Lab Manual. Experiment FREQUENCY SWEEP. Created by Hong-Van Tran

Size: px
Start display at page:

Download "Lab Manual. Experiment FREQUENCY SWEEP. Created by Hong-Van Tran"

Transcription

1 Lab Manual Experiment FREQUENCY SWEEP Created by Hong-Van Tran Lab of Electromechanical Energy Department of Precision Engineering. National Chung Hsing University April 19, 2018

2 CONTENTS DESCRIBE... pape 1 PURPOSE... 1 MAIN FLOW CHART... 1 A. Materials... 1 B. Setup... 5 a. Connect Shaker Power amplifier... 5 b. Connect Power amplifier Function generator... 6 c. Connect Function generator Computer... 6 d. Connect Sensor Head Spot (LK-H150) Main controller (LK-G5001V)... 6 e. Connect Sensor Head Spot (LK-H020) Main controller (LK-G5001V)... 7 f. Connect Main controller (LK-G5001V) Computer... 7 g. Setup Your model Shaker7 C. Experiment... 8 Sub flowchart... 8 a. Adjust 02 sensor head spot... 9 b. Turn on Function generator... 9 c. Open software... 9 d. Turn on Amplifier e. Adjust parameters LabVIEW f. Enable signal CH1 (Function generator) g. Measure vibration Shaker h. Amplitude (amp.) i. Amp. Amp(refer) j. Record Amp. Into Table k. Change Vp-p LabVIEW l. freq = freq + step... 13

3 m. freq >= freq_max n. Unable signal CH1 (Function generator) o. Set value Table into LabVIEW p. Enable signal CH1 (Function generator) q. Change to run automatic LabVIEW r. Measure vibration your model D. Results... 15

4 1 1 5 F r e q u e n c y s w e e p DESCRIBE During the frequency sweep the frequency is varied while the amplitude of the deformation - or alternatively the amplitude of the shear stress - is kept constant. For the analysis the storage and loss modulus are plotted against the frequency. The data at low frequencies describe the behavior of the samples at slow changes of stress. PURPOSE - Understanding the control parameters of software LabVIEW (Function generator (OK)). - How to setup to measure vibration Frequency sweep MAIN FLOW CHART BEGIN Materials A Setup B Experiment C Results D END A. Materials No. Instrument Model Qty. Notes 1 Shaker APS Power Amplifier APS Power supply 24VDC KV-U Main controller LK-G5001V 01 Laser displacement sensor 5 Sensor Head Spot LK-H Laser displacement sensor 6 Sensor Head Spot LK-H Laser displacement sensor 7 Function generator WW WW5062 No. Software Notes 1 LK-Navigator 2 Configuration Software for the LK-G5000 Series 2 LabVIEW Control Function generator (WW5062)

5 2 1 5 F r e q u e n c y s w e e p Equipments 1. Shaker (APS113) Power Amplifier (APS125) Power supply KV-U2 24V

6 3 1 5 F r e q u e n c y s w e e p Laser displacement sensor 4. LK-G5001V (Main controller) Sensor Head Spot Type 5. LK-H LK-H Function generator (WW5062)

7 4 1 5 F r e q u e n c y s w e e p Software 1. LK-Navigator 2 2. LabVIEW

8 5 1 5 F r e q u e n c y s w e e p B. Setup Shaker (APS113) g Your model Sensor Head Spot (LK-H150) d a Power amplifier (APS125) Power supply (110 VAC) Sensor Head Spot (LK-H020) e b Function generator (WW5062) Power supply (KV-U2-24VDC) Main controller (LK-G5001V) USB c f USB a. Connect Shaker Power amplifier Shaker Power amplifier

9 6 1 5 F r e q u e n c y s w e e p b. Connect Power amplifier Function generator CH1 Power amplifier Function generator c. Connect Function generator Computer Use cable USB to connect Function generator and Computer d. Connect Sensor Head Spot (LK-H150) Main controller (LK-G5001V) 1 HEAD Main controller (LK-G5001V) Sensor Head Spot type LK-H150

10 7 1 5 F r e q u e n c y s w e e p e. Connect Sensor Head Spot (LK-H020) Main controller (LK-G5001V) Main controller (LK-G5001V) Sensor Head Spot type LK-H020 f. Connect Main controller (LK-G5001V) Computer Use cable USB to connect Main controller (LK-G5001V) and Computer g. Setup Your model Shaker Shaker Your model

11 8 15 F r e q u e n c y s w e e p C. Experiment Sub flowchart BEGIN Adjust 02 sensor head spot a 1 C Amp. Amp(refer) No Turn on Function generator b i Yes Open Software c Record Amp. into Table j Change Vp-p LabVIEW k Turn on Amplifier d freq = freq + step l 2 C Adjust parameters LabVIEW e freq >= freq_max m Yes No 2 C 2 C Enable signal CH1 - generator Measure vibration Shaker f g Unable signal CH1 - generator Set value Table into LabVIEW n o Change to run Auto LabVIEW Measure vibration Your model r q Amplitude (amp.) h Enable signal CH1 - generator p data Your model s 1 C END

12 9 1 5 F r e q u e n c y s w e e p a. Adjust 02 sensor head spot Step 1 Led blue Step 2 Led blue Step1: Adjust Sensor Head spot type LK-H020 - LK-H020 measure Shaker - Adjust position of LK-H020 until the led change yellow to blue Step 2: Adjust Sensor Head spot type LK-H150 - LK-H150 measure your model - Adjust position of LK-H150 until the led change yellow to blue b. Turn on Function generator Here c. Open software Step 1: Open software LK-Navigator 2 - Double click the LK-Navigator 2 icon to launch LK-Navigator 2.

