Energy-efficient neuromorphic computing with magnetic tunnel junctions

Size: px
Start display at page:

Download "Energy-efficient neuromorphic computing with magnetic tunnel junctions"

Transcription

1 Energy-efficient neuromorphic computing with magnetic tunnel junctions CNRS/Thales, France Jacob Torrejon Mathieu Riou Flavio Abreu Araujo Paolo Bortolotti Vincent Cros Julie Grollier AIST, Japan Sumito Tsunegi Kay Yakushiji Akio Fukushima Hitoshi Kubota Shinji Yuasa NIST, USA Guru Khalsa Mark Stiles C2N, France Damien Querlioz 1

2 WHAT: Brain-inspired computing for cognitive tasks Neural networks. Already in heavy commercial application. Quasi-static. inputs outputs Dynamic processing. Make use of dynamical properties of devices. Spikes, rates, oscillations, timing, Simulate brain function Voltage Time 2

3 Sophisticated CMOS-based neuromorphic chip development Loihi (Intel) TrueNorth (IBM) BrainScales (Human Brain Project) Brain-like features natural in CMOS local energy source Incoming signal does not power outgoing signal. Connectivity Digital spikes shared communication channels Energy efficiency and complexity is still far from the brain! 3

4 HOW: Augment CMOS with efficient neural devices (MTJs) Features for which CMOS may be inefficient (energy and/or device area) Non-volatility Plasticity (local learning) Stochasticity Oscillators Nano-oscillators P k B T AP Source MRAM Bit Bit Line Line Drain MTJ Superparamagnetic tunnel junctions R AP R AP Resistance 4 current R P R P Time (s) 4

5 Single oscillator reservoir computing Time multiplexed reservoir computing Sine/Square Identification (Intrinsic memory) Spoken digit recognition (Non-linearity) Sine/Square Identification (Delayed feedback memory) 5

6 Feed-forward networks one direction of information flow information flow inputs outputs hidden layers Non-linear nodes (neurons) rearranges spaces to allow classification Train off-line adjust synaptic weights to optimize fit to test data 6

7 Recurrent networks have intrinsic time scales information flow Input time series Output time series hidden layers Output time dependent input becomes time series Training protocol not simple 7

8 Reservoir computing a simply trainable recurrent network reservoir Input time series Output time series Non-linear, Fixed synaptic weights Linear, Trained synaptic weights 8

9 Reservoir computing ring geometry reservoir Input time series to each device Output time series Non-linear, Fixed synaptic weights Linear, Synaptic weights trained off-line 9

10 Reservoir computing time multiplexed single device Input time series outputs t n-1 times mask Time multiplexed input to reservoir t n time t n+1 t n+2 t n+3 reservoir Device at different times gives virtual Devices. output time series Output weights, time dependent, accumulated. 1

11 Spin-torque nano-oscillators: non-linear amplitude dynamics and memory Input (mv) V osc (mv) Time (µs) ) Voltage amplitude (mv) V in = ± 25 mv VV dc current (ma) Torrejon et al., Nature 547, 428 (217). Input: current Output: amplitude of the oscillator s voltage Input Arbitrary Waveform Generator I DC + FeB MgO CoFeB H Diode V osc (t) VV(tt) Input (mv) V osc (mv) VV 1 VV 2 VV 5 VV 7 VV 3 VV 4 VV 6 VV(tt) Time (µs) 11

12 Single oscillator reservoir computing Time multiplexed reservoir computing Sine/Square Identification (Intrinsic memory) Spoken digit recognition (Non-linearity) Sine/Square Identification (Delayed feedback memory) 12

13 Task: recognizing sines from squares at each point in time with a single oscillator Voltage (V).2. Input sine square square sine square sine square Time (µs) Paquot et al, Scientific Reports 2:287 (212) Same inputs 13

14 For extrinsic memory, each node should couple to a few other nodes. Voltage (V) Time (µs) Preprocessing Different input to each (virtual) node τ Voltage amplitude VV N τ VV 1 VV 2 VV 3 VV N VV 1 Time 14

15 Experimental trajectories of oscillators amplitude Preprocessed Input Voltage (mv) Voltage (mv) sine square Time (µs) Oscillator s emitted voltage VV(tt) Time (µs) τ 15

16 Experimental trajectories of oscillators amplitude Preprocessed Input Voltage (mv) 2-2 sine square Time (µs) Oscillator s emitted voltage VV(tt) Voltage (mv) Time (µs) τ 16

17 Different trajectories: data separation is achieved Same input for sine and square Different outputs VV(tt) Voltage (mv) 2-2 Sine Square Time (µs) Voltage (mv) Sine Square Time (µs) 17

18 Trajectories need to be grouped to be classified in sines and squares Voltage (mv) Time (µs) VV(tt) Square 1 Target Sine Time (µs) 18 18

19 Classification: constructing the output for sine, 1 for square Voltage (mv) Time (µs) VV(tt) Square 1 Target VV oooooooooooo = ww ii VV ii Sine computer Time (µs) 19 19

20 Experimental result : RMS = 1% perfect classification of sines and squares waveform with 8 randomly arranged sines and squares Target Reconstructed output Time / τ H = 38 Oe, I DC = 6.4 ma 8 τ per period, 24 nodes, θ = 1 ns 64 first τ for training, 64 next τ for classification 2

21 Single oscillator reservoir computing Time multiplexed reservoir computing Sine/Square Identification (Intrinsic memory) Spoken digit recognition (Non-linearity) Sine/Square Identification (Delayed feedback memory) 21

22 Amplitude (a.u.) Spoken digit recognition (NIST TI-46 corpus) Input: audio file 5 Time (a.u.) "1" Acoustic features Spectrogram or Cochlear Preprocessed input Pre-processing Oscillator Recorded trace Computer Output "1" 8 Spectrogram Success rate (%) With oscillator Utterances for training 22

