RF. S. Simrock, DESY. MAC mtg, May 05 Stefan Simrock DESY Low-Level RF S. Simrock, DESY Outline Scope of LLRF System Work Breakdown for XFEL LLRF Design for the VUV-FEL Cost, Personpower and Schedule RF Systems for XFEL RF Gun Injector 3rd harmonic cavity Main

More information

LIGO. Advanced LIGO. Keita KAWABE, LIGO Hanford, Caltech LIGO-G

LIGO. Advanced LIGO. Keita KAWABE, LIGO Hanford, Caltech LIGO-G Advanced Keita KAWABE, Hanford, Caltech Introduction Current status Future TOC Why a What is a Introduction Why a: i was not that bad S6 (peak, average) NSNS ~(21, 16) Mpc (H1) and ~(20, 14) Mpc (L1),

More information

LIGO II Photon Drive Conceptual Design

LIGO II Photon Drive Conceptual Design LIGO II Photon Drive Conceptual Design LIGO-T000113-00-R M. Zucker 10/13/00 ABSTRACT LIGO II will require very small forces to actuate the final stage test masses, due to the high isolation factor and

More information

The Virgo detector. L. Rolland LAPP-Annecy GraSPA summer school L. Rolland GraSPA2013 Annecy le Vieux

The Virgo detector. L. Rolland LAPP-Annecy GraSPA summer school L. Rolland GraSPA2013 Annecy le Vieux The Virgo detector The Virgo detector L. Rolland LAPP-Annecy GraSPA summer school 2013 1 Table of contents Principles Effect of GW on free fall masses Basic detection principle overview Are the Virgo mirrors

More information

Parametric signal amplification

Parametric signal amplification Parametric signal amplification ET meeting @ Birmingham Mar 27, 2017 K.Somiya Observation of high freq GW sources [Kiuchi, 2010] BNS merger with different models D=100Mpc BNS merger appears above the cavity

More information

An Alternative to Pyrotechnic Testing For Shock Identification

An Alternative to Pyrotechnic Testing For Shock Identification An Alternative to Pyrotechnic Testing For Shock Identification J. J. Titulaer B. R. Allen J. R. Maly CSA Engineering, Inc. 2565 Leghorn Street Mountain View, CA 94043 ABSTRACT The ability to produce a

More information

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans.   Electronic Measurements & Instrumentation UNIT 2 Q.1) Describe the functioning of standard signal generator Ans. STANDARD SIGNAL GENERATOR A standard signal generator produces known and controllable voltages. It is used as power source for the

More information

The X-arm interferometer test of HEPI at LIGO Livingston

The X-arm interferometer test of HEPI at LIGO Livingston The X-arm interferometer test of HEPI at LIGO Livingston J. Giaime, Louisiana State University & LIGO Livingston. 1 G040358-00-D, LSC meeting, LIGO Hanford, 18 August 2004. Development history Decades

More information

Optical design of shining light through wall experiments

Optical design of shining light through wall experiments Optical design of shining light through wall experiments Benno Willke Leibniz Universität Hannover (member of the ALPS collaboration) Vistas in Axion Physics: A Roadmap for Theoretical and Experimental

More information

Conventional geophone topologies and their intrinsic physical limitations, determined

Conventional geophone topologies and their intrinsic physical limitations, determined Magnetic innovation in velocity sensing Low -frequency with passive Conventional geophone topologies and their intrinsic physical limitations, determined by the mechanical construction, limit their velocity

More information

Mechanical modeling of the Seismic Attenuation System for AdLIGO

Mechanical modeling of the Seismic Attenuation System for AdLIGO Università degli studi di Pisa Facoltà di Scienze Matematiche, Fisiche e Naturali Scuola di Dottorato 'G.Galilei' Dottorato di Ricerca in Fisica Applicata Ciclo XX Pretesi del II anno di Dottorato Annual

More information

Dynamic Angle Estimation

Dynamic Angle Estimation Dynamic Angle Estimation with Inertial MEMS Analog Devices Bob Scannell Mark Looney Agenda Sensor to angle basics Accelerometer basics Accelerometer behaviors Gyroscope basics Gyroscope behaviors Key factors

More information

Status report : about the Monolithic Accelerometers(ACCs) Test

Status report : about the Monolithic Accelerometers(ACCs) Test Updated on 2016.6.3 Goal 1 Estimate the sensitivity of the ACC on(and off) the IP, by comparing to L-4C geophone sensitivity, and 3 channel correlation analysis. Get the ACC s sensitivity limit at high

More information

Introduction to laser interferometric gravitational wave telescope

Introduction to laser interferometric gravitational wave telescope Introduction to laser interferometric gravitational wave telescope KAGRA summer school 013 July 31, 013 Tokyo Inst of Technology Kentaro Somiya Interferometric GW detector Far Galaxy Supernova explosion,

More information

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 )

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) 레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) Contents Frequency references Frequency locking methods Basic principle of loop filter Example of lock box circuits Quantifying frequency stability Applications

More information

Readout and control of a power-recycled interferometric gravitational wave antenna

Readout and control of a power-recycled interferometric gravitational wave antenna LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Publication LIGO-P000008-A - D 10/2/00 Readout and control of a power-recycled