13 F r e q u e n c y s w e e p Step 2: Open software LabVIEW - Double click the LabVIEW icon to launch LabVIEW - Double click the project Function generator (OK) icon to launch function d. Turn on Amplifier Current Limit Gain Power Led current Step 1: Unable signal (CH1 Function generator) Step 2: Adjust volume (Current Limit) to min Step 3: Adjust volume (Gain) to Reset (0) Step 4: Turn on power Step 5: Adjust volume (Current Limit) (slowly) Step 6: Adjust volume (Gain) (slowly) - The value is no more than a half maximum Attention: During experiment the Led current turn on (red color) Step 1: Turn of power Amplifier Step 2: Unable signal (CH1 Function generator) Step 3: Adjust volume (Current Limit) to min Step 4: Adjust volume (Gain) to Reset (0) Step 5: Turn on power Step 6: Adjust volume (Current Limit) (slowly) - The position more than position before Step 7: Adjust volume (Gain) (slowly) - The value is the same a value before

14 F r e q u e n c y s w e e p e. Adjust parameters LabVIEW Step 1: UP/DOWN - Experiment up sweep or down sweep Step 2: Minimum (Hz) - The minimum frequency Step 3: Maximum (Hz) - The maximum frequency Step 4: Step (Hz) - Each Time(ms) the frequency signal increase 1 step Step 5: Time(ms) - The time change the frequency signal 6 7 Step 6: Frequency signal - The minimum frequency Step 7: Amplitude signal - The minimum amplitude signal f. Enable signal CH1 (Function generator) Here

15 F r e q u e n c y s w e e p g. Measure vibration Shaker Step 1: Data Storage setting - Choose amount of Data stored - Choose Sampling cycle x - Selected OUT01 - Click Send to Controller(S) 2 3 Step 2: Record data - Click Start Storage

16 F r e q u e n c y s w e e p Step 3: Load data - Click Storage Data Readout (L) h. Amplitude (amp.) - Measure maximum signal - Measure minimum signal - Amp. = Max Min (signal) i. Amp. Amp(refer) - Compare measure amplitude with desired amplitude j. Record Amp. Into Table - If measure amplitude is equal desired amplitude, then record data into Table No. Frequency (Hz) Vp-p (amplitude signal) k. Change Vp-p LabVIEW - If measure amplitude is no equal desired amplitude, then increase the amplitude signal. Here l. freq = freq + step - Change frequency only 1 step Here m. freq >= freq_max - If current frequency signal is more than maximum frequency signal, then completed to get the range amplitude signal each frequency. n. Unable signal CH1 (Function generator) - Turn off the signal CH1

17 F r e q u e n c y s w e e p o. Set value Table into LabVIEW No. Frequency (Hz) Vp-p (amplitude signal) p. Enable signal CH1 (Function generator) Here q. Change to run automatic LabVIEW Here r. Measure vibration your model 1 2 Step 1: Record data - Click Start Storage

18 F r e q u e n c y s w e e p Step 2: Load data - Click Storage Data Readout (L) Attention: Choose Data Storage setting before step q (Change to run automatic LabVIEW) - Choose amount of Data stored - Choose Sampling cycle x - Selected OUT03 - Click Send to Controller(S) D. Results Step1: Get data Step 2: Turn off Function generator Step 3: Turn off Amplifier Step 3.1: Adjust volume (Gain) to Reset (0) Step 3.2: Adjust volume (Current Limit) to min Step 3.3: Turn off power Step 4: Unplug all off power instruments Attention: - Clean area your experiment - Return the equipment to original locations

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor)

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) 72 Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) Equipment List Qty Items Part Numbers 1 PASCO 750 Interface 1 Voltage Sensor CI-6503 1 AC/DC Electronics Laboratory EM-8656 2 Banana

More information

sin(wt) y(t) Exciter Vibrating armature ENME599 1

sin(wt) y(t) Exciter Vibrating armature ENME599 1 ENME599 1 LAB #3: Kinematic Excitation (Forced Vibration) of a SDOF system Students must read the laboratory instruction manual prior to the lab session. The lab report must be submitted in the beginning

More information

Activity P52: LRC Circuit (Voltage Sensor)

Activity P52: LRC Circuit (Voltage Sensor) Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) AC circuits P52 LRC Circuit.DS (See end of activity) (See end of activity) Equipment Needed Qty

More information

Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson

Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson Financial support to develop this tutorial was provided by the Bradley Department of Electrical and

More information

Standing Waves. Equipment

Standing Waves. Equipment rev 12/2016 Standing Waves Equipment Qty Items Parts Number 1 String Vibrator WA-9857 1 Mass and Hanger Set ME-8967 1 Pulley ME-9448B 1 Universal Table Clamp ME-9376B 1 Small Rod ME-8988 2 Patch Cords