23 Input: audio file Amplitude (a.u.) Spoken digit recognition (NIST TI-46 corpus) 5 Time (a.u.) "1" Acoustic features Spectrogram or Cochlear Preprocessed input Pre-processing Oscillator No oscillator Recorded trace Computer Output "1" 8 Spectrogram Success rate (%) With oscillator + 7% Without oscillator Utterances for training 23

24 Input: audio file Amplitude (a.u.) Spoken digit recognition (NIST TI-46 corpus) 5 Time (a.u.) "1" Acoustic features Spectrogram or Cochlear Preprocessed input Pre-processing Oscillator No oscillator Recorded trace Computer Output "1" Spectrogram Cochlear Success rate (%) With oscillator + 7% Without oscillator Success rate (%) With oscillator Without oscillator 99.6% Utterances for training Utterances for training 24

25 Spoken digit recognition (NIST TI-46 corpus) Jacob Torrejon-Diaz, Mathieu Riou, Flavio Abreu-Araujo, et al, Nature 547, (217) State of the art: 96 to 99.8 % Spectrogram Cochlear Success rate (%) With oscillator + 7% Without oscillator Success rate (%) With oscillator Without oscillator 99.6% Utterances for training Utterances for training 25

26 Recognition results are sensitive to the noise, an optimal bias area is found 26

27 Single oscillator reservoir computing Time multiplexed reservoir computing Sine/Square Identification (Intrinsic memory) Spoken digit recognition (Non-linearity) Sine/Square Identification (Delayed feedback memory) 27

28 Replace intrinsic memory with delayed feedback New part of reservoir τ Intrinsic memory Feedback memory 28

29 To focus on feedback, nodes only couple to past states of themselves Input u tt (b) (a) Input u(k) τ Random fixed connections iin iin ww iiii τ (c) (b) Preprocessed input J(tt) θ τ (d) (c) τ Recurrent neural network X(tt) θ Oscillation amplitude time traces x(tt) Trained connections W, b Output y(tt) (e) (d) (e) (f) (g) (f) Higher dimension Mapping X(k) Offline linear combination WX k + b Output y(k) θ 29

30 Feedback allows separation of similar inputs without delayed feedback loop Error rate is 1.78% with delayed feedback loop Error rate is.16% 3

31 Single oscillator reservoir computing Augmenting CMOS based neuromorphic circuits with energy-efficient spintronic devices. MTJs already accessible in stat-of-the-art BEOL CMOS Time multiplexed reservoir computing. Memory (intrinsic or delayed feedback) allows context dependent discrimination. Single oscillator achieves state of the art at spoken digit recognition non-linearity. Where to? Small low power oscillators. Efficient coupling. Appropriate algorithms 31

Nanodevices for bio-inspired computing

Nanodevices for bio-inspired computing Nanodevices for bio-inspired computing Julie Grollier CNRS/Thales lab, Palaiseau, France biospinspired 1 Collaborations CNRS/Thales spintronics team: Alice Mizrahi, Steven Lequeux, Jacob Torrejon, Mathieu

More information

Neuromorphic computing with nanoscale spintronic oscillators

Neuromorphic computing with nanoscale spintronic oscillators Neuromorphic computing with nanoscale spintronic oscillators Jacob Torrejon 1*, Mathieu Riou 1*, Flavio Abreu Araujo 1*, Sumito Tsunegi 2, Guru Khalsa 3, Damien Querlioz 4, Paolo Bortolotti 1, Vincent

More information

Basic Principles, Challenges and Opportunities of STT-MRAM for Embedded Memory Applications

Basic Principles, Challenges and Opportunities of STT-MRAM for Embedded Memory Applications Basic Principles, Challenges and Opportunities of STT-MRAM for Embedded Memory Applications Luc Thomas TDK- Headway Technologies, 463 S. Milpitas Boulevard, Milpitas CA 95035, USA MRAM Team at TDK - Headway

More information

Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016

Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016 Artificial Neural Networks Artificial Intelligence Santa Clara, 2016 Simulate the functioning of the brain Can simulate actual neurons: Computational neuroscience Can introduce simplified neurons: Neural

More information

An 8-bit Analog-to-Digital Converter based on the Voltage-Dependent Switching Probability of a Magnetic Tunnel Junction

An 8-bit Analog-to-Digital Converter based on the Voltage-Dependent Switching Probability of a Magnetic Tunnel Junction An 8-bit Analog-to-Digital Converter based on the Voltage-Dependent Switching Probability of a Magnetic Tunnel Junction Won Ho Choi*, Yang Lv*, Hoonki Kim, Jian-Ping Wang, and Chris H. Kim *equal contribution

More information

arxiv: v1 [cond-mat.mtrl-sci] 23 Jul 2009

arxiv: v1 [cond-mat.mtrl-sci] 23 Jul 2009 Frequency converter based on nanoscale MgO magnetic tunnel junctions B. Georges, J. Grollier, V. Cros, B. Marcilhac, D.-G. Crété, J.-C. Mage, A. Fert arxiv:0907.3992v1 [cond-mat.mtrl-sci] 23 Jul 2009 Unité

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses Yoichi Shiota 1, Takayuki Nozaki 1, 2,, Frédéric Bonell 1, Shinichi Murakami 1,2, Teruya Shinjo 1, and

More information

Sonia Sharma ECE Department, University Institute of Engineering and Technology, MDU, Rohtak, India. Fig.1.Neuron and its connection

Sonia Sharma ECE Department, University Institute of Engineering and Technology, MDU, Rohtak, India. Fig.1.Neuron and its connection NEUROCOMPUTATION FOR MICROSTRIP ANTENNA Sonia Sharma ECE Department, University Institute of Engineering and Technology, MDU, Rohtak, India Abstract: A Neural Network is a powerful computational tool that

