# Physics 160 Lecture 11. R. Johnson May 4, 2015

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Physics 160 Lecture 11 R. Johnson May 4, 2015

2 Two Solutions to the Miller Effect Putting a matching resistor on the collector of Q 1 would be a big mistake, as it would give no benefit and would produce a severe Miller effect. Cascode Grounded base amplifier. For best results, the base of the transistor whose collector has a large voltage swing should be tied to a low impedance source. April 29, 2015 Physics 160 2

3 (This voltage divider does nothing but produce heat for the moment.) Miller Effect Base-Collector capacitance together with source impedance forms a low-pass filter, killing the gain at high frequency. Significant source impedance Exaggerated Base-Source cap High gain of ~190 multiplies li the 33pF capacitance, making it look like ~6nF! April 29, 2015 Physics 160 3

4 Response with No Source Impedance April 29, 2015 Physics 160 4

5 Response with 1k Source Impedance nF 26 khz April 29, 2015 Physics 160 5

6 Killing the Miller Effect with a Cascode Low-impedance (1k) fixed voltage Within the bandpass, the voltage at this point hardly varies at all, so there is no Miller effect. April 29, 2015 Physics 160 6

7 Cascode Response with 1k Source Impedance April 29, 2015 Physics 160 7

8 Electronic Noise I will skip through this quickly, because most students in Physics 160 are already challenged enough by more basic circuit issues. BUT!! For a physicist this is often the most critical aspect of circuit behavior that must be well understood and optimized, because amplifiers are likely being used to detect very small signals and noise is unavoidable, tends to be amplified by the amplifier, and can easily obscure the signal. May 4, 2015 Physics 160 8

9 Thermal Noise Thermal noise in a resistance R (Johnson noise): This is the minimum possible noise in any resistance Applies also to dynamic resistances, such as for a diode The power frequency spectrum is flat ( white noise, up to some limit) V 2 v 2 2 noise n B with v n 4kTR k J/K T in degrees Kli Kelvin B is the bandwidth, which is the frequency range over which you are looking at the noise (e.g. the maximum frequency response of your amp or the 60 MHz bandwidth of your lab scope). For example, for an audio amp, B would typically be 20kHz20Hz, or simply 20kHz. Low-pass filters are good for reducing white noise, because they reduce B. So don t make an amp with frequency response that goes way above the signal you are interested in! This is the main reason for the bandwidth-limit button on the lab scope, for example. May 4, 2015 Physics 160 9

10 Shot Noise Diffusion of electrons across a diode junction is a random process, with each electron acting independently. This is not thecaseinametalwire a or a resistor, where the electrons tend to move coherently. If the current is small enough, this stochastic flow can become apparent and appears as random noise called shot noise. 2 noise 2 I in B 2eI B Note how the power (I 2 R) is again proportional to B, indicating that this also is white noise. When the current flows through h a resistor, the shot noise naturally gets translated into voltage noise. Note that the percentage noise level decreases with increasing current: I rms noise 2e B I May 4, 2015 Physics I

11 Flicker Noise (1/f) Excess noise beyond the fundamental thermal and shot noise contributions almost always has a 1/f spectrum ( pink noise ) There is no single physical source of flicker noise, and the amount depends critically on details of the electronic device. It s not obvious why in general the noise falls like 1/f, but one way or another, the higher frequency noise tends to get suppressed. 1/f means that each decade will have the same noise power. e.g. in an audio amp, the flicker noise power contribution from 20 Hz to 200Hz is the same as from 200 Hz to 2kHz, which is the same as from 2kHz to 20kHz. High pass filters are good for reducing flicker noise. e.g., if we lowered the 3dB point of the audio amp from 20 Hz to 2 Hz, the flicker noise power would go up by 33%. May 4, 2015 Physics

12 Transistor (BJT) Noise Model Spice transistor models generally include noise models But be careful about flicker noise, which often is omitted from the model or set to zero, if you care about low frequencies. Think of the transistor as an ideal noiseless device, but with a voltage noise source in series with the base and a current noise source in parallel with the base-emitter emitter junction. Remember, whatever noise is present at the input gets amplified along with the signal! May 4, 2015 Physics

13 Transistor Noise The source resistance plays two evil roles: It contributes thermal noise, which the amplifier amplifies It converts the shot noise in the base current into voltage, which also gets amplified. Thus this transistor model alone contributes an rms noise of v amp (rms) v n 2 S n R i 2 See the next slide. May 4, 2015 Physics