More information

Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier)

Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Name Class Date Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Harmonic motion P40

More information

Measurement of Amplitude Modulation AN 6

Measurement of Amplitude Modulation AN 6 Measurement of Application Note to the KLIPPEL R&D System (Document Revision 1.1) DESCRIPTION In a loudspeaker transducer, the difference between the amplitude response of the fundamental high frequency

More information

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools MAE106 Laboratory Exercises Lab # 1 - Laboratory tools University of California, Irvine Department of Mechanical and Aerospace Engineering Goals To learn how to use the oscilloscope, function generator,

More information

Activity P51: LR Circuit (Power Output, Voltage Sensor)

Activity P51: LR Circuit (Power Output, Voltage Sensor) Activity P51: LR Circuit (Power Output, Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Circuits P51 LR Circuit.DS (See end of activity) (See end of activity) Equipment Needed

More information

LAB 8: Activity P52: LRC Circuit

LAB 8: Activity P52: LRC Circuit LAB 8: Activity P52: LRC Circuit Equipment: Voltage Sensor 1 Multimeter 1 Patch Cords 2 AC/DC Electronics Lab (100 μf capacitor; 10 Ω resistor; Inductor Coil; Iron core; 5 inch wire lead) The purpose of

More information

Experiment P20: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier)

Experiment P20: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) PASCO scientific Physics Lab Manual: P20-1 Experiment P20: - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Concept Time SW Interface Macintosh file Windows file harmonic motion 45 m 700

More information

Teacher s Guide - Activity P51: LR Circuit (Power Output, Voltage Sensor)

Teacher s Guide - Activity P51: LR Circuit (Power Output, Voltage Sensor) Teacher s Guide - Activity P51: LR Circuit (Power Output, Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Circuits P51 LR Circuit.DS (See end of activity) (See end of activity)

More information

Ohm s Law. Equipment. Setup

Ohm s Law. Equipment. Setup rev 05/2018 Ohm s Law Equipment Qty Item Part Number 1 AC/DC Electronics Laboratory EM-8656 1 Current Sensor CI-6556 1 Multimeter 4 Patch Cords 2 Banana Clips 1 100Ω Resistor Purpose The purpose of this

More information

Exercise 4 - THE OSCILLOSCOPE

Exercise 4 - THE OSCILLOSCOPE Exercise 4 - THE OSCILLOSCOPE INTRODUCTION You have been exposed to analogue oscilloscopes in the first year lab. As you are probably aware, the complexity of the instruments, along with their importance

More information

2 Oscilloscope Familiarization

2 Oscilloscope Familiarization Lab 2 Oscilloscope Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout the course you will investigate

More information

Lab 2b: Dynamic Response of a Rotor with Shaft Imbalance

Lab 2b: Dynamic Response of a Rotor with Shaft Imbalance Lab 2b: Dynamic Response of a Rotor with Shaft Imbalance OBJECTIVE: To calibrate an induction position/displacement sensor using a micrometer To calculate and measure the natural frequency of a simply-supported

More information

M70LL Laser Distance Sensor

M70LL Laser Distance Sensor M7LL Laser Distance Sensor for automated manufacturing with Ethernet interface to connect with PLC The analog sensors of series M7LL use a PSD for their receiver optics. This assures a position measurement

More information

Material Parameter Measurement (MPM)

Material Parameter Measurement (MPM) Material Parameter Measurement (MPM) C4 Software Module and Accessory of the KLIPPEL ANALYZER SYSTEM (Document Revision 1.3) FEATURES Measure E modulus and damping Evaluate raw materials Specify loudspeaker

More information

A Revolution in Profile Measurement

A Revolution in Profile Measurement 2D Laser Displacement Sensor LS Series * FASTUS is a product brand of Optex FA. Linearity ±0.1% of F.S. Sampling period 0.5 ms (max. speed) Superbly affordable 2D measurement A Revolution in Profile Measurement

More information

Auntie Spark s Guide to creating a Data Collection VI

Auntie Spark s Guide to creating a Data Collection VI Auntie Spark s Guide to creating a Data Collection VI Suppose you wanted to gather data from an experiment. How would you create a VI to do so? For sophisticated data collection and experimental control,

More information

EENG-201 Experiment # 4: Function Generator, Oscilloscope

EENG-201 Experiment # 4: Function Generator, Oscilloscope EENG-201 Experiment # 4: Function Generator, Oscilloscope I. Objectives Upon completion of this experiment, the student should be able to 1. To become familiar with the use of a function generator. 2.

More information

VM-701B VIBRATION / DISPLACEMENT MONITOR MODULE Page 1 of 7

VM-701B VIBRATION / DISPLACEMENT MONITOR MODULE Page 1 of 7 Page 1 of 7 No entry if additional Model Code / Additional Spec. Code ( spec. code is not specified. ) VM-701B /PM /AL Phase Marker Function Analysis Function 0 Without 0 Without With Y With 1 (When /ALY

More information

How to Measure LDO PSRR

How to Measure LDO PSRR How to Measure LDO PSRR Measure LDO PSRR with Network Analyzer Power supply rejection ratio (PSRR) or some time called power supply ripple rejection measurements are often difficult to measure, especially

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

DXXX Series Servo Programming...9 Introduction...9 Connections HSB-9XXX Series Servo Programming...19 Introduction...19 Connections...