More information

Binary Neural Network and Its Implementation with 16 Mb RRAM Macro Chip

Binary Neural Network and Its Implementation with 16 Mb RRAM Macro Chip Binary Neural Network and Its Implementation with 16 Mb RRAM Macro Chip Assistant Professor of Electrical Engineering and Computer Engineering shimengy@asu.edu http://faculty.engineering.asu.edu/shimengyu/

More information

Proposers Day Workshop

Proposers Day Workshop Proposers Day Workshop Monday, January 23, 2017 @srcjump, #JUMPpdw Cognitive Computing Vertical Research Center Mandy Pant Academic Research Director Intel Corporation Center Motivation Today s deep learning

More information

A novel sensing algorithm for Spin-Transfer-Torque magnetic RAM (STT-MRAM) by utilizing dynamic reference

A novel sensing algorithm for Spin-Transfer-Torque magnetic RAM (STT-MRAM) by utilizing dynamic reference A novel sensing algorithm for Spin-Transfer-Torque magnetic RAM (STT-MRAM) by utilizing dynamic reference Yong-Sik Park, Gyu-Hyun Kil, and Yun-Heub Song a) Department of Electronics and Computer Engineering,

More information

S1. Current-induced switching in the magnetic tunnel junction.

S1. Current-induced switching in the magnetic tunnel junction. S1. Current-induced switching in the magnetic tunnel junction. Current-induced switching was observed at room temperature at various external fields. The sample is prepared on the same chip as that used

More information

CMAT Non-Volatile Spintronic Computing: Complementary MTJ Logic

CMAT Non-Volatile Spintronic Computing: Complementary MTJ Logic Invited Paper CMAT Non-Volatile Spintronic Computing: Complementary MTJ Logic Joseph S. Friedman Department of Electrical Engineering The University of Texas at Dallas Richardson, TX 75080 ABSTRACT Magnetic

More information

Application Note Model 765 Pulse Generator for Semiconductor Applications

Application Note Model 765 Pulse Generator for Semiconductor Applications Application Note Model 765 Pulse Generator for Semiconductor Applications Non-Volatile Memory Cells Characterization The trend of memory research is to develop a new memory called Non-Volatile RAM that

More information

CHAPTER 4 IMPLEMENTATION OF ADALINE IN MATLAB

CHAPTER 4 IMPLEMENTATION OF ADALINE IN MATLAB 52 CHAPTER 4 IMPLEMENTATION OF ADALINE IN MATLAB 4.1 INTRODUCTION The ADALINE is implemented in MATLAB environment running on a PC. One hundred data samples are acquired from a single cycle of load current

More information

Radiated EMI Recognition and Identification from PCB Configuration Using Neural Network

Radiated EMI Recognition and Identification from PCB Configuration Using Neural Network PIERS ONLINE, VOL. 3, NO., 007 5 Radiated EMI Recognition and Identification from PCB Configuration Using Neural Network P. Sujintanarat, P. Dangkham, S. Chaichana, K. Aunchaleevarapan, and P. Teekaput

More information

1 Introduction. w k x k (1.1)

1 Introduction. w k x k (1.1) Neural Smithing 1 Introduction Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The major

More information

Joseph S. Friedman EDUCATION

Joseph S. Friedman EDUCATION Department of Electrical & Computer Engineering The University of Texas at Dallas 800 W. Campbell Rd. Richardson, TX 75080 joseph.friedman@utdallas.edu (972) 883-2191 http://www. utdallas.edu/~joseph.friedman

More information

Single Channel Speaker Segregation using Sinusoidal Residual Modeling

Single Channel Speaker Segregation using Sinusoidal Residual Modeling NCC 2009, January 16-18, IIT Guwahati 294 Single Channel Speaker Segregation using Sinusoidal Residual Modeling Rajesh M Hegde and A. Srinivas Dept. of Electrical Engineering Indian Institute of Technology

More information

Performance of a Resistance-To-Voltage Read Circuit for Sensing Magnetic Tunnel Junctions

Performance of a Resistance-To-Voltage Read Circuit for Sensing Magnetic Tunnel Junctions Performance of a Resistance-To-Voltage Read Circuit for Sensing Magnetic Tunnel Junctions Michael J. Hall Viktor Gruev Roger D. Chamberlain Michael J. Hall, Viktor Gruev, and Roger D. Chamberlain, Performance

More information

Integrate-and-Fire Neuron Circuit and Synaptic Device with Floating Body MOSFETs

Integrate-and-Fire Neuron Circuit and Synaptic Device with Floating Body MOSFETs JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.6, DECEMBER, 2014 http://dx.doi.org/10.5573/jsts.2014.14.6.755 Integrate-and-Fire Neuron Circuit and Synaptic Device with Floating Body MOSFETs

More information

Ultrafast electro-optic delay Reservoir

Ultrafast electro-optic delay Reservoir Ultrafast electro-optic delay Reservoir Laurent Larger 1, A. Baylón Fuentes 1, R. Martinenghi 1, M. Jacquot 1, Y.K. Chembo 1, and V.S. Udaltsov 1,2 1 University Bourgogne Franche-Comté, FEMTO-ST institute

More information

Simulate IFFT using Artificial Neural Network Haoran Chang, Ph.D. student, Fall 2018

Simulate IFFT using Artificial Neural Network Haoran Chang, Ph.D. student, Fall 2018 Simulate IFFT using Artificial Neural Network Haoran Chang, Ph.D. student, Fall 2018 1. Preparation 1.1 Dataset The training data I used is generated by the trigonometric functions, sine and cosine. There

More information

Chalcogenide Memory, Logic and Processing Devices. Prof C David Wright Department of Engineering University of Exeter

Chalcogenide Memory, Logic and Processing Devices. Prof C David Wright Department of Engineering University of Exeter Chalcogenide Memory, Logic and Processing Devices Prof C David Wright Department of Engineering University of Exeter (david.wright@exeter.ac.uk) Acknowledgements University of Exeter Yat-Yin Au, Jorge

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 1 Memory and Advanced Digital Circuits - 2 Chapter 11 2 Figure 11.1 (a) Basic latch. (b) The latch with the feedback loop opened.

More information

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1 5V/12V Synchronous Buck PWM Controller DESCRIPTION The is a high efficiency, fixed 300kHz frequency, voltage mode, synchronous PWM controller. The device drives two low cost N-channel MOSFETs and is designed

More information

A 45-nm SOI-CMOS Dual-PLL Processor Clock System for Multi-Protocol I/O

A 45-nm SOI-CMOS Dual-PLL Processor Clock System for Multi-Protocol I/O A 45-nm SOI-CMOS Dual-PLL Processor Clock System for Multi-Protocol I/O Dennis Fischette, Alvin Loke, Michael Oshima, Bruce Doyle, Roland Bakalski*, Richard DeSantis, Anand Thiruvengadam, Charles Wang,

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 9: Brief Introduction to Neural Networks Instructor: Preethi Jyothi Feb 2, 2017 Final Project Landscape Tabla bol transcription Music Genre Classification Audio

More information

Homework Assignment 06

Homework Assignment 06 Question 1 (2 points each unless noted otherwise) Homework Assignment 06 1. True or false: when transforming a circuit s diagram to a diagram of its small-signal model, we replace dc constant current sources

More information

Figure 1. Artificial Neural Network structure. B. Spiking Neural Networks Spiking Neural networks (SNNs) fall into the third generation of neural netw

Figure 1. Artificial Neural Network structure. B. Spiking Neural Networks Spiking Neural networks (SNNs) fall into the third generation of neural netw Review Analysis of Pattern Recognition by Neural Network Soni Chaturvedi A.A.Khurshid Meftah Boudjelal Electronics & Comm Engg Electronics & Comm Engg Dept. of Computer Science P.I.E.T, Nagpur RCOEM, Nagpur

More information

CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF

CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF 95 CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF 6.1 INTRODUCTION An artificial neural network (ANN) is an information processing model that is inspired by biological nervous systems

More information

Broadband voltage rectifier induced by linear bias dependence in CoFeB/MgO magnetic tunnel junctions

Broadband voltage rectifier induced by linear bias dependence in CoFeB/MgO magnetic tunnel junctions Broadband voltage rectifier induced by linear bias dependence in CoFeB/MgO magnetic tunnel junctions M. Tarequzzaman 1, 2, A. S. Jenkins 1, T. Böhnert 1, J. Borme 1, L. Martins 1, E. Paz 1, R. Ferreira

More information

Built-In OVP White LED Step-up Converter in Tiny Package

Built-In OVP White LED Step-up Converter in Tiny Package Built-In White LED Step-up Converter in Tiny Package Description The is a step-up DC/DC converter specifically designed to drive white LEDs with a constant current. The device can drive up to 4 LEDs in

More information

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL * A. K. Sharma, ** R. A. Gupta, and *** Laxmi Srivastava * Department of Electrical Engineering,

More information

CD V Low Power Subscriber DTMF Receiver. Description. Features. Ordering Information. Pinouts CD22204 (PDIP) TOP VIEW. Functional Diagram

CD V Low Power Subscriber DTMF Receiver. Description. Features. Ordering Information. Pinouts CD22204 (PDIP) TOP VIEW. Functional Diagram Semiconductor January Features No Front End Band Splitting Filters Required Single Low Tolerance V Supply Three-State Outputs for Microprocessor Based Systems Detects all Standard DTMF Digits Uses Inexpensive.4MHz

More information

Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert Transform Approach

Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert Transform Approach SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) volume 1 Issue 10 Dec 014 Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert

More information

VARIATION MONITOR-ASSISTED ADAPTIVE MRAM WRITE

VARIATION MONITOR-ASSISTED ADAPTIVE MRAM WRITE Shaodi Wang, Hochul Lee, Pedram Khalili, Cecile Grezes, Kang L. Wang and Puneet Gupta University of California, Los Angeles VARIATION MONITOR-ASSISTED ADAPTIVE MRAM WRITE NanoCAD Lab shaodiwang@g.ucla.edu

More information

Unless otherwise specified, assume room temperature (T = 300 K).

Unless otherwise specified, assume room temperature (T = 300 K). ECE 3040 Dr. Doolittle Homework 4 Unless otherwise specified, assume room temperature (T = 300 K). 1) Purpose: Understanding p-n junction band diagrams. Consider a p-n junction with N A = 5x10 14 cm -3

More information

CogniGron Kick-off Meeting

CogniGron Kick-off Meeting 26 October 2018 CogniGron Kick-off Meeting To break new scientific ground! www.rug.nl/fse/ 1 CogniGron The University of Groningen has created the Groningen Cognitive Systems and Materials Center (CogniGron)

More information

L4972A L4972AD 2A SWITCHING REGULATOR

L4972A L4972AD 2A SWITCHING REGULATOR L4972A L4972AD 2A SWITCHING REGULATOR 2A OUTPUT CURRENT 5.1V TO 40V OUTPUT VOLTAGE RANGE 0 TO 90% DUTY CYCLE RANGE INTERNAL FEED-FORWARD LINE REG. INTERNAL CURRENT LIMITING PRECISE 5.1V ± 2% ON CHIP REFERENCE

More information

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER ADVANCED LINEAR DEVICES, INC. ALD276A/ALD276B ALD276 DUAL ULTRA MICROPOWER RAILTORAIL CMOS OPERATIONAL AMPLIFIER GENERAL DESCRIPTION The ALD276 is a dual monolithic CMOS micropower high slewrate operational

More information

Chirp spectroscopy applied to the characterization of Ferromagnetic Resonance in Magnetic Tunnel Junctions

Chirp spectroscopy applied to the characterization of Ferromagnetic Resonance in Magnetic Tunnel Junctions Chirp spectroscopy applied to the characterization of Ferromagnetic Resonance in Magnetic Tunnel Junctions M. Ricci 1, P. Burrascano 1, M. Carpentieri 2, R. Tomasello 3, G. Finocchio 4 {marco.ricci,pietro.burrascano}@unipg.it,

More information

UNISONIC TECHNOLOGIES CO., LTD UC3750 Preliminary CMOS IC

UNISONIC TECHNOLOGIES CO., LTD UC3750 Preliminary CMOS IC UNISONIC TECHNOLOGIES CO., LTD UC3750 Preliminary CMOS IC 600kHZ PWM/PFM STEP-DOWN DC-DC CONTROLLER DESCRIPTION The UTC UC3750 is a high frequency, micropower, voltage mode step-down DC-DC controller IC

More information

ANTENNA DEVELOPMENT FOR MULTIFUNCTIONAL ARMOR APPLICATIONS USING EMBEDDED SPIN-TORQUE NANO-OSCILLATOR (STNO) AS A MICROWAVE DETECTOR

ANTENNA DEVELOPMENT FOR MULTIFUNCTIONAL ARMOR APPLICATIONS USING EMBEDDED SPIN-TORQUE NANO-OSCILLATOR (STNO) AS A MICROWAVE DETECTOR ANTENNA DEVELOPMENT FOR MULTIFUNCTIONAL ARMOR APPLICATIONS USING EMBEDDED SPIN-TORQUE NANO-OSCILLATOR (STNO) AS A MICROWAVE DETECTOR Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05010204 Set No. 1 I B.Tech Supplimentary Examinations, Aug/Sep 2007 ELECTRONIC DEVICES AND CIRCUITS ( Common to Electrical & Electronic Engineering, Electronics & Communication Engineering,

More information

MgO MTJ biosensors for immunomagnetic lateralflow

MgO MTJ biosensors for immunomagnetic lateralflow MgO MTJ biosensors for immunomagnetic lateralflow detection Ricardo Jorge Penelas Janeiro Under supervision of Susana Isabel Pinheiro Cardoso de Freitas Dep. Physics, IST, Lisbon, Portugal Octrober 15,

More information

DC Motor Speed Control using Artificial Neural Network

DC Motor Speed Control using Artificial Neural Network International Journal of Modern Communication Technologies & Research (IJMCTR) ISSN: 2321-0850, Volume-2, Issue-2, February 2014 DC Motor Speed Control using Artificial Neural Network Yogesh, Swati Gupta,

More information

L4963W L4963D 1.5A SWITCHING REGULATOR

L4963W L4963D 1.5A SWITCHING REGULATOR L4963 L4963D 1.5A SWITCHING REGULATOR 1.5A OUTPUT LOAD CURRENT 5.1 TO 36V OUTPUT VOLTAGE RANGE DISCONTINUOUS VARIABLE FREQUENCY MODE PRECISE (+/ 2%) ON CHIP REFERENCE VERY HIGH EFFICIENCY VERY FEW EXTERNAL

More information

Strand G Unit 3: Electrical Circuits. Introduction. Learning Objectives. Introduction. Key Facts and Principles.

Strand G Unit 3: Electrical Circuits. Introduction. Learning Objectives. Introduction. Key Facts and Principles. Learning Objectives At the end of this unit you should be able to; Represent an electrical circuit using a circuit diagram. Correctly identify common components in a circuit diagram. Calculate current,

More information

LARGE SIGNAL AMPLIFIERS

LARGE SIGNAL AMPLIFIERS LARGE SIGNAL AMPLIFIERS One method used to distinguish the electrical characteristics of different types of amplifiers is by class, and as such amplifiers are classified according to their circuit configuration

More information

EUA2011A. Low EMI, Ultra-Low Distortion, 2.5-W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION FEATURES APPLICATIONS

EUA2011A. Low EMI, Ultra-Low Distortion, 2.5-W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION FEATURES APPLICATIONS Low EMI, Ultra-Low Distortion, 2.5-W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION The EUA2011A is a high efficiency, 2.5W mono class-d audio power amplifier. A new developed filterless PWM

More information

Outline. Artificial Neural Network Importance of ANN Application of ANN is Sports Science

Outline. Artificial Neural Network Importance of ANN Application of ANN is Sports Science Advances of Neural Networks in Sports Science Aviroop Dutt Mazumder 13 th Aug, 2010 COSC - 460 Sports Science Outline Artificial Neural Network Importance of ANN Application of ANN is Sports Science Modeling

More information

Preface... iii. Chapter 1: Diodes and Circuits... 1

Preface... iii. Chapter 1: Diodes and Circuits... 1 Table of Contents Preface... iii Chapter 1: Diodes and Circuits... 1 1.1 Introduction... 1 1.2 Structure of an Atom... 2 1.3 Classification of Solid Materials on the Basis of Conductivity... 2 1.4 Atomic

More information

Variation-tolerant Non-volatile Ternary Content Addressable Memory with Magnetic Tunnel Junction

Variation-tolerant Non-volatile Ternary Content Addressable Memory with Magnetic Tunnel Junction JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.3.458 ISSN(Online) 2233-4866 Variation-tolerant Non-volatile Ternary

More information

Scheme & Syllabus. B.Sc. Electronics. Honours Course. I st & II nd Semester. w.e.f. July Devi Ahilya Vishwavidyalaya, Indore (M.P.