14 Transistor White Noise Voltage noise: v 2 n 2 4kTrb 2eICre Thermal noise of the intrinsic base resistance (~5 ohms) Effect of shot noise in the collector current flowing through the intrinsic emitter resistance 4kTr b 0.29 nv for r b =5 ohms 2 ei r 0.45 nv C e for I C =1 ma Current noise: 2 in 2eI B Remember : rms n rms n May 4, 2015 Physics V I i v n n B B

15 Bias Network Noise The bias network contributes noise very differently from the source impedance because it is in parallel with the source, not in series. Therefore, its contribution to v n will go like 1/sqrt(R), instead of like sqrt(r). Bootstrapping would essentially eliminate the bias contribution. RS C The noise current from RB sees an impedance in this node of R S in parallel with the amp, so it should be dominated by R S (i.e. amp Zin>> R S ). to amp The voltage noise of the bias resistor R B produces a noise current that flows into the amp input node and develops a noise voltage that depends on the impedance of the input node, dominated by R S. RB i n 4kTR R B B v n kt 4 R Note that if there were no source resistance, sta then this noise source would be insignificant. B R S May 4, 2015 Physics

16 Voltage-Amplifier Noise Example 1 ma Cascode, to avoid Miller effect and keep gain up to high hf. I B =7.7 A B Scope load Bypass R E to get high gain of ~290. May 4, 2015 Physics

17 Noise Predictions (referred to the input) Transistor base: v n nv Hz Bias network: Source resistance: Base current: 4kT4 1k 1.8nV 5.1k 4 kt 1 k 4.1nV 2eI B 1k 1.6 nv Hz Hz Hz These 3 contributions go away if the source impedance is zero Shot noise of collector current, flowing into the collector load resistor: Total noise with zero source impedance: eI 2 C Gain R C e 1m 7.5k 0.46 nv Hz nV Hz Spice Predicts 0.63 nv/ sqrt(hz) Ttl Total noise with ith1k source impedance: nv Hz May 4, 2015 Physics nv/sqrt(hz)

18 Noise Analysis in PSpice Open the simulation settings. You can do noise analysis only with the AC Sweep/Noise analysis type. Click the box to enable noise analysis. Specify the schematic node that represents your output. Specify the AC voltage source that is at your input. Specify how frequently to print out detailed results (in the ASCII output file). For example, 100 means print details at every 100 th frequency. Run the analysis. Plot V(ONOISE) for the voltage noise spectrum at the output. Plot V(INOISE) for the equivalent noise at the input. This is just the output noise divided by the voltage gain. May 4, 2015 Physics

19 Spice Analysis with no Source Impedance Small Signal Sg Gain v n Noise at Output Total noise: nv Hz 10 Hz 0.17mV v n Equivalent Noise at Input May 4, 2015 Physics

20 Spice Analysis with 1k Source Impedance Small-Signal Gain Note: the gain is so low in this case because of voltage division between R S and the bias network. v n Noise at Output Total noise: nv Hz 110 Hz 0.91mV v n Equivalent Noise at Input May 4, 2015 Physics

21 Detailed Spice Output at 10kHz FREQUENCY = 1.000E+04 HZ **** TRANSISTOR SQUARED NOISE VOLTAGES (SQ V/HZ) Q_Q1 Q_Q2 RB 8.595E E-21 RC 1.748E E-26 RE 0.000E E+00 IBSN 8.602E E IC 1.714E E-19 IBFN 0.000E E+00 TOTAL 1.118E E-16 **** RESISTOR SQUARED NOISE VOLTAGES (SQ V/HZ) High-gain g common-emitter amplifier example. Copied from the PSpice Output File Cascode contributions are negligible Base resistance Base current shot noise Collector current shot noise These noise voltages all refer to the output, and they are squared per Hz Bootstrapping the bias network would practically eliminate these contributions. R_RS R_R2 R_R3 R_RE R_RLoad R_R4 R_R5 R_RC TOTAL 6.004E E E E E E E E-16 Source resistance Bias resistance **** TOTAL OUTPUT NOISE VOLTAGE = 8.304E-13 SQ V/HZ Negligible, compared with = 9.112E-07 V/RT HZ = V(ONOISE) in plot collector current shot noise. TRANSFER FUNCTION VALUE: V(N00131)/V _ V2 = 1.903E+02 Voltage gain from input to output EQUIVALENT INPUT NOISE AT V_V2 = 4.788E-09 V/RT HZ = V(INOISE) in plot May 4, 2015 Physics