More information

Koji Arai / Stan Whitcomb LIGO Laboratory / Caltech. LIGO-G v1

Koji Arai / Stan Whitcomb LIGO Laboratory / Caltech. LIGO-G v1 Koji Arai / Stan Whitcomb LIGO Laboratory / Caltech LIGO-G1401144-v1 General Relativity Gravity = Spacetime curvature Gravitational wave = Wave of spacetime curvature Gravitational waves Generated by motion

More information

Squeezed light and radiation pressure effects in suspended interferometers. Thomas Corbitt

Squeezed light and radiation pressure effects in suspended interferometers. Thomas Corbitt Squeezed light and radiation pressure effects in suspended interferometers Thomas Corbitt MIT Sarah Ackley, Tim Bodiya, Keisuke Goda, David Ottaway, Eugeniy Mihkailov, Daniel Sigg, Nicolas, Smith, Chris

More information

Vibrating Wire R&D for Alignment of Multipole Magnets in NSLS-II

Vibrating Wire R&D for Alignment of Multipole Magnets in NSLS-II Vibrating Wire R&D for Alignment of Multipole Magnets in NSLS-II 10 th International Workshop on Accelerator Alignment February 11-15, 2008, Tsukuba, Japan Animesh Jain for the NSLS-II magnet team Collaborators

More information

New Long Stroke Vibration Shaker Design using Linear Motor Technology

New Long Stroke Vibration Shaker Design using Linear Motor Technology New Long Stroke Vibration Shaker Design using Linear Motor Technology The Modal Shop, Inc. A PCB Group Company Patrick Timmons Calibration Systems Engineer Mark Schiefer Senior Scientist Long Stroke Shaker

More information

Chapter 2 The Test Benches

Chapter 2 The Test Benches Chapter 2 The Test Benches 2.1 An Active Hydraulic Suspension System Using Feedback Compensation The structure of the active hydraulic suspension (active isolation configuration) is presented in Fig. 2.1.

More information

LISA and SMART2 Optical Work in Europe

LISA and SMART2 Optical Work in Europe LISA and SMART2 Optical Work in Europe David Robertson University of Glasgow Outline Overview of current optical system work Title Funded by Main focus Prime Phase Measuring System LISA SMART2 SEA (Bristol)

More information

Improving the Performance of a Geophone through Capacitive Position Sensing and Feedback. Aaron Barzilai. Stanford University

Improving the Performance of a Geophone through Capacitive Position Sensing and Feedback. Aaron Barzilai. Stanford University Improving the Performance of a Geophone through Capacitive Position Sensing and Feedback Stanford University Tom VanZandt, Steve Manion, Tom Pike Jet Propulsion Laboratory Tom Kenny Stanford University

More information

OPERATION AND MAINTENANCE MANUAL TRIAXIAL ACCELEROMETER MODEL PA-23 STOCK NO

OPERATION AND MAINTENANCE MANUAL TRIAXIAL ACCELEROMETER MODEL PA-23 STOCK NO OPERATION AND MAINTENANCE MANUAL TRIAXIAL ACCELEROMETER MODEL PA-23 STOCK NO. 990-60700-9801 GEOTECH INSTRUMENTS, LLC 10755 SANDEN DRIVE DALLAS, TEXAS 75238-1336 TEL: (214) 221-0000 FAX: (214) 343-4400

More information

The VIRGO Environmental Monitoring System

The VIRGO Environmental Monitoring System The VIRGO Environmental Monitoring System R. De Rosa University of Napoli - Federico II and INFN - Napoli Signaux, Bruits, Problèmes Inverses INRA - Nice, 05-05-2008 - Slow Monitoring System - Environmental

More information

PiezoMike Linear Actuator

PiezoMike Linear Actuator PiezoMike Linear Actuator With Position Sensor for Closed-Loop Operation N-472 High stability and holding force >100 N Self-locking at rest even when closed-loop control is switched off Compact design

More information

RF System Models and Longitudinal Beam Dynamics

RF System Models and Longitudinal Beam Dynamics RF System Models and Longitudinal Beam Dynamics T. Mastoridis 1, P. Baudrenghien 1, J. Molendijk 1, C. Rivetta 2, J.D. Fox 2 1 BE-RF Group, CERN 2 AARD-Feedback and Dynamics Group, SLAC T. Mastoridis LLRF

More information

Velocity and Acceleration Measurements

Velocity and Acceleration Measurements Lecture (8) Velocity and Acceleration Measurements Prof. Kasim M. Al-Aubidy Philadelphia University-Jordan AMSS-MSc Prof. Kasim Al-Aubidy 1 Introduction: The measure of velocity depends on the scale of

More information

Job Sheet 2 Servo Control

Job Sheet 2 Servo Control Job Sheet 2 Servo Control Electrical actuators are replacing hydraulic actuators in many industrial applications. Electric servomotors and linear actuators can perform many of the same physical displacement

More information

Figure 2.1 a. Block diagram representation of a system; b. block diagram representation of an interconnection of subsystems

Figure 2.1 a. Block diagram representation of a system; b. block diagram representation of an interconnection of subsystems 1 Figure 2.1 a. Block diagram representation of a system; b. block diagram representation of an interconnection of subsystems 2 Table 2.1 Laplace transform table 3 Table 2.2 Laplace transform theorems

More information