Scheme & Syllabus. B.Sc. Electronics. Honours Course. I st & II nd Semester. w.e.f. July Devi Ahilya Vishwavidyalaya, Indore (M.P. Scheme & Syllabus of B.Sc. Electronics Honours Course I st & II nd Semester w.e.f. July 2011 Devi Ahilya Vishwavidyalaya, Indore (M.P.), 452001 SEMESTER SYSTEM, 2011-2014 PROPOSED SCHEME FOR B.Sc. ELECTRONICS

More information

HAL , 508, 509, HAL , 523 Hall Effect Sensor Family MICRONAS. Edition Feb. 14, E DS

HAL , 508, 509, HAL , 523 Hall Effect Sensor Family MICRONAS. Edition Feb. 14, E DS MICRONAS HAL1...6, 8, 9, HAL16...19, 23 Hall Effect Sensor Family Edition Feb. 14, 21 621-19-4E 621-48-2DS MICRONAS HALxx Contents Page Section Title 3 1. Introduction 3 1.1. Features 3 1.2. Family Overview

More information

Integrate-and-Fire Neuron Circuit and Synaptic Device using Floating Body MOSFET with Spike Timing- Dependent Plasticity

Integrate-and-Fire Neuron Circuit and Synaptic Device using Floating Body MOSFET with Spike Timing- Dependent Plasticity JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.6, DECEMBER, 2015 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2015.15.6.658 ISSN(Online) 2233-4866 Integrate-and-Fire Neuron Circuit

More information

Breaking Through Impenetrable Barriers

Breaking Through Impenetrable Barriers Breaking Through Impenetrable Barriers The Key to the Evolution of Solid State Memory A Pictorial Approach Andrew J. Walker PhD August 2018 1 The Link between α-particles, 3-D NAND and MRAM? - Quantum

More information

Figure 2 shows the actual schematic for the power supply and one channel.

Figure 2 shows the actual schematic for the power supply and one channel. Pass Laboratories Aleph 3 Service Manual rev 0 2/1/96 Aleph 3 Service Manual. The Aleph 3 is a stereo 30 watt per channel audio power amplifier which operates in single-ended class A mode. The Aleph 3

More information

Status and Prospect for MRAM Technology

Status and Prospect for MRAM Technology Status and Prospect for MRAM Technology Dr. Saied Tehrani Nonvolatile Memory Seminar Hot Chips Conference August 22, 2010 Memorial Auditorium Stanford University Everspin Technologies, Inc. - 2010 Agenda

More information

NEURAL PROCESSOR AS A MIXED-MODE SINGLE CHIP

NEURAL PROCESSOR AS A MIXED-MODE SINGLE CHIP NEURAL PROCESSOR AS A MIXED-MODE SINGLE CHIP Frank Stüpmann 1, Gundolf Geske 2, Ansgar Wego 3 1 Silicann Technologies GmbH, Rostock, Joachim-Jungius-Straße 9, 18059 Rostock, Germany, stuepmann@silicann.com

More information

The Aleph 2 is a monoblock 100 watt audio power amplifier which operates in single-ended class A mode.

The Aleph 2 is a monoblock 100 watt audio power amplifier which operates in single-ended class A mode. Pass Laboratories Aleph 2 Service Manual Rev 0 2/1/96 Aleph 2 Service Manual. The Aleph 2 is a monoblock 100 watt audio power amplifier which operates in single-ended class A mode. The Aleph 2 has only

More information

FREQUENCY AND TIME SYNCHRONIZATION IN DIGITAL COMMUNICATIONS NETWORKS

FREQUENCY AND TIME SYNCHRONIZATION IN DIGITAL COMMUNICATIONS NETWORKS FREQUENCY AND TIME SYNCHRONIZATION IN DIGITAL COMMUNICATIONS NETWORKS M. Kihara and K. Hisadome Nippon Telegraph and Telephone Corporation 1-2356, Take, Yokosuka-shi Kanagawa 23 8-03, Japan ABSTRACT Frequency

More information

CMOS Schmitt Trigger A Uniquely Versatile Design Component

CMOS Schmitt Trigger A Uniquely Versatile Design Component CMOS Schmitt Trigger A Uniquely Versatile Design Component INTRODUCTION The Schmitt trigger has found many applications in numerous circuits, both analog and digital. The versatility of a TTL Schmitt is

More information

EUP2511. HQI Boost Converter With 2.1A Switch In Tiny SOT-23 Package FEATURES DESCRIPTION APPLICATIONS. Typical Application Circuit

EUP2511. HQI Boost Converter With 2.1A Switch In Tiny SOT-23 Package FEATURES DESCRIPTION APPLICATIONS. Typical Application Circuit HQI Boost Converter With 2.1A Switch In Tiny SOT-23 Package DESCRIPTION The is a high performance current mode, PWM step-up converter. With an internal 2.1A, 150mΩ MOSFET, it can generate 5 at up to 900mA

More information

MTJ based Random Number Generation and Analog-to-Digital Conversion Chris H. Kim University of Minnesota

MTJ based Random Number Generation and Analog-to-Digital Conversion Chris H. Kim University of Minnesota MTJ based Random Number Generation and Analog-to-Digital Conversion Chris H. Kim University of Minnesota Workshop on the Future of Spintronics, June 5, 216 1 Switching Probability of an MTJ Parallel: Low

More information

Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER

Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER www.burr-brown.com/databook/.html Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER FEATURES LOW DISTORTION:.3% at khz LOW NOISE: nv/ Hz HIGH SLEW RATE: 25V/µs WIDE GAIN-BANDWIDTH: MHz UNITY-GAIN STABLE

More information

SGM V Step-Up LED Driver

SGM V Step-Up LED Driver GENERAL DESCRIPTION The SGM3725 is a versatile constant current LED driver with a high efficiency step-up converter architecture. Unique technology and high 1.35A current limit allow SGM3725 to drive up

More information

STT-MRAM Read-circuit with Improved Offset Cancellation

STT-MRAM Read-circuit with Improved Offset Cancellation JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.3.347 ISSN(Online) 2233-4866 STT-MRAM Read-circuit with Improved Offset

More information

Osmania University B.Sc Electronics - Syllabus (under CBCS w.e.f ) I ST and II nd Year

Osmania University B.Sc Electronics - Syllabus (under CBCS w.e.f ) I ST and II nd Year Osmania University B.Sc Electronics - Syllabus (under CBCS w.e.f 2016-2017) I ST and II nd Year UNIT - I B.Sc. ELECTRONICS SYLLABUS B.Sc. I YEAR Semester - I DSC- Paper I : Circuit Analysis Total number

More information

Network Analyzer Measurements of Spin Transfer Torques in Magnetic Tunnel. Junctions

Network Analyzer Measurements of Spin Transfer Torques in Magnetic Tunnel. Junctions Network Analyzer Measurements of Spin Transfer Torques in Magnetic Tunnel Junctions Lin Xue 1, Chen Wang 1, Yong-Tao Cui 1, J. A. Katine 2, R. A. Buhrman 1 and D. C. Ralph 1,3 1 Cornell University, Ithaca,

More information

Model 765 Fast Rise Time Pulse Generator

Model 765 Fast Rise Time Pulse Generator Fast Rise Time Pulse Generator Features of the 765: 70 ps Rise (Tr) and Fall (Tf) Times +/- 5.0 Volts pk-pk Delay and Width Resolution of 10 ps Narrow Widths (300 ps) Jitter < 25 ps Complete Channel Multiplex

More information

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans.   Electronic Measurements & Instrumentation UNIT 2 Q.1) Describe the functioning of standard signal generator Ans. STANDARD SIGNAL GENERATOR A standard signal generator produces known and controllable voltages. It is used as power source for the

More information

+ C1. Note: V IN 1.8V, V OUT 7V. High Efficiency Step-Up DC/DC Converter

+ C1. Note: V IN 1.8V, V OUT 7V. High Efficiency Step-Up DC/DC Converter 2-Cell, 500mA, Step-Up DC/DC Converter ❶ FEATURES High Efficiency %. Adjustable Output Voltage with Two Resistors (AI631A) Power-Saving Shutdown Mode (7µA typical). Internal 2A Switch. 120KHz Switching

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. The schematic of the perceptron. Here m is the index of a pixel of an input pattern and can be defined from 1 to 320, j represents the number of the output

More information

Hybrid VC-MTJ/CMOS Non-volatile Stochastic Logic for Efficient Computing

Hybrid VC-MTJ/CMOS Non-volatile Stochastic Logic for Efficient Computing Hybrid VC-MTJ/CMOS Non-volatile Stochastic Logic for Efficient Computing Shaodi Wang, Saptadeep Pal, Tianmu Li, Andrew Pan, Cecile Grezes, Pedram Khalili-Amiri, Kang L. Wang, and Puneet Gupta Department

More information

Mohammad Kazemi, Student Member, IEEE, Engin Ipek, Member, IEEE, andebyg.friedman,fellow, IEEE

Mohammad Kazemi, Student Member, IEEE, Engin Ipek, Member, IEEE, andebyg.friedman,fellow, IEEE 1154 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 62, NO. 12, DECEMBER 2015 Energy-Efficient Nonvolatile Flip-Flop With Subnanosecond Data Backup Time for Fine-Grain Power Gating

More information

AT2596 3A Step Down Voltage Switching Regulators

AT2596 3A Step Down Voltage Switching Regulators FEATURES Standard PSOP-8/TO-220-5L /TO-263-5L Package Adjustable Output Versions Adjustable Version Output Voltage Range 1.23V to 37V V OUT Accuracy is to ± 3% Under Specified Input Voltage the Output

More information

Green-Mode PWM Controller with Integrated Protections

Green-Mode PWM Controller with Integrated Protections Green-Mode PWM Controller with Integrated Protections Features Current mode PWM Very low startup current Under-voltage lockout (UVLO) Non-audible-noise green-mode control Programmable switching frequency

More information

Neuromorphic VLSI Event-Based devices and systems

Neuromorphic VLSI Event-Based devices and systems Neuromorphic VLSI Event-Based devices and systems Giacomo Indiveri Institute of Neuroinformatics University of Zurich and ETH Zurich LTU, Lulea May 28, 2012 G.Indiveri (http://ncs.ethz.ch/) Neuromorphic

More information

A 0.95mW/1.0Gbps Spiral-Inductor Based Wireless Chip-Interconnect with Asynchronous Communication Scheme

A 0.95mW/1.0Gbps Spiral-Inductor Based Wireless Chip-Interconnect with Asynchronous Communication Scheme A 0.95mW/1.0Gbps Spiral-Inductor Based Wireless Chip-Interconnect with Asynchronous Communication Scheme Mamoru Sasaki and Atsushi Iwata Graduate School, Hiroshima University Kagamiyama 1-4-1, Higashihiroshima-shi,

More information

Virtual Grasping Using a Data Glove

Virtual Grasping Using a Data Glove Virtual Grasping Using a Data Glove By: Rachel Smith Supervised By: Dr. Kay Robbins 3/25/2005 University of Texas at San Antonio Motivation Navigation in 3D worlds is awkward using traditional mouse Direct

More information

FDD spindle motor driver

FDD spindle motor driver FDD spindle motor driver The is a one-chip IC designed for driving FDD spindle motors. This high-performance IC employs a 3-phase, full-wave soft switching drive system, and contains a digital servo, an

More information

NTE980 Integrated Circuit CMOS, Micropower Phase Locked Loop (PLL)

NTE980 Integrated Circuit CMOS, Micropower Phase Locked Loop (PLL) NTE980 Integrated Circuit CMOS, Micropower Phase Locked Loop (PLL) Description: The NTE980 CMOS Micropower Phase Locked Loop (PLL) consists of a low power, linear voltage controlled oscillator (VCO) and

More information

EUA W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

EUA W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit 3-W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION The EUA2011 is a high efficiency, 3W mono class-d audio power amplifier. A low noise, filterless PWM architecture eliminates the output filter,

More information

An Acoustic Transformer Powered Super-High Isolation Amplifier

An Acoustic Transformer Powered Super-High Isolation Amplifier An Acoustic Transformer Powered Super-High Isolation Amplifier A number of measurements require an amplifier whose input terminals are galvanically isolated from its output and power terminals. Such devices,

More information

Op Amp Booster Designs

Op Amp Booster Designs Op Amp Booster Designs Although modern integrated circuit operational amplifiers ease linear circuit design, IC processing limits amplifier output power. Many applications, however, require substantially

More information

340KHz, 3A, Asynchronous Step-Down Regulator

340KHz, 3A, Asynchronous Step-Down Regulator 340KHz, 3A, Asynchronous Step-Down Regulator FP6116 General Description The FP6116 is a buck switching regulator for wide operating voltage application fields. The FP6116 includes a high current P-MOSFET,

More information

1.5MHz, 3A Synchronous Step-Down Regulator

1.5MHz, 3A Synchronous Step-Down Regulator 1.5MHz, 3A Synchronous Step-Down Regulator FP6165 General Description The FP6165 is a high efficiency current mode synchronous buck PWM DC-DC regulator. The internal generated 0.6V precision feedback reference

More information

3-W High-Voltage Switchmode Regulator

3-W High-Voltage Switchmode Regulator 3-W High-Voltage Switchmode Regulator DESCRIPTION The high-voltage switchmode regulator is a monolithic BiC/DMOS integrated circuit which contains most of the components necessary to implement a high-efficiency

More information

LD7523 6/16/2009. Smart Green-Mode PWM Controller with Multiple Protections. General Description. Features. Applications. Typical Application REV: 00

LD7523 6/16/2009. Smart Green-Mode PWM Controller with Multiple Protections. General Description. Features. Applications. Typical Application REV: 00 6/16/2009 Smart Green-Mode PWM Controller with Multiple Protections REV: 00 General Description The LD7523 is a low startup current, current mode PWM controller with green-mode power-saving operation.

More information

Efficient Characterization and Testing of MRAM Devices. Parametric Testing for In-Line Monitoring

Efficient Characterization and Testing of MRAM Devices. Parametric Testing for In-Line Monitoring Efficient Characterization and Testing of MRAM Devices Parametric Testing for In-Line Monitoring Siamak SALIMY, Gilles ZAHND, Nathalie LAMARD, Eric MONTREDON, Laurent LEBRUN, Jean-Pierre NOZIERES Antoine

More information

1.5MHz, 2A Synchronous Step-Down Regulator

1.5MHz, 2A Synchronous Step-Down Regulator 1.5MHz, 2A Synchronous Step-Down Regulator General Description The is a high efficiency current mode synchronous buck PWM DC-DC regulator. The internal generated 0.6V precision feedback reference voltage

More information

C H A P T E R 02. Operational Amplifiers

C H A P T E R 02. Operational Amplifiers C H A P T E R 02 Operational Amplifiers The Op-amp Figure 2.1 Circuit symbol for the op amp. Figure 2.2 The op amp shown connected to dc power supplies. The Ideal Op-amp 1. Infinite input impedance 2.

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

Power Amplifiers. Class A Amplifier

Power Amplifiers. Class A Amplifier Power Amplifiers The Power amplifiers amplify the power level of the signal. This amplification is done in the last stage in audio applications. The applications related to radio frequencies employ radio

More information

PRODUCT OVERVIEW OVERVIEW OTP

PRODUCT OVERVIEW OVERVIEW OTP PRODUCT OVERVIEW 1 PRODUCT OVERVIEW OVERVIEW The S3C7324 single-chip CMOS microcontroller has been designed for high performance using Samsung's newest 4-bit CPU core, SAM47 (Samsung Arrangeable Microcontrollers).

More information

電子電路. Memory and Advanced Digital Circuits

電子電路. Memory and Advanced Digital Circuits 電子電路 Memory and Advanced Digital Circuits Hsun-Hsiang Chen ( 陳勛祥 ) Department of Electronic Engineering National Changhua University of Education Email: chenhh@cc.ncue.edu.tw Spring 2010 2 Reference Microelectronic

More information

Voltage-to-Frequency and Frequency-to-Voltage Converter ADVFC32

Voltage-to-Frequency and Frequency-to-Voltage Converter ADVFC32 a FEATURES High Linearity 0.01% max at 10 khz FS 0.05% max at 100 khz FS 0.2% max at 500 khz FS Output TTL/CMOS Compatible V/F or F/V Conversion 6 Decade Dynamic Range Voltage or Current Input Reliable

More information

Physics 160 Lecture 11. R. Johnson May 4, 2015

Physics 160 Lecture 11. R. Johnson May 4, 2015 Physics 160 Lecture 11 R. Johnson May 4, 2015 Two Solutions to the Miller Effect Putting a matching resistor on the collector of Q 1 would be a big mistake, as it would give no benefit and would produce

More information