22 FIELD-EFFECT TRANSISTORS May 4, 2015 Physics

23 n-channel MOSFET Invented in 1960 at Bell Labs. Infinite DC input impedance! All modern computers are based on this device and its p- channel cousin. 4-terminal device (gate, drain, source, substrate or body), but often the source is connected internally to the substrate. Simplistic explanation: a positive voltage on the gate, relative to the substrate, attracts electrons into the channel below the insulator, making it conductive. W L D G B S Both of these diode junctions, sourcesubstrate and drain substrate, must be May 4, 2015 Physics 160 reverse biased (or zero bias). 23

24 CMOS Invented in 1963 at Fairchild Semiconductor. Manufacture n-channel and p-channel MOSFETs on the same substrate. This invention enabled VLSI, with low power consumption. In digital switching applications, one transistor is off when the other is on, eliminating essentially all quiescent current. CMOS Inverter S D D S May 4, 2015 Physics

25 CMOS ICs First CMOS ICs made in 1968 at RCA. Modern computer chips have millions of individual transistors. To a good approximation, power is only used to charge and discharge capacitance, so the smaller the transistor, the less power it uses and the faster it will switch. N-Well Q1 Q2 CMOS NAND gate S Q1 D Q2 S PMOS Body contacts Gate Gate Q3 A B Out Q4 Q3 NMOS Q May 4, 2015 Physics

26 4-Input Multiplexer Simple example of a logic circuit built up from small gates. May 4, 2015 Physics

27 2-input NAND gate layer-2 aluminum metal (2.5 V) (yellow) PMOS source (2.5 V) polysilicon gate inputs (blue) 250 nm wide PMOS drain (output) layer-1 aluminum metal output (cyan) NMOS drain (output) NMOS source (GND) 4-input multiplexer l VLSI layer-2 aluminum metal (GND) (yellow) NMOS source & drain layer-3 aluminum metal (green) GND & 2.5 V NOT NAND NOT NAND NOT NAND NOT NAND NAND NAND NOR NOT Body contacts N-well May 4, 2015 Physics

28 Junction FETs (JFET) In a JFET the gate is isolated from the channel not by an insulating oxide layer, but instead by a reverse biased PN junction. The reverse biased junction will, of course, have a small DC leakage current, as is true for any reverse biased PN junction. The JFET must always have its gate reverse biased (or zero bias) with respect to the drain and source for it to function!! A JFET always works in depletion mode. When properly biased, it is normally on, until a voltage is applied to turn it (partially) off. p-channel JFET Note: the source is analogous to the emitter of a BJT, while the drain is analogous to the collector. May 4, 2015 Physics

29 MOSFET vs JFET Insulated gate can be at any voltage relative to the source, but body must be reverse biased (or zero) w.r.t. the source! Both enhancement-mode and depletion-mode are possible, but most often enhancement-mode. Zero DC gate current! Most widely used as a switch for VLSI digital logic circuits. Discrete devices are usually only used dfor high hpower transistors t and for analog switches. Easily destroyed by static electricity! 4-terminal device: G S D B G D S B Diode junction gate must be reverse biased (or zero) relative to source! Depletion mode only! Slight DC gate leakage current. Found both as discrete transistors and in ICs (but not VLSI). Current sources or input transistors in op-amps, for example. This is the only type used in your FET-1 lab. 3-terminal device: p-channel JFET n-channel JFET p-channel MOSFET n-channel MOSFET May 4, 2015 Physics

### 55:041 Electronic Circuits

55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

### Field Effect Transistors

Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

### Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

### EE70 - Intro. Electronics

EE70 - Intro. Electronics Course website: ~/classes/ee70/fall05 Today s class agenda (November 28, 2005) review Serial/parallel resonant circuits Diode Field Effect Transistor (FET) f 0 = Qs = Qs = 1 2π

### UNIT 3: FIELD EFFECT TRANSISTORS

FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

### Phy 335, Unit 4 Transistors and transistor circuits (part one)

Mini-lecture topics (multiple lectures): Phy 335, Unit 4 Transistors and transistor circuits (part one) p-n junctions re-visited How does a bipolar transistor works; analogy with a valve Basic circuit

### Design cycle for MEMS

Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

### Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families

1 Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1. Introduction 2. Metal Oxide Semiconductor (MOS) logic 2.1. Enhancement and depletion mode 2.2. NMOS and PMOS inverter

### UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

### Exam Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance voltage?

Exam 2 Name: Score /90 Question 1 Short Takes 1 point each unless noted otherwise. 1. Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance

### Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET).

Q. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Answer: N-Channel Junction Field Effect Transistor (JFET) Construction: Drain(D)

### Lecture 3: Transistors

Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

### UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

### 55:041 Electronic Circuits

55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

### ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

### the reactance of the capacitor, 1/2πfC, is equal to the resistance at a frequency of 4 to 5 khz.

EXPERIMENT 12 INTRODUCTION TO PSPICE AND AC VOLTAGE DIVIDERS OBJECTIVE To gain familiarity with PSPICE, and to review in greater detail the ac voltage dividers studied in Experiment 14. PROCEDURE 1) Connect

### An introduction to Depletion-mode MOSFETs By Linden Harrison

An introduction to Depletion-mode MOSFETs By Linden Harrison Since the mid-nineteen seventies the enhancement-mode MOSFET has been the subject of almost continuous global research, development, and refinement

### INTRODUCTION TO MOS TECHNOLOGY

INTRODUCTION TO MOS TECHNOLOGY 1. The MOS transistor The most basic element in the design of a large scale integrated circuit is the transistor. For the processes we will discuss, the type of transistor

### Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

Reading Lecture 17: MOS transistors digital Today we are going to look at the analog characteristics of simple digital devices, 5. 5.4 And following the midterm, we will cover PN diodes again in forward

Pg: 1 VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 Department of Electronics & Communication Engineering Regulation: 2013 Acadamic Year : 2015 2016 EC6304 Electronic Circuits I Question

### Field Effect Transistors (npn)

Field Effect Transistors (npn) gate drain source FET 3 terminal device channel e - current from source to drain controlled by the electric field generated by the gate base collector emitter BJT 3 terminal

### Expanded Answer: Transistor Amplifier Problem in January/February 2008 Morseman Column

Expanded Answer: Transistor Amplifier Problem in January/February 2008 Morseman Column Here s what I asked: This month s problem: Figure 4(a) shows a simple npn transistor amplifier. The transistor has

### ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier

High Frequency BJT Model & Cascode BJT Amplifier 1 Gain of 10 Amplifier Non-ideal Transistor C in R 1 V CC R 2 v s Gain starts dropping at > 1MHz. Why! Because of internal transistor capacitances that

### Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi Module No # 05 FETS and MOSFETS Lecture No # 06 FET/MOSFET Amplifiers and their Analysis In the previous lecture

### UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

### JFET 101, a Tutorial Look at the Junction Field Effect Transistor 8May 2007, edit 2April2016, Wes Hayward, w7zoi

JFET 101, a Tutorial Look at the Junction Field Effect Transistor 8May 2007, edit 2April2016, Wes Hayward, w7zoi FETs are popular among experimenters, but they are not as universally understood as the

### ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source

ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source Output from Collector Start with bias DC analysis make sure BJT is in FA, then calculate small signal parameters for AC analysis.

### Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Lecture outline Historical introduction Semiconductor devices overview Bipolar Junction Transistor (BJT) Field

### Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

Index A absolute value, 308 additional pole, 271 analog multiplier, 190 B BiCMOS,107 Bode plot, 266 base-emitter voltage, 16, 50 base-emitter voltages, 296 bias current, 111, 124, 133, 137, 166, 185 bipolar

### Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 3 Field Effect Transistors Lecture-8 Junction Field

### LINEAR INTEGRATED SYSTEMS, INC.

LINEAR INTEGRATED SYSTEMS, INC. 4042 Clipper Court Fremont, CA 94538-6540 sales@linearsystems.com A Linear Integrated Systems, Inc. White Paper Consider the Discrete JFET When You Have a Priority Performance

### Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

### Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors-

Lesson 5 Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors- Types and Connections Semiconductors Semiconductors If there are many free

### Gechstudentszone.wordpress.com

UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

### THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs

Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 12 Lecture Title: Analog Circuits

### ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

### Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 3 Field Effect Transistors Lecture-7 High Frequency

### Lecture 9 Transistors

Lecture 9 Transistors Physics Transistor/transistor logic CMOS logic CA 1947 http://www.extremetech.com/extreme/164301-graphenetransistors-based-on-negative-resistance-could-spell-theend-of-silicon-and-semiconductors

### MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I

MEASUREMENT AND INSTRUMENTATION STUDY NOTES The MOSFET The MOSFET Metal Oxide FET UNIT-I As well as the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available

Analog Electronics BJT Structure The BJT has three regions called the emitter, base, and collector. Between the regions are junctions as indicated. The base is a thin lightly doped region compared to the

### 55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

### INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

### Lecture 190 CMOS Technology, Compatible Devices (10/28/01) Page 190-1

Lecture 190 CMOS Technology, Compatible Devices (10/28/01) Page 190-1 LECTURE 190 CMOS TECHNOLOGY-COMPATIBLE DEVICES (READING: Text-Sec. 2.9) INTRODUCTION Objective The objective of this presentation is

### ICL MHz, Four Quadrant Analog Multiplier. Features. Ordering Information. Pinout. Functional Diagram. September 1998 File Number 2863.

Semiconductor ICL80 September 998 File Number 28. MHz, Four Quadrant Analog Multiplier The ICL80 is a four quadrant analog multiplier whose output is proportional to the algebraic product of two input

### Analog Circuits and Systems

Analog Circuits and Systems Prof. K Radhakrishna Rao Lecture 10: Electronic Devices for Analog Circuits 1 Multipliers Multipliers provide multiplication of two input voltages or currents Multipliers can

### Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices Ninth Edition Floyd Chapter 9 The Common-Source Amplifier In a CS amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The amplifier has

IFB270 Advanced Electronic Circuits Chapter 9: FET amplifiers and switching circuits Prof. Manar Mohaisen Department of EEC Engineering Review of the Precedent Lecture Review of basic electronic devices

### Pramoda N V Department of Electronics and Communication Engineering, MCE Hassan Karnataka India

Advanced Low Power CMOS Design to Reduce Power Consumption in CMOS Circuit for VLSI Design Pramoda N V Department of Electronics and Communication Engineering, MCE Hassan Karnataka India Abstract: Low

### Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

### Topic 2. Basic MOS theory & SPICE simulation

Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris, Ch 2 & 5.1-5.3 Rabaey, Ch 3) URL: www.ee.ic.ac.uk/pcheung/

### Topic 2. Basic MOS theory & SPICE simulation

Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris, Ch 2 & 5.1-5.3 Rabaey, Ch 3) URL: www.ee.ic.ac.uk/pcheung/

### Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

### ET475 Electronic Circuit Design I [Onsite]

ET475 Electronic Circuit Design I [Onsite] Course Description: This course covers the analysis and design of electronic circuits, and includes a laboratory that utilizes computer-aided software tools for

### ELEC 350L Electronics I Laboratory Fall 2012

ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used

### EMT 251 Introduction to IC Design

EMT 251 Introduction to IC Design (Pengantar Rekabentuk Litar Terkamir) Semester II 2011/2012 Introduction to IC design and Transistor Fundamental Some Keywords! Very-large-scale-integration (VLSI) is

### Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam

Georgia Institute of Technology School of Electrical and Computer Engineering Midterm Exam ECE-3400 Fall 2013 Tue, September 24, 2013 Duration: 80min First name Solutions Last name Solutions ID number

### LSJ689. Linear Systems. Application Note. By Bob Cordell. Three Decades of Quality Through Innovation

Three Decades of Quality Through Innovation P-Channel Dual JFETs Make High-Performance Complementary Input Stages Possible Linear Systems Lower Current Noise Lower Bias Current Required LSJ689 Application

### I E I C since I B is very small

Figure 2: Symbols and nomenclature of a (a) npn and (b) pnp transistor. The BJT consists of three regions, emitter, base, and collector. The emitter and collector are usually of one type of doping, while

### Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved.

Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 19: Electrical and Electronic Principles Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Digital & Analogue Electronics

### Unit- I- Biasing Of Discrete BJT and MOSFET

Part- A QUESTIONS: Unit- I- Biasing Of Discrete BJT and MOSFET 1. Describe about BJT? BJT consists of 2 PN junctions. It has three terminals: emitter, base and collector. Transistor can be operated in

### ET475T Electronic Circuit Design I [Onsite]

ET475T Electronic Circuit Design I [Onsite] Course Description: This course covers the analysis and design of electronic circuits, and includes a laboratory that utilizes computer-aided software tools

### (Refer Slide Time: 02:05)

Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture 27 Construction of a MOSFET (Refer Slide Time:

### 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

### Microelectronic Circuits

SECOND EDITION ISHBWHBI \ ' -' Microelectronic Circuits Adel S. Sedra University of Toronto Kenneth С Smith University of Toronto HOLT, RINEHART AND WINSTON HOLT, RINEHART AND WINSTON, INC. New York Chicago

### Metal-Oxide-Silicon (MOS) devices PMOS. n-type

Metal-Oxide-Silicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.

### Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

1 Integrated diodes pn junctions of transistor structures can be used as integrated diodes. The choice of the junction is limited by the considerations of switching speed and breakdown voltage. The forward

### High Voltage Operational Amplifiers in SOI Technology

High Voltage Operational Amplifiers in SOI Technology Kishore Penmetsa, Kenneth V. Noren, Herbert L. Hess and Kevin M. Buck Department of Electrical Engineering, University of Idaho Abstract This paper

### NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN 1.Introduction: CMOS Transimpedance Amplifier Avalanche photodiodes (APDs) are highly sensitive,

### Electrostatic Discharge and Latch-Up

Connexions module: m1031 1 Electrostatic Discharge and Latch-Up Version 2.10: Jul 3, 2003 12:00 am GMT-5 Bill Wilson This work is produced by The Connexions Project and licensed under the Creative Commons

### Fast IC Power Transistor with Thermal Protection

Fast IC Power Transistor with Thermal Protection Introduction Overload protection is perhaps most necessary in power circuitry. This is shown by recent trends in power transistor technology. Safe-area,

### Unit/Standard Number. LEA Task # Alignment

1 Secondary Competency Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding

### EE 332 Design Project

EE 332 Design Project Variable Gain Audio Amplifier TA: Pohan Yang Students in the team: George Jenkins Mohamed Logman Dale Jackson Ben Alsin Instructor s Comments: Lab Grade: Introduction The goal of

### ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits In this lab, we will be looking at ac signals with MOSFET circuits and digital electronics. The experiments will be performed

### Transistor Characteristics

Transistor Characteristics Introduction Transistors are the most recent additions to a family of electronic current flow control devices. They differ from diodes in that the level of current that can flow

### BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

### Structured Electronic Design

Structured Electronic Design Building the nullor: Biasing R R bias1 bias 2 V + I ce c R bias 2 C 2 C couple couple1 1 Today Specs 1 2 N D B Bias Verification Biasing Verification (simulation) 2 At the

### Device Technologies. Yau - 1

Device Technologies Yau - 1 Objectives After studying the material in this chapter, you will be able to: 1. Identify differences between analog and digital devices and passive and active components. Explain

### EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2018 Contents Objective:...2 Discussion:...2 Components Needed:...2 Part 1 Voltage Controlled Amplifier...2 Part 2 A Nonlinear Application...3

Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

### Homework Assignment 07

Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

### Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) 1. Objective: Junction FETs - the operation of a junction field-effect transistor (J-FET)

### Lab 1 - Revisited. Oscilloscope demo IAP Lecture 2 1

Lab 1 - Revisited Display signals on scope Measure the time, frequency, voltage visually and with the scope Voltage measurement* Build simple circuits on a protoboard.* Oscilloscope demo 6.091 IAP Lecture

### ECE 310L : LAB 9. Fall 2012 (Hay)

ECE 310L : LAB 9 PRELAB ASSIGNMENT: Read the lab assignment in its entirety. 1. For the circuit shown in Figure 3, compute a value for R1 that will result in a 1N5230B zener diode current of approximately

### BIPOLAR JUNCTION TRANSISTOR (BJT) NOISE MEASUREMENTS 1

4. BIPOLAR JUNCTION TRANSISTOR (BJT) NOISE MEASUREMENTS 4.1 Object The objective of this experiment is to measure the mean-square equivalent input noise, v 2 ni, and base spreading resistance, r x, of

### Noise Lecture 1. EEL6935 Chris Dougherty (TA)

Noise Lecture 1 EEL6935 Chris Dougherty (TA) An IEEE Definition of Noise The IEEE Standard Dictionary of Electrical and Electronics Terms defines noise (as a general term) as: unwanted disturbances superposed

### Design and Simulation of Low Voltage Operational Amplifier

Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America

### AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015

Q.2 a. By using Norton s theorem, find the current in the load resistor R L for the circuit shown in Fig.1. (8) Fig.1 IETE 1 b. Explain Z parameters and also draw an equivalent circuit of the Z parameter

### ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits

Faculty of Engineering ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits CMOS Technology Complementary MