AircraftScatterSharp New Features

Size: px
Start display at page:

Download "AircraftScatterSharp New Features"

Transcription

1

2

3 Aircraft Scatter Is using aircraft to redirect or scatter RF that would otherwise be lost in space Increases Communications Distance Has increasing advantage over troposcatter as frequency increases Has increasing advantage as distance increases, up to ~ 900 km (560 miles) Truly a weak-signal mode

4

5 AircraftScatterSharp New Features Doppler Calculations (value and rate of change) Radar Cross Section modeling with estimated RCS for more than 100 aircraft Optionally, program will automatically assign RCS to selected aircraft using this model Adjustable lower limits for altitude and RCS below which planes will not be displayed Planes not meeting these limits will be removed from display Plane icon size and color indexed to RCS More extensive Manual Parameter Entry options including both static and dynamic modeling Rolling terrain elevation reporting

6 Aircraft Scatter is Bistatic Radar

7 Bistatic Radar Bistatic Radar Equation for Path Loss (db): L = 10 log((lambda**2)*s/(((rt**2)*(rr)**2))) 153 L = total loss (db) Rt = distance from transmitter to reflector (km) Rr = distance from receiver to reflector (km) Lambda = wavelength (m) S = radar cross section of aircraft (sq m) For lambda = 2M and Rt = Rr = 450km and S = 63 (B747): AS Path Loss = db Free Space -135; Troposcatter -241; EME -252 db

8 Radar Cross Section meters2 B-1 bomber 0.01 Radar Cross Sections Advanced tactical fighter Small single engine aircraft 1* Small fighter or 4-passenger jet (LearJet) 2*# Douglas DC-9 8# Boeing # Medium bomber or medium jet airliner 20 * Large bomber or large jet airliner 40 * Boeing # Jumbo jet 100* Bird 0.01 Man F-117 fighter B-2 bomber Automobile * Skolnik # ARRL UHF/Microwave Experime nter s Manual

9

10 Estimated Radar Cross Sections A B B B B A A B B777-VIP 67 B B B A B A A A B B B

11

12 Bistatic Radar Signal Loss is proportional to: Log((Frequency)2) = 20 (Log(Frequency)) db Log((Distance)4) = 40 Log(Distance) db Signal Loss is inversely proportional to: Log(Radar Cross Section) = 10 Log(RCS) db

13 Aircraft Scatter s Competition Troposcatter Frequency dependence of loss (db) 30 log(frequency) Distance dependence of loss ~9 db / 100km Meteor Scatter Loss (db) proportional to 30 Log(Frequency) Best at distances of km Aircraft scatter loss in db is proportional to: 20 Log(Frequency) and 40 Log(Distance) Which mode has best chance of success for a particular choice of frequency and distance?

14

15 LearJet RCS = 2 B747 RCS = * Log(2/63) = -15 db

16

17

18

19 Troposcatter s Achilles Heel

20 If we subtract 10 db of signal from Tropo for Take Off Angle of only 1 degree or add 20 db of signal to AS for Forward Scatter Enhancement, Balance shifts in favor of AS even for lower frequencies and shorter distances! But if the aircraft s RCS is lower than expected, then balance shifts in favor of troposcatter

21 Forward Scatter Enhancement Aircraft Scattering Angle

22

23

24 Aircraft Scattering Angle

25 Remember, AS Angle depends on the SUM of your skew angle PLUS your partner s skew angle Take-home message: Keep YOUR skew angle less than 3-5 degrees to keep FSE within 10 db of maximum possible value There is also a distance effect, but it is weaker than the skew-angle effect

26

27

28 FSE 144 MHz Beamwidth = * λ / radius FSE 10 GHz

29

30 Theory vs Reality - VK7MO 144 thru 1296 MHz 12/13 results were within 10 db Moncur R. Aircraft Enhancement Some Insights from Bistatic Radar Theory. CQ VHF Magazine Fall 2003.

31

32 What Do We Know So Far? Relative benefit of AS increases with frequency and with distance Must be along the interstation path or within about 3 degrees to get db Forward Scattering Enhancement Longer distances ( km or miles) will give greater FSE than shorter distances Path loss is high, generally above 200 db for 144 MHz and up, even with maximum Forward Scattering Enhancement The RCS is never precisely known for any particular case, so exact prediction of signal strengths is not possible. The calculations should be considered to be order of magnitude

33 Complications Antenna Pointing Doppler Shift

34 Is Pointing at the Aircraft Necessary? Consider both Elevation and Horizontal Skew compared with beamwidth of antenna array Elevation and Scattering Angle vs Distance for Aircraft Altitude 10,000 meters QSO Distance 200 km 400 km 600 km 800 km 1000 km Distance to Aircraft 100 km 200 km 300 km 400 km 500 km Elevation Scattering Angle * Maximum Forward Scattering Enhancement *