DXXX Series Servo Programming...9 Introduction...9 Connections HSB-9XXX Series Servo Programming...19 Introduction...19 Connections... DPC-11 Operation Manual Table of Contents Section 1 Introduction...2 Section 2 Installation...4 Software Installation...4 Driver Installastion...7 Section 3 Operation...9 D Series Servo Programming...9

More information

HPJSeries HPJ. Ultraminiature Photoelectric Sensors with Self-contained Amplifier

HPJSeries HPJ. Ultraminiature Photoelectric Sensors with Self-contained Amplifier Ultraminiature Photoelectric Sensors with Self-contained Amplifier HPJSeries HPJ Fingertip-size, Provided with a various slit attachments. (six types) Fingertip-size 22 x 11 x 8mm (thru scan model) 30

More information

Product Note 73 Vibration Tester for On-Wafer Tuner Operation

Product Note 73 Vibration Tester for On-Wafer Tuner Operation 1603 St.Regis D.D.O., Quebec H9B 3H7, Canada Tel 514-684-4554 Fax 514-684-8581 E-mail: info@ focus-microwaves.com Website: http://www.focus-microwaves.com Product Note 73 Vibration Tester for On-Wafer

More information

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives:

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives: Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Pentium PC with National Instruments PCI-MIO-16E-4 data-acquisition board (12-bit resolution; software-controlled

More information

Supplementary User Manual for BSWA Impedance Tube Measurement Systems

Supplementary User Manual for BSWA Impedance Tube Measurement Systems Supplementary User Manual for BSWA Impedance Tube Measurement Systems 1 P age Contents Software Installation... 3 Absorption Measurements -- ASTM Method... 4 Hardware Set-Up... 4 Sound card Settings...

More information

LED Displacement Sensor

LED Displacement Sensor LED Displacement Sensor Low-cost LED Displacement Sensor Offers 10-micron Resolution of 25 mm (0.98 in) with measurement range of ±4 mm (0.16 in). Easy-to-use, built-in amplifier. Fast 5-millisecond response.

More information

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab Prelab Part I: RC Circuit 1. Design a high pass filter (Fig. 1) which has a break point f b = 1 khz at 3dB below the midband level (the -3dB

More information

Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS)

Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS) Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS) By Amir Ebrahimi School of Electrical and Electronic Engineering The University of Adelaide June 2014 1 Contents 1- Introduction...

More information

Void Reduction in Reflow Soldering Processes by Sweep Stimulation of PCB Substrate

Void Reduction in Reflow Soldering Processes by Sweep Stimulation of PCB Substrate Void Reduction in Reflow Soldering Processes by Sweep Stimulation of PCB Substrate Viktoria Rawinski Ersa GmbH Wertheim, Germany Abstract Due to the ongoing trend towards miniaturization of power components,

More information

Pulse Scaler for DIN Rail Attachment

Pulse Scaler for DIN Rail Attachment Type 651 Pulse Scaler for DIN Rail Attachment Programmable pulse scaling factor up to 2047:1 NAMUR generator input PNP transistor output Max. pulse frequency 5 khz PROGRAMMING The divisor is set in binary

More information

Experiment P36: Resonance Modes and the Speed of Sound (Voltage Sensor, Power Amplifier)

Experiment P36: Resonance Modes and the Speed of Sound (Voltage Sensor, Power Amplifier) PASCO scientific Vol. 2 Physics Lab Manual: P36-1 Experiment P36: Resonance Modes and the Speed of Sound (Voltage Sensor, Power Amplifier) Concept Time SW Interface Macintosh File Windows File waves 45

More information

Demo / Application Guide for DSA815(-TG) / DSA1000 Series

Demo / Application Guide for DSA815(-TG) / DSA1000 Series Demo / Application Guide for DSA815(-TG) / DSA1000 Series TX1000 Mobile Phone Frontend Mixer Bandpass Filter PA The schematic above shows a typical front end of a mobile phone. Our TX1000 RF Demo Kit shows

More information

1510A PRECISION SIGNAL SIMULATOR

1510A PRECISION SIGNAL SIMULATOR A worldwide leader in precision measurement solutions Portable signal source for calibrating electronic equipment and machinery monitoring systems. 1510A PRECISION SIGNAL SIMULATOR Voltage Signals Charge

More information

Operating Rausch ScanCam within POSM.

Operating Rausch ScanCam within POSM. Operating Rausch ScanCam within POSM. POSM (Pipeline Observation System Management) // posmsoftware.com // info@posmsoftware.com // 859-274-0041 RAUSCH USA // www.rauschusa.com // reusa@rauschusa.com //

More information

AMERITRON SDC-102 Screwdriver Antenna Controller

AMERITRON SDC-102 Screwdriver Antenna Controller AMERITRON SDC-102 Screwdriver Antenna Controller INSTRUCTION MANUAL PLEA S E REA D T H IS M A NU A L BEFORE OP ERA T I N G T H IS EQU IP M EN T! 116 Willow Road Starkville, MS 39759 USA 662-323-8211 Version

More information

MAGTROL. LMU Series Load Monitoring Units. LMU Data Sheet. Description. Features

MAGTROL. LMU Series Load Monitoring Units. LMU Data Sheet. Description. Features MAGTROL Data Sheet Series Load Monitoring Units Features For use with full-bridge strain gauge transducers (sensitivity 0.5 to 4 mv/v) Voltage input for load summation or for individual use (without sensor)

More information

DS-2000 Series Measurement of Frequency Response Function

DS-2000 Series Measurement of Frequency Response Function DS-2000 Series Measurement of Frequency Response Function ONO SOKKI CO., LTD. Contents 1. Flow Chart to Measurement 2. Device Connections 3. DS-2000 Setup 4. Measurement 1. Flow Chart to Measurement The

More information

WALLY ROTARY ENCODER. USER MANUAL v. 1.0

WALLY ROTARY ENCODER. USER MANUAL v. 1.0 WALLY ROTARY ENCODER USER MANUAL v. 1.0 1.MEASUREMENTS ANGULAR POSITIONING a. General Description The angular positioning measurements are performed with the use of the Wally rotary encoder. This measurement

More information

Experiment P55: Light Intensity vs. Position (Light Sensor, Motion Sensor)

Experiment P55: Light Intensity vs. Position (Light Sensor, Motion Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P55-1 Experiment P55: (Light Sensor, Motion Sensor) Concept Time SW Interface Macintosh file Windows file illuminance 30 m 500/700 P55 Light vs. Position P55_LTVM.SWS

More information

Laboratory on Filter Circuits Dr. Lynn Fuller

Laboratory on Filter Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Laboratory on Filter Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585)

More information

MFJ ENTERPRISES, INC.

MFJ ENTERPRISES, INC. TM Model MFJ-1924 INSTRUCTION MANUAL CAUTION: Read All Instructions Before Operating Equipment! MFJ ENTERPRISES, INC. 300 Industrial Park Road Starkville, MS 39759 USA Tel: 662-323-5869 Fax: 662-323-6551

More information

The quantitative relationship between distance, time and speed

The quantitative relationship between distance, time and speed The quantitative relationship between distance, time and speed Introduction In order to understand motion, it is important to consider the basic definition in terms of distance and time. When we say a

More information

About the DSR Dropout, Surge, Ripple Simulator and AC/DC Voltage Source

About the DSR Dropout, Surge, Ripple Simulator and AC/DC Voltage Source About the DSR 100-15 Dropout, Surge, Ripple Simulator and AC/DC Voltage Source Congratulations on your purchase of a DSR 100-15 AE Techron dropout, surge, ripple simulator and AC/DC voltage source. The

More information

Model 845-M Low Noise Synthesizer

Model 845-M Low Noise Synthesizer Model 845-M Low Noise Synthesizer Features Low phase noise Fast switching down to 20 µs FM, Chirps, Pulse Internal OCXO, external variable reference Single DC supply Applications ATE LO for frequency converters

More information

Microwave Circuit Design: Lab 5

Microwave Circuit Design: Lab 5 1. Introduction Microwave Circuit Design: Lab 5 This lab investigates how trade-offs between gain and noise figure affect the design of an amplifier. 2. Design Specifications IMN OMN 50 ohm source Low

More information

Line beam for fast, accurate measuring of height and width

Line beam for fast, accurate measuring of height and width 454 displacement sensor series Line beam for fast, accurate measuring of height and width Linearity of ±0.1% F.S. Sampling period of 0.5 ms (max. speed) 2-dimensional measurements at a significantly low

More information

Selected Filter Circuits Dr. Lynn Fuller

Selected Filter Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee Electrical and 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035 Email:

More information

f/i Pulse converter 6420

f/i Pulse converter 6420 Nokeval No 050302 f/i Pulse converter 1 Contents Description... 3 Pulse converter... 3 Technical specification... 4 Dimensions... 4 Terminal connections... 5 MekuWin software... 6 Preparing... 6 Configuration...

More information

Laboratory Experiment #2 Frequency Response Measurements

Laboratory Experiment #2 Frequency Response Measurements J.B.Francis College of Engineering Mechanical Engineering Department 22-403 Laboratory Experiment #2 Frequency Response Measurements Introduction It is known from dynamic systems that a structure temporarily

More information

The Single-Phase PWM Inverter with Dual-Polarity DC Bus

The Single-Phase PWM Inverter with Dual-Polarity DC Bus Exercise 2 The Single-Phase PWM Inverter with Dual-Polarity DC Bus EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the singlephase PWM inverter with dual-polarity dc

More information

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc.

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc. P a g e 1 ST985 TDR Cable Analyzer Instruction Manual Analog Arts Inc. www.analogarts.com P a g e 2 Contents Software Installation... 4 Specifications... 4 Handling Precautions... 4 Operation Instruction...

More information

SoundCheck 11 Quick Start Guide

SoundCheck 11 Quick Start Guide Software Install Basics Upgrading From an Earlier Version If you are upgrading from an earlier version of SoundCheck 11.1 (or Beta version) you should copy the old installation folder and name it "SoundCheck

More information

Lab 4 Ohm s Law and Resistors

Lab 4 Ohm s Law and Resistors ` Lab 4 Ohm s Law and Resistors What You Need To Know: The Physics One of the things that students have a difficult time with when they first learn about circuits is the electronics lingo. The lingo and

More information

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits Table of Contents: Pre-Lab Assignment 2 Background 2 National Instruments MyDAQ 2 Resistors 3 Capacitors

More information

Physics 3 Lab 5 Normal Modes and Resonance

Physics 3 Lab 5 Normal Modes and Resonance Physics 3 Lab 5 Normal Modes and Resonance 1 Physics 3 Lab 5 Normal Modes and Resonance INTRODUCTION Earlier in the semester you did an experiment with the simplest possible vibrating object, the simple

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

Experiment P24: Motor Efficiency (Photogate, Power Amplifier, Voltage Sensor)

Experiment P24: Motor Efficiency (Photogate, Power Amplifier, Voltage Sensor) PASCO scientific Physics Lab Manual: P24-1 Experiment P24: Motor Efficiency (Photogate, Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh File Windows File energy 30 m 700 P24 Motor

More information

Voltage Current and Resistance II

Voltage Current and Resistance II Voltage Current and Resistance II Equipment: Capstone with 850 interface, analog DC voltmeter, analog DC ammeter, voltage sensor, RLC circuit board, 8 male to male banana leads 1 Purpose This is a continuation

More information

TOS5300 SERIES Hipot Tester/Hipot Tester with Insulation Resistance Test

TOS5300 SERIES Hipot Tester/Hipot Tester with Insulation Resistance Test A new standard for Hipot & Insulation resistance testing Applied to World-Wide input voltage TOS5301 TOS5300 TOS5302 TOS5300(ACW) TOS5301(ACW/DCW) TOS5302(ACW/IR) New low-cost standard model that provides

More information

LAB EXERCISE 3 FET Amplifier Design and Linear Analysis

LAB EXERCISE 3 FET Amplifier Design and Linear Analysis ADS 2012 Workspaces and Simulation Tools (v.1 Oct 2012) LAB EXERCISE 3 FET Amplifier Design and Linear Analysis Topics: More schematic capture, DC and AC simulation, more on libraries and cells, using

More information

FAG PRESTO DX. FAG PRESTO-DX preliminary User Manual. FAG GRAPHIC SYSTEMS S.A. 3, rue de la Vigie CH-1003 Lausanne Switzerland

FAG PRESTO DX. FAG PRESTO-DX preliminary User Manual. FAG GRAPHIC SYSTEMS S.A. 3, rue de la Vigie CH-1003 Lausanne Switzerland FAG PRESTO DX FAG PRESTO-DX preliminary User Manual Table of Contents Safety Instructions... 4 DECLARATION OF CONFORMITY... Erreur! Signet non défini. PRESTO DX... 5 Pass Fail Indicator... 6 RESET and

More information

Sensors and Scatterplots Activity Excel Worksheet

Sensors and Scatterplots Activity Excel Worksheet Name: Date: Sensors and Scatterplots Activity Excel Worksheet Directions Using our class datasheets, we will analyze additional scatterplots, using Microsoft Excel to make those plots. To get started,

More information

WIDEBAND MICROWAVE SIGNAL GENERATOR. SG24000H Compact, Low Phase-Noise, Wideband. Signal Generator Control

WIDEBAND MICROWAVE SIGNAL GENERATOR. SG24000H Compact, Low Phase-Noise, Wideband. Signal Generator Control DS Instruments Key Features: 0.1 to 24GHz Coverage 25 Output Step Attenuator 20 Vernier Range D text S SG24000H WIDEBAND MICROWAVE SIGNAL GENERATOR Tiny Frequency Step Size Sub-Harmonic Filtering Very

More information

MC108A-2 RF MULTI-COUPLER USER S GUIDE

MC108A-2 RF MULTI-COUPLER USER S GUIDE MC108A-2 RF MULTI-COUPLER USER S GUIDE Systems Engineering & Management Company 1430 Vantage Court Vista, California 92081 PROPRIETARY INFORMATION THE INFORMATION CONTAINED IN THIS DOCUMENT CONSTITUTES

More information

SignalCalc Drop Test Demo Guide

SignalCalc Drop Test Demo Guide SignalCalc Drop Test Demo Guide Introduction Most protective packaging for electronic and other fragile products use cushion materials in the packaging that are designed to deform in response to forces

More information

Migrating 4195A to E5061B LF-RF Network Analyzer. April 2010 Agilent Technologies

Migrating 4195A to E5061B LF-RF Network Analyzer. April 2010 Agilent Technologies Migrating 4195A to E61B LF-RF Network Analyzer April 2010 Agilent Technologies Page 1 Contents Overview of 4195A to E61B migration Migrating 4195A to E61B in network measurements Migrating 4195A to E61B

More information

Free vibration of cantilever beam FREE VIBRATION OF CANTILEVER BEAM PROCEDURE

Free vibration of cantilever beam FREE VIBRATION OF CANTILEVER BEAM PROCEDURE FREE VIBRATION OF CANTILEVER BEAM PROCEDURE AIM Determine the damped natural frequency, logarithmic decrement and damping ratio of a given system from the free vibration response Calculate the mass of

More information

Contents CALIBRATION PROCEDURE NI 5412

Contents CALIBRATION PROCEDURE NI 5412 CALIBRATION PROCEDURE NI 5412 Contents Introduction... 2 Software... 2 Documentation... 3 Password... 4 Calibration Interval... 4 Test Equipment... 4 Test Conditions...5 Self-Calibration Procedures...

More information

EKT 314/4 LABORATORIES SHEET

EKT 314/4 LABORATORIES SHEET EKT 314/4 LABORATORIES SHEET WEEK DAY HOUR 4 1 2 PREPARED BY: EN. MUHAMAD ASMI BIN ROMLI EN. MOHD FISOL BIN OSMAN JULY 2009 Creating a Typical Measurement Application 5 This chapter introduces you to common

More information

CD4 Series with linear image sensor and electronic shutter provides accurate measurement.

CD4 Series with linear image sensor and electronic shutter provides accurate measurement. 3 series Series with linear image sensor and electronic shutter provides accurate measurement. Laser displacement sensor features easy setup and operation. High accuracy of.1µm resolution and ±.1% F.S.

More information

VM-702B ABSOLUTE VIBRATION MONITOR MODULE Page 1 of 5

VM-702B ABSOLUTE VIBRATION MONITOR MODULE Page 1 of 5 02B ABSOLUTE VIBRATION Page 1 of 5 No entry if additional Model Code / Additional Spec. Code ( spec, code is not specified. ) 02B /ALY /NB1 /CS1 /CS2 /TRP /TB Analysis Function Non-incendive * 1 Monitor

More information

Physics 310 Lab 6 Op Amps

Physics 310 Lab 6 Op Amps Physics 310 Lab 6 Op Amps Equipment: Op-Amp, IC test clip, IC extractor, breadboard, silver mini-power supply, two function generators, oscilloscope, two 5.1 k s, 2.7 k, three 10 k s, 1 k, 100 k, LED,

More information

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit [International Campus Lab] Objective Determine the behavior of resistors, capacitors, and inductors in DC and AC circuits. Theory ----------------------------- Reference -------------------------- Young

More information

DSA-815 Demo Guide. Solution: The DSA 800 series of spectrum analyzers are packed with features.

DSA-815 Demo Guide. Solution: The DSA 800 series of spectrum analyzers are packed with features. FAQ Instrument Solution FAQ Solution Title DSA-815 Demo Guide Date:08.29.2012 Solution: The DSA 800 series of spectrum analyzers are packed with features. Spectrum analyzers are similar to oscilloscopes..

More information

1.5k. (a) Resistive Circuit (b) Capacitive Circuit

1.5k. (a) Resistive Circuit (b) Capacitive Circuit Objective Information The purposes of this laboratory project are to become further acquainted with the use of an oscilloscope, and to observe the behavior of resistor and resistor capacitor circuits.

More information

How to make a list sweep measurement

How to make a list sweep measurement How to make a list sweep measurement This material shows how to perform a list sweep measurement through an example of the Photovoltaic Cell IV measurement. Figure 1 illustrates the connection and condition

More information

Experiment 3 Topic: Dynamic System Response Week A Procedure

Experiment 3 Topic: Dynamic System Response Week A Procedure Experiment 3 Topic: Dynamic System Response Week A Procedure Laboratory Assistant: Email: Office Hours: LEX-3 Website: Brock Hedlund bhedlund@nd.edu 11/05 11/08 5 pm to 6 pm in B14 http://www.nd.edu/~jott/measurements/measurements_lab/e3

More information

English APSM Power Indicator LED 4. Protection Circuit Indicator LED. 1. RCA Input Jacks 2. Remote Bass Level Control

English APSM Power Indicator LED 4. Protection Circuit Indicator LED. 1. RCA Input Jacks 2. Remote Bass Level Control English APSM-1150 2 1 3 4 1. RCA Input Jacks 2. Remote Bass Level Control 3. Power Indicator LED 4. Protection Circuit Indicator LED 1 5 4 3 2 1. Speaker Connection 2. Ground 3. Remote Turn-on Input 4.

More information

Contents CALIBRATION PROCEDURE NI PXI-5422

Contents CALIBRATION PROCEDURE NI PXI-5422 CALIBRATION PROCEDURE NI PXI-5422 This document contains instructions for calibrating the NI PXI-5422 arbitrary waveform generator. This calibration procedure is intended for metrology labs. It describes

More information

AA-35 ZOOM. RigExpert. User s manual. Antenna and cable analyzer

AA-35 ZOOM. RigExpert. User s manual. Antenna and cable analyzer AA-35 ZOOM Antenna and cable analyzer RigExpert User s manual . Table of contents Introduction Operating the AA-35 ZOOM First time use Main menu Multifunctional keys Connecting to your antenna SWR chart

More information

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Name: Date of lab: Section number: M E 345. Lab 1 Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Precalculations Score (for instructor or TA use only):

More information

Blue Point Engineering

Blue Point Engineering DMX -Channel Relay Board Overview A two-channel DMX relay switch for switching loads up to 0A at 40V AC per channel. he DMX switch operates on the standard DMX5 bus and requires - DMX channels for operation.

More information

Linear Motion Servo Plants: IP01 or IP02. Linear Experiment #0: Integration with WinCon. IP01 and IP02. Student Handout

Linear Motion Servo Plants: IP01 or IP02. Linear Experiment #0: Integration with WinCon. IP01 and IP02. Student Handout Linear Motion Servo Plants: IP01 or IP02 Linear Experiment #0: Integration with WinCon IP01 and IP02 Student Handout Table of Contents 1. Objectives...1 2. Prerequisites...1 3. References...1 4. Experimental

More information

JD723A/JD724B/JD726A Cable and Antenna Analyzers

JD723A/JD724B/JD726A Cable and Antenna Analyzers COMMUNICATIONS TEST & MEASUREMENT SOLUTIONS JD723A/JD724B/JD726A Cable and Antenna Analyzers Key Features Portable and lightweight handheld instrument. Built in wireless frequency bands as well as the

More information

Recent Work at the Stanford Engineering Test Facility

Recent Work at the Stanford Engineering Test Facility 1 Recent Work at the Stanford Engineering Test Facility Tarmigan Casebolt, Dan DeBra, Matt DeGree, William East, Brian Lantz, Norna Robertson, and the SEI team March 22, 2006 Special thanks to SUS, Calum,

More information

MCTS II Multi Channel Current Transducer System. Installation Manual

MCTS II Multi Channel Current Transducer System. Installation Manual MCTS II Multi Channel Current Transducer System Installation Manual MA MCTS II, Ver. 1.0 1 10/2017 Contents 1. Introduction 2. Receiving of goods 3. Hardware Installation 3.1. Connection of the current

More information

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER Issued 10/27/2008 Report due in Lecture 11/10/2008 Introduction In this lab you will characterize a 2N3904 NPN

More information

Testing Sensors & Actors Using Digital Oscilloscopes

Testing Sensors & Actors Using Digital Oscilloscopes Testing Sensors & Actors Using Digital Oscilloscopes APPLICATION BRIEF February 14, 2012 Dr. Michael Lauterbach & Arthur Pini Summary Sensors and actors are used in a wide variety of electronic products

More information

Test ID 5-15 Utility Line Impedance Test Procedures Guide

Test ID 5-15 Utility Line Impedance Test Procedures Guide Test ID 5-15 Utility Line Impedance Test Procedures Guide Revision 1.1 Tektronix October 13, 2010 Page 2 of 18 Equipment Required Table 1 lists the equipment required to perform the Utility Line Impedance

More information

SoundCheck 12.0 Quick Start Guide

SoundCheck 12.0 Quick Start Guide Software Install Basics Upgrading From an Earlier Version If you are upgrading from an earlier version of SoundCheck 12.0 (or Beta version) you should copy the old installation folder and name it "SoundCheck

More information

EET 150 Lab Activity 13 On-Line Students Temperature Logging and Display Analog Discovery 2

EET 150 Lab Activity 13 On-Line Students Temperature Logging and Display Analog Discovery 2 Required Parts, Software and Equipment Parts None for this activity Equipment EET 150 Lab Activity 13 On-Line Students Temperature Logging and Display Analog Discovery 2 Analog Discovery 2: Arbitrary Waveform

More information

Activity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor)

Activity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor) Name Class Date Activity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Linear motion P07 Accelerate Cart.ds (See end of

More information

Automated Frequency Response Measurement with AFG31000, MDO3000 and TekBench Instrument Control Software APPLICATION NOTE

Automated Frequency Response Measurement with AFG31000, MDO3000 and TekBench Instrument Control Software APPLICATION NOTE Automated Frequency Response Measurement with AFG31000, MDO3000 and TekBench Instrument Control Software Introduction For undergraduate students in colleges and universities, frequency response testing

More information

PGT313 Digital Communication Technology. Lab 6. Spectrum Analysis of CDMA Signal

PGT313 Digital Communication Technology. Lab 6. Spectrum Analysis of CDMA Signal PGT313 Digital Communication Technology Lab 6 Spectrum Analysis of CDMA Signal Objectives i) To measure the channel power of a CDMA modulated RF signal using an oscilloscope and the VSA software ii) To

More information

Lab 12 Laboratory 12 Data Acquisition Required Special Equipment: 12.1 Objectives 12.2 Introduction 12.3 A/D basics

Lab 12 Laboratory 12 Data Acquisition Required Special Equipment: 12.1 Objectives 12.2 Introduction 12.3 A/D basics Laboratory 12 Data Acquisition Required Special Equipment: Computer with LabView Software National Instruments USB 6009 Data Acquisition Card 12.1 Objectives This lab demonstrates the basic principals

More information

Activity P56: Transistor Lab 2 Current Gain: The NPN Emitter-Follower Amplifier (Power Output, Voltage Sensor)

Activity P56: Transistor Lab 2 Current Gain: The NPN Emitter-Follower Amplifier (Power Output, Voltage Sensor) Activity P56: Transistor Lab 2 Current Gain: The NPN Emitter-Follower Amplifier (Power Output, Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductors P56 Emitter

More information