35 Complications: Doppler Shift Aircraft speeds km/h ( mph) Δf = (1/λ) * (VTx + VRx) λ = wavelength VTx = Plane s Velocity component along path from aircraft to Tx station VRx = Plane s Velocity component along path from aircraft to Rx station When plane is moving along the direct path between Tx and Rx stations, the two Doppler Velocities cancel out When plane is moving perpendicular to the direct path between the Tx and Rx stations, the two Doppler Velocities ADD This is another HUGE reason why it is GREAT when you can make use of a plane traveling along the direct path between your station and your QSO partner s station

36 Maximum Doppler Shift (Hz) Flight Perpendicular to Interstation Path (Single Station Component) MHz km/h

37 Maximum Doppler Shift Single Station Component

38 Doppler Shift (Hz) Flight Perpendicular to Interstation Path (Both Station Components) MHz km/h

39 Maximum Doppler Shift Both Station Components

40

41 16.48 Hz/second change in Doppler Shift is 247 Hz during a single 15 second ISCAT-A cycle Compare to Hz/ second for parallel flight path example just shown which gives change of 0.09 Hz over 15 second cycle

42 Doppler shift at 10 GHz for 1000 km/h = 9260 Hz * 2 = 18,530 Hz Change speed by 1% to 1010 km/h and Doppler changes by 1%, or 185 Hz!

43

44

45

46

47

48 Manual Calculations and Calculations on SQLite Database Aircraft Examples for RF Calculations, Max FSE,Tropo Angle, Doppler

49 Digital Modes and AS

50 Reasons to use Digital Modes for Aircraft Scatter Pull weak signals out of the noise Short chopped signal segments on upper bands Because it s cool

51 Complications to using Digital Modes with Aircraft Scatter Doppler shift Short chopped up signal blocks Short period to complete QSO if plane flying perpendicular to interstation path

52 Which Digital Mode to Use? Mode Spacing BW (Hz) Baud rate) Duration (s) S/N (db) JT4A JT9A JT65A QRA64A ISCAT-A * ISCAT-B * JT9E JT9F JT9G JT9H MSK /-8# MSK144 Sh & For Microwaves, ISCAT is preferred due to its tolerance for Doppler shifts, its 15 second periods and ability to cope with short bursts. MSK144 can t handle the Doppler shifts and JT65 is too slow and can t handle bursts. *with 30s average #for 70/500 ms burst &20 ms burst

53 Summary Try to use aircraft with minimal skew (< 3-5 degrees) to maximize FSE Try to use aircraft flying along interstation path to maximize QSO time, maximize FSE, minimize Doppler shift and its rate of change Use a program like Aircraft Scatter Sharp to track aircraft in real time Digital modes greatly increase your likelihood of completing QSOs (path losses greater than 200 db); ISCAT preferred for uwaves Whether or not you need to point at aircraft rather than at remote station depends on your beamwidth, skew angle, aircraft elevation Aircraft Scatter Sharp will track aircraft, allow you to estimate signal levels, compare with tropo signal levels, and see Doppler shift all in real time

54 Preferred Mode vs Band / Distance MHz km 300 or less T T/M M M 144 T A M/A M 222 T A A A# 432 T A A A# 903 T / A* A A A# 1296 and up T / A* A A A# T = TS, A=AS, M = MS. * TS will be favored over AS for high aircraft elevation angles # AS will be useful if the aircraft is above the horizon for both stations

55 Questions? Mach 9.6 (11,850 km/h)

56

57 Not just any Magic, but Physics Magic When the forward scattering angle is 180 degrees: We get constructive interference of the scattered radiation, called Diffractive Scattering which gives us Forward scatter enhancement = 4*Pi* A/(lambda**2) For 1296 MHz, if there is db enhancement, then 8 db signal margin becomes db signal margin

58

59 Something for Nothing? Beamwidth (in degrees) = (14.32 * lambda) / (radius) Frequency MHz G 5G 10G 1 meter 3 db beamwidth deg meters 3 db beamwidth deg meters 3 db beamwidth deg Radius

. Guy Fletcher, VK2KU also wrote an excellent theoretical paper on this subject 5

. Guy Fletcher, VK2KU also wrote an excellent theoretical paper on this subject 5 Aircraft Scatter on VHF, UHF, and Microwave Frequencies: Increasing Understanding and Using Improved Tools to Increase Communications Distance and Maximize Success by Roger Rehr, W3SZ I. Basics and Review

More information

Aircraft Scatter Propagation on 10 GHz using JT65C

Aircraft Scatter Propagation on 10 GHz using JT65C Aircraft Scatter Propagation on 10 GHz using JT65C Results of initial Tests over a 624 km Path By Rex Moncur VK7MO and David Smith VK3HZ This is an initial report of our first tests of 10 GHz propagation

More information

Aircraft Scatter on 10 and 24 GHz using JT65c and ISCAT-A

Aircraft Scatter on 10 and 24 GHz using JT65c and ISCAT-A Aircraft Scatter on 10 and 24 GHz using JT65c and ISCAT-A By VK7MO and David Smith VK3HZ The authors have been using the digital modes JT65C and ISCAT-A to work aircraft scatter at distances of up to 842

More information

The Analysis of the Airplane Flutter on Low Band Television Broadcasting Signal

The Analysis of the Airplane Flutter on Low Band Television Broadcasting Signal The Analysis of the Airplane Flutter on Low Band Television Broadcasting Signal A. Wonggeeratikun 1,2, S. Noppanakeepong 1, N. Leelaruji 1, N. Hemmakorn 1, and Y. Moriya 1 1 Faculty of Engineering and

More information

Aircraft Scatter for the Microwave Enthusiast Roger Rehr, W3SZ 9/27/2013

Aircraft Scatter for the Microwave Enthusiast Roger Rehr, W3SZ 9/27/2013 Aircraft Scatter for the Microwave Enthusiast Roger Rehr, W3SZ 9/27/2013 I. Basics. For our purposes, we will define aircraft scatter as the reflection of radio signals by airplanes. It is a specific example

More information

255 km Aircraft Scatter QSO on 24 GHz

255 km Aircraft Scatter QSO on 24 GHz 255 km Aircraft Scatter QSO on 24 GHz First crossing of Bass Strait on 24 GHz By Rex Moncur VK7MO and David Smith VK3HZ On 13 March 2012, VK3HZ at Mt Liptrap near Wilson s Promontory in Victoria worked

More information

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave WAVE PROPAGATION By Marcel H. De Canck, ON5AU Electromagnetic radio waves can propagate in three different ways between the transmitter and the receiver. 1- Ground waves 2- Troposphere waves 3- Sky waves

More information

VHF/UHF Beyond FM Bob Witte KØNR Page 1

VHF/UHF Beyond FM Bob Witte KØNR Page 1 VHF/UHF Beyond FM Technical Coordinator Colorado Section Page 1 Objective The objective of this presentation is to provide an introduction to operating on VHF/UHF, going beyond the usual FM / Repeater

More information

Aircraft Scatter for the Microwave Enthusiast Roger Rehr, W3SZ 4/12/2014

Aircraft Scatter for the Microwave Enthusiast Roger Rehr, W3SZ 4/12/2014 Aircraft Scatter for the Microwave Enthusiast Roger Rehr, W3SZ 4/12/2014 I. Basics. For our purposes, we will define aircraft scatter as the enhancement of radio signals by airplanes. It is a specific

More information

AircraftScatterSharp An Aircraft Scatter Assistance program for Datahounds --by Roger Rehr, W3SZ

AircraftScatterSharp An Aircraft Scatter Assistance program for Datahounds --by Roger Rehr, W3SZ AircraftScatterSharp An Aircraft Scatter Assistance program for Datahounds --by Roger Rehr, W3SZ I wrote AircraftScatterSharp to assist those wanting to do aircraft scatter. This text highlights improvements

More information

Annex 5. Determination of the interference field strength in the Land Mobile Service

Annex 5. Determination of the interference field strength in the Land Mobile Service Annex 5 Determination of the interference field strength in the Land Mobile Service Annex 5, page 2 of 18 1 General 1.1 This calculation method is based on Recommendation ITU-R P.1546, taking into account

More information

AircraftScatterSharp An Aircraft Scatter Assistance program for Datahounds --by Roger Rehr, W3SZ

AircraftScatterSharp An Aircraft Scatter Assistance program for Datahounds --by Roger Rehr, W3SZ AircraftScatterSharp An Aircraft Scatter Assistance program for Datahounds --by Roger Rehr, W3SZ I wrote AircraftScatterSharp to assist those wanting to do aircraft scatter. This text highlights improvements

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

RECOMMENDATION ITU-R S.1340 *,**

RECOMMENDATION ITU-R S.1340 *,** Rec. ITU-R S.1340 1 RECOMMENDATION ITU-R S.1340 *,** Sharing between feeder links the mobile-satellite service and the aeronautical radionavigation service in the Earth-to-space direction in the band 15.4-15.7

More information

Experiments with Tropo-Scatter on 24 GHz

Experiments with Tropo-Scatter on 24 GHz Experiments with Tropo-Scatter on 24 GHz By Rex Moncur VK7MO and David Smith VK3HZ While it is possible to readily work up to around 200 km on 24 GHz with line of sight propagation between mountains, those

More information

SODAR- sonic detecting and ranging

SODAR- sonic detecting and ranging Active Remote Sensing of the PBL Immersed vs. remote sensors Active vs. passive sensors RADAR- radio detection and ranging WSR-88D TDWR wind profiler SODAR- sonic detecting and ranging minisodar RASS RADAR

More information

Introduction to Radar Systems. The Radar Equation. MIT Lincoln Laboratory _P_1Y.ppt ODonnell

Introduction to Radar Systems. The Radar Equation. MIT Lincoln Laboratory _P_1Y.ppt ODonnell Introduction to Radar Systems The Radar Equation 361564_P_1Y.ppt Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs presented on this server were prepared as an account

More information

ATS 351 Lecture 9 Radar

ATS 351 Lecture 9 Radar ATS 351 Lecture 9 Radar Radio Waves Electromagnetic Waves Consist of an electric field and a magnetic field Polarization: describes the orientation of the electric field. 1 Remote Sensing Passive vs Active

More information

PART 1 RECOMMENDATION ITU-R P.1144 GUIDE TO THE APPLICATION OF THE PROPAGATION METHODS OF RADIOCOMMUNICATION STUDY GROUP 3

PART 1 RECOMMENDATION ITU-R P.1144 GUIDE TO THE APPLICATION OF THE PROPAGATION METHODS OF RADIOCOMMUNICATION STUDY GROUP 3 Rec. ITU-R P.1144 1 PART 1 SECTION P-A: TEXTS OF GENERAL INTEREST Rec. ITU-R P.1144 RECOMMENDATION ITU-R P.1144 GUIDE TO THE APPLICATION OF THE PROPAGATION METHODS OF RADIOCOMMUNICATION STUDY GROUP 3 (1995)

More information

EME with digital modes 144 MHz

EME with digital modes 144 MHz EME with digital modes 144 MHz SM4GGC Stig Larsson Ham radio licensed since 1973 Active on VHF/UHF 1973-1983 and from 2012- EME 1979-1983 and from 2012- Agenda Modes for digital EME WSJT 10 Weak Signal

More information

Working Small Stations on 10 and 24 GHz EME with the help of WSJT

Working Small Stations on 10 and 24 GHz EME with the help of WSJT Working Small Stations on 10 and 24 GHz EME with the help of WSJT Al Ward W5LUA October 19, 2013 Morehead State University Morehead, Kentucky The Bands Band Frequency Range Weak signal work in NA 33 cm

More information

RECOMMENDATION ITU-R S.1341*

RECOMMENDATION ITU-R S.1341* Rec. ITU-R S.1341 1 RECOMMENDATION ITU-R S.1341* SHARING BETWEEN FEEDER LINKS FOR THE MOBILE-SATELLITE SERVICE AND THE AERONAUTICAL RADIONAVIGATION SERVICE IN THE SPACE-TO-EARTH DIRECTION IN THE BAND 15.4-15.7

More information

Chapter 4 The RF Link

Chapter 4 The RF Link Chapter 4 The RF Link The fundamental elements of the communications satellite Radio Frequency (RF) or free space link are introduced. Basic transmission parameters, such as Antenna gain, Beamwidth, Free-space

More information

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing GMAT 9600 Principles of Remote Sensing Week 4 Radar Background & Surface Interactions Acknowledgment Mike Chang Natural Resources Canada Process of Atmospheric Radiation Dr. Linlin Ge and Prof Bruce Forster

More information

Detection of Targets in Noise and Pulse Compression Techniques

Detection of Targets in Noise and Pulse Compression Techniques Introduction to Radar Systems Detection of Targets in Noise and Pulse Compression Techniques Radar Course_1.ppt ODonnell 6-18-2 Disclaimer of Endorsement and Liability The video courseware and accompanying

More information

Selected answers * Problem set 6

Selected answers * Problem set 6 Selected answers * Problem set 6 Wireless Communications, 2nd Ed 243/212 2 (the second one) GSM channel correlation across a burst A time slot in GSM has a length of 15625 bit-times (577 ) Of these, 825

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM

DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM A. Patyuchenko, M. Younis, G. Krieger German Aerospace Center (DLR), Microwaves and Radar Institute, Muenchner Strasse

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 2012-03-19 Ove Edfors - ETIN15 1 Contents Short review

More information

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction Radar, SAR, InSAR; a first introduction Ramon Hanssen Delft University of Technology The Netherlands r.f.hanssen@tudelft.nl Charles University in Prague Contents Radar background and fundamentals Imaging

More information

Multipath fading effects on short range indoor RF links. White paper

Multipath fading effects on short range indoor RF links. White paper ALCIOM 5, Parvis Robert Schuman 92370 CHAVILLE - FRANCE Tel/Fax : 01 47 09 30 51 contact@alciom.com www.alciom.com Project : Multipath fading effects on short range indoor RF links DOCUMENT : REFERENCE

More information

Extreme Grid QF km North of Broken Hill

Extreme Grid QF km North of Broken Hill Extreme Grid QF09 100 km North of Broken Hill By Rex VK7MO and Dave VK3HZ A relatively easy ISCAT-B QSO over 753 km so the opportunity was taken to do an ISCAT-A test to see if we could get a better understanding

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Radar Reprinted from "Waves in Motion", McGourty and Rideout, RET 2005

Radar Reprinted from Waves in Motion, McGourty and Rideout, RET 2005 Radar Reprinted from "Waves in Motion", McGourty and Rideout, RET 2005 What is Radar? RADAR (Radio Detection And Ranging) is a way to detect and study far off targets by transmitting a radio pulse in the

More information

Terrain Reflection and Diffraction, Part One

Terrain Reflection and Diffraction, Part One Terrain Reflection and Diffraction, Part One 1 UHF and VHF paths near the ground 2 Propagation over a plane Earth 3 Fresnel zones Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018

More information

Radio Propagation Fundamentals

Radio Propagation Fundamentals Radio Propagation Fundamentals Concept of Electromagnetic Wave Propagation Mechanisms Modes of Propagation Propagation Models Path Profiles Link Budget Fading Channels Electromagnetic (EM) Waves EM Wave

More information

A Bistatic HF Radar for Current Mapping and Robust Ship Tracking

A Bistatic HF Radar for Current Mapping and Robust Ship Tracking A Bistatic HF Radar for Current Mapping and Robust Ship Tracking Dennis Trizna Imaging Science Research, Inc. V. 703-801-1417 dennis @ isr-sensing.com www.isr-sensing.com Objective: Develop methods for

More information

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters Antennas Dr. John S. Seybold November 9, 004 IEEE Melbourne COM/SP AP/MTT Chapters Introduction The antenna is the air interface of a communication system An antenna is an electrical conductor or system

More information

Fundamental Concepts of Radar

Fundamental Concepts of Radar Fundamental Concepts of Radar Dr Clive Alabaster & Dr Evan Hughes White Horse Radar Limited Contents Basic concepts of radar Detection Performance Target parameters measurable by a radar Primary/secondary

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System blocks and basic concepts Multiple access, MIMO, space-time Transceiver Wireless Channel Signal/System: Bandpass (Passband) Baseband Baseband complex envelope Linear system:

More information

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 8, Number 2 (2015), pp. 103-111 International Research Publication House http://www.irphouse.com Study of Factors which

More information

Modern radio techniques

Modern radio techniques Modern radio techniques for probing the ionosphere Receiver, radar, advanced ionospheric sounder, and related techniques Cesidio Bianchi INGV - Roma Italy Ionospheric properties related to radio waves

More information

Radar level measurement - The users guide

Radar level measurement - The users guide Radar level measurement The user's guide Radar level measurement - The users guide Peter Devine written by Peter Devine additional information Karl Grießbaum type setting and layout Liz Moakes final drawings

More information

VK7MO 10 GHz EME Grid Square Tour across Australia

VK7MO 10 GHz EME Grid Square Tour across Australia VK7MO 10 GHz EME Grid Square Tour across Australia From mid November to mid December VK7MO took his portable 10 GHz system (Fig 1 and Fig 2) across Australia and activated some 25 grid squares (Fig 3)

More information

RADAR EQUATIONS 4-0.1

RADAR EQUATIONS 4-0.1 RADAR EQUATIONS Field Intensity and Power Density... 4-1 Power Density... 4- One-Way Radar Equation / RF Propagation... 4-3 Two-Way Radar Equation (Monostatic)... 4-4 Alternate Two-Way Radar Equation...

More information

Colubris Networks. Antenna Guide

Colubris Networks. Antenna Guide Colubris Networks Antenna Guide Creation Date: February 10, 2006 Revision: 1.0 Table of Contents 1. INTRODUCTION... 3 2. ANTENNA TYPES... 3 2.1. OMNI-DIRECTIONAL ANTENNA... 3 2.2. DIRECTIONAL ANTENNA...

More information

FORMATION FLYING PICOSAT SWARMS FOR FORMING EXTREMELY LARGE APERTURES

FORMATION FLYING PICOSAT SWARMS FOR FORMING EXTREMELY LARGE APERTURES FORMATION FLYING PICOSAT SWARMS FOR FORMING EXTREMELY LARGE APERTURES Presented at the ESA/ESTEC Workshop on Innovative System Concepts February 21, 2006 Ivan Bekey President, Bekey Designs, Inc. 4624

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 27 March 2017 1 Contents Short review NARROW-BAND

More information

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System Lecture Topics Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System 1 Remember that: An EM wave is a function of both space and time e.g.

More information

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion Mechanical Waves Represents the periodic motion of matter e.g. water, sound Energy can be transferred from one point to another by waves Waves are cyclical in nature and display simple harmonic motion

More information

Multi Band Passive Forward Scatter Radar

Multi Band Passive Forward Scatter Radar Multi Band Passive Forward Scatter Radar S. Hristov, A. De Luca, M. Gashinova, A. Stove, M. Cherniakov EESE, University of Birmingham Birmingham, B15 2TT, UK m.cherniakov@bham.ac.uk Outline Multi-Band

More information

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1 Project = An Adventure 18-759: Wireless Networks Checkpoint 2 Checkpoint 1 Lecture 4: More Physical Layer You are here Done! Peter Steenkiste Departments of Computer Science and Electrical and Computer

More information

Noise and Propagation mechanisms

Noise and Propagation mechanisms 2 Noise and Propagation mechanisms Noise Johnson-Nyquist noise Physical review 1928 V rms2 = 4kTBR k : Bolzmann s constant T : absolute temperature B : bandwidth R : Resistance P=4kTB 1 1 Why is this a

More information

August, Antennas 101: A Course in RF Basics

August, Antennas 101: A Course in RF Basics August, 2012 Antennas 101: A Course in RF Basics Antenna Basics Agenda: In today s training, we will go over a brief summary of the following topics at a basic level: Electromagnetic Waves Frequency and

More information

Chapter 15: Radio-Wave Propagation

Chapter 15: Radio-Wave Propagation Chapter 15: Radio-Wave Propagation MULTIPLE CHOICE 1. Radio waves were first predicted mathematically by: a. Armstrong c. Maxwell b. Hertz d. Marconi 2. Radio waves were first demonstrated experimentally

More information

Radio Propagation - VHF and higher

Radio Propagation - VHF and higher Radio Propagation - VHF and higher (Without the Mathematics) Presented by Dr John Worsnop G4BAO RSGB Propagation Studies Committee RadCom GHz bands Columnist With a little help from http://www.mike-willis.com/tutorial/propagation.html

More information

UNIT Derive the fundamental equation for free space propagation?

UNIT Derive the fundamental equation for free space propagation? UNIT 8 1. Derive the fundamental equation for free space propagation? Fundamental Equation for Free Space Propagation Consider the transmitter power (P t ) radiated uniformly in all the directions (isotropic),

More information

Elevation and Pseudo-Brewster Angle Formation of Ground- Mounted Vertical Antennas

Elevation and Pseudo-Brewster Angle Formation of Ground- Mounted Vertical Antennas Robert J. Zavrel, Jr., W7SX PO Box 9, Elmira, OR 97437; w7sx@arrl.net Elevation and Pseudo-Brewster Angle Formation of Ground- Mounted Vertical Antennas The formation of the elevation pattern of ground

More information

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02 Introduction to Radar Systems Radar Antennas Radar Antennas - 1 Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs presented on this server were prepared as an account

More information

Characteristics of HF Coastal Radars

Characteristics of HF Coastal Radars Function Characteristics System 1 Maximum operational (measurement) range** Characteristics of HF Coastal Radars 5 MHz Long-range oceanographic 160-220 km average during (daytime)* System 2 System 3 System

More information

Naval Surveillance Multi-beam Active Phased Array Radar (MAARS)

Naval Surveillance Multi-beam Active Phased Array Radar (MAARS) Naval Surveillance Multi-beam Active Phased Array Radar (MAARS) MAARS MAARS purpose: MAARS is multimode C-band acquisition radar for surveillance and weapon assignment. It perform automatic detection,

More information

Information on the Evaluation of VHF and UHF Terrestrial Cross-Border Frequency Coordination Requests

Information on the Evaluation of VHF and UHF Terrestrial Cross-Border Frequency Coordination Requests Issue 1 May 2013 Spectrum Management and Telecommunications Technical Bulletin Information on the Evaluation of VHF and UHF Terrestrial Cross-Border Frequency Coordination Requests Aussi disponible en

More information

Evolution of the WSJT Digital Modes

Evolution of the WSJT Digital Modes Evolution of the WSJT Digital Modes Mike Hasselbeck WB2FKO New Mexico TechFest 25 February 2017 WSJT: A software package for digital radio communication Weak Signal communication by Professor Joe Taylor

More information

Yagi Antenna Tutorial. Copyright K7JLT 1

Yagi Antenna Tutorial. Copyright K7JLT 1 Yagi Antenna Tutorial Copyright K7JLT Yagi: The Man & Developments In the 920 s two Japanese electrical engineers, Hidetsugu Yagi and Shintaro Uda at Tohoku University in Sendai Japan, investigated ways

More information

Link Budget Calculation

Link Budget Calculation Link Budget Calculation Training materials for wireless trainers This 60 minute talk is about estimating wireless link performance by using link budget calculations. It also introduces the Radio Mobile

More information

Amateur Radio License. Propagation and Antennas

Amateur Radio License. Propagation and Antennas Amateur Radio License Propagation and Antennas Todays Topics Propagation Antennas Propagation Modes Ground wave Low HF and below, ground acts as waveguide Line-of-Sight (LOS) VHF and above, radio waves

More information

Earth Station Coordination

Earth Station Coordination 1 Overview Radio spectrum is a scarce resource that should be used as efficiently as possible. This can be achieved by re-using the spectrum many times - having many systems operate simultaneously on the

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System block Transceiver Wireless Channel Signal / System: Bandpass (Passband) Baseband Baseband complex envelope Linear system: complex (baseband) channel impulse response Channel:

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

Range Considerations for RF Networks

Range Considerations for RF Networks TI Technology Days 2010 Range Considerations for RF Networks Richard Wallace Abstract The antenna can be one of the most daunting components of wireless designs. Most information available relates to large

More information

1 PERFORMANCE COMPARISION BETWEEN HIGHER-ORDER AND RWG BASIS FUNCTIONS

1 PERFORMANCE COMPARISION BETWEEN HIGHER-ORDER AND RWG BASIS FUNCTIONS 1 PERFORMANCE COMPARISION BETWEEN HIGHER-ORDER AND RWG BASIS FUNCTIONS Two monopoles are mounted on a PEC cylinder oriented along the z axis. The length and radius of the cylinder are 5. m and 1. m, respectively.

More information

Ch. III - Limits of single polarity antennas in the VHF and UHF bands

Ch. III - Limits of single polarity antennas in the VHF and UHF bands Ch. III - Limits of single polarity antennas in the VHF and UHF bands Ch. I 2014 QSB origins 2 m Faraday Ch. II 2016 Extension of Excel sheet to VHF and UHF bands From studies by Giorgio Marchi, IK1UWL

More information

Basic Radio Physics. Developed by Sebastian Buettrich. ItrainOnline MMTK 1

Basic Radio Physics. Developed by Sebastian Buettrich. ItrainOnline MMTK   1 Basic Radio Physics Developed by Sebastian Buettrich 1 Goals Understand radiation/waves used in wireless networking. Understand some basic principles of their behaviour. Apply this understanding to real

More information

OCEAN SURFACE ROUGHNESS REFLECTOMETRY WITH GPS MULTISTATIC RADAR FROM HIGH-ALTITUDE AIRCRAFT

OCEAN SURFACE ROUGHNESS REFLECTOMETRY WITH GPS MULTISTATIC RADAR FROM HIGH-ALTITUDE AIRCRAFT OCEAN SURFACE ROUGHNESS REFLECTOMETRY WITH GPS MULTISTATIC RADAR FROM HIGH-ALTITUDE AIRCRAFT VALERY U. ZAVOROTNY 1, DENNIS M. AKOS 2, HANNA MUNTZING 3 1 NOAA/Earth System Research Laboratory/ Physical

More information

Active Cancellation Algorithm for Radar Cross Section Reduction

Active Cancellation Algorithm for Radar Cross Section Reduction International Journal of Computational Engineering Research Vol, 3 Issue, 7 Active Cancellation Algorithm for Radar Cross Section Reduction Isam Abdelnabi Osman, Mustafa Osman Ali Abdelrasoul Jabar Alzebaidi

More information

Investigation of Board-Mounted Omni- Directional Antennas for WLAN- Applications

Investigation of Board-Mounted Omni- Directional Antennas for WLAN- Applications Investigation of Board-Mounted Omni- Directional Antennas for WLAN- Applications Luis Quineche ISE Master Student EEE: Communications Engineering Index Description of Problem Thesis Task Background Theory

More information

This article reports on

This article reports on Millimeter-Wave FMCW Radar Transceiver/Antenna for Automotive Applications A summary of the design and performance of a 77 GHz radar unit David D. Li, Sam C. Luo and Robert M. Knox Epsilon Lambda Electronics

More information

Amateur Microwave Communications. Ray Perrin VE3FN, VY0AAA April 2010

Amateur Microwave Communications. Ray Perrin VE3FN, VY0AAA April 2010 Amateur Microwave Communications Ray Perrin VE3FN, VY0AAA April 2010 Introduction Microwaves are the frequencies above 1000 MHz More than 99% of the radio amateur frequency allocation is in the microwave

More information

Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band

Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band Recommendation ITU-R M.2008 (03/2012) Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band 13.25-13.40 GHz M Series Mobile, radiodetermination,

More information

RECOMMENDATION ITU-R P Guide to the application of the propagation methods of Radiocommunication Study Group 3

RECOMMENDATION ITU-R P Guide to the application of the propagation methods of Radiocommunication Study Group 3 Rec. ITU-R P.1144-2 1 RECOMMENDATION ITU-R P.1144-2 Guide to the application of the propagation methods of Radiocommunication Study Group 3 (1995-1999-2001) The ITU Radiocommunication Assembly, considering

More information

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR David G. Long, Bryan Jarrett, David V. Arnold, Jorge Cano ABSTRACT Synthetic Aperture Radar (SAR) systems are typically very complex and expensive.

More information

New functions and changes summary

New functions and changes summary New functions and changes summary A comparison of PitLab & Zbig FPV System versions 2.50 and 2.40 Table of Contents New features...2 OSD and autopilot...2 Navigation modes...2 Routes...2 Takeoff...2 Automatic

More information

The LoRa Protocol. Overview. Interference Immunity. Technical Brief AN205 Rev A0

The LoRa Protocol. Overview. Interference Immunity. Technical Brief AN205 Rev A0 Technical Brief AN205 Rev A0 The LoRa Protocol By John Sonnenberg Raveon Technologies Corp Overview The LoRa (short for Long Range) modulation scheme is a modulation technique combined with a data encoding

More information

Composite Messenger Antenna Array 8 (CMAA8)

Composite Messenger Antenna Array 8 (CMAA8) 15 db, 5.9 7.4 GHz, Seven-Panel Array Plus Up-look Antenna Family The most important thing we build is trust. Applications Long Distance A/V Mobile Links Airborne Surveillance Links Electronic News Gathering

More information

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Wireless communication basics Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless Signal Propagation Electro-magnetic waves Signal impairments Attenuation Distortion

More information

Ham Radio Training. Level 1 Technician Level. Presented by Richard Bosch KJ4WBB

Ham Radio Training. Level 1 Technician Level. Presented by Richard Bosch KJ4WBB Ham Radio Training Level 1 Technician Level Presented by Richard Bosch KJ4WBB In this chapter, you ll learn about: What is a radio signal The characteristics of radio signals How modulation adds information

More information

RECOMMENDATION ITU-R SA (Question ITU-R 210/7)

RECOMMENDATION ITU-R SA (Question ITU-R 210/7) Rec. ITU-R SA.1016 1 RECOMMENDATION ITU-R SA.1016 SHARING CONSIDERATIONS RELATING TO DEEP-SPACE RESEARCH (Question ITU-R 210/7) Rec. ITU-R SA.1016 (1994) The ITU Radiocommunication Assembly, considering

More information

Propagation mechanisms

Propagation mechanisms RADIO SYSTEMS ETIN15 Lecture no: 2 Propagation mechanisms Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Short on db calculations Basics about antennas Propagation

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 3: Cellular Fundamentals

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 3: Cellular Fundamentals ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 3: Cellular Fundamentals Chapter 3 - The Cellular Concept - System Design Fundamentals I. Introduction Goals of a Cellular System

More information

What is VOACAP Trying to Tell Me?

What is VOACAP Trying to Tell Me? What is VOACAP Trying to Tell Me? A Presentation to The Yankee Clipper Contest Club Feb. 1, 2003 Milford, CT by Dean Straw, N6BV Senior Assistant Technical Editor, ARRL VOACAP VOACAP has been under development

More information

RCS Computation, Reduction and Stealth Design

RCS Computation, Reduction and Stealth Design RCS Computation, Reduction and Stealth Design Micah Li PhD EM Application Engineer Flomerics U.K. micah.li@flomerics.co.uk Agenda Introduction Background of TLM (MICROSTRIPES) Numerically predicting the

More information

Subsystems of Radar and Signal Processing and ST Radar

Subsystems of Radar and Signal Processing and ST Radar Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 5 (2013), pp. 531-538 Research India Publications http://www.ripublication.com/aeee.htm Subsystems of Radar and Signal Processing

More information

Radar observables: Target range Target angles (azimuth & elevation) Target size (radar cross section) Target speed (Doppler) Target features (imaging)

Radar observables: Target range Target angles (azimuth & elevation) Target size (radar cross section) Target speed (Doppler) Target features (imaging) Fundamentals of Radar Prof. N.V.S.N. Sarma Outline 1. Definition and Principles of radar 2. Radar Frequencies 3. Radar Types and Applications 4. Radar Operation 5. Radar modes What What is is Radar? Radar?

More information

IBIS range. GeoRadar Division. GeoRadar Division. Static and Dynamic Monitoring of Civil Engineering Structures by Microwave Interferometry

IBIS range. GeoRadar Division. GeoRadar Division. Static and Dynamic Monitoring of Civil Engineering Structures by Microwave Interferometry Static and Dynamic Monitoring of Civil Engineering Structures by Microwave Interferometry Garry Spencer and Mark Bell 1 PRODUCTS IBIS range APPLICATIONS IBIS - FL LANDSLIDE & DAM MONITORING IBIS - FM SLOPE

More information

Fundamentals Of Commercial Doppler Systems

Fundamentals Of Commercial Doppler Systems Fundamentals Of Commercial Doppler Systems Speed, Motion and Distance Measurements I. Introduction MDT manufactures a large variety of microwave oscillators, transceivers, and other components for the

More information

Spectrum & Power Measurements Using the E6474A Wireless Network Optimization Platform Application Note By Richard Komar

Spectrum & Power Measurements Using the E6474A Wireless Network Optimization Platform Application Note By Richard Komar Spectrum & Power Measurements Using the E6474A Wireless Network Optimization Platform Application Note By Richard Komar Contents Introduction...1 Band Clearing...2 Using the spectrum analyzer for band

More information

Channel Modeling and Characteristics

Channel Modeling and Characteristics Channel Modeling and Characteristics Dr. Farid Farahmand Updated:10/15/13, 10/20/14 Line-of-Sight Transmission (LOS) Impairments The received signal is different from the transmitted signal due to transmission

More information

Lecture Note on Wireless Communication Engineering I

Lecture Note on Wireless Communication Engineering I Lecture Note on Wireless Communication Engineering I Prof. Kiyomichi Araki Department of Electrical & Electronics Tokyo Institute of Technology South III Bld. Room No. 912 TEL/FAX: 03-5734-3495 E-mail:

More information

ANTENNA INTRODUCTION / BASICS

ANTENNA INTRODUCTION / BASICS Rules of Thumb: 1. The Gain of an antenna with losses is given by: G 0A 8 Where 0 ' Efficiency A ' Physical aperture area 8 ' wavelength ANTENNA INTRODUCTION / BASICS another is:. Gain of rectangular X-Band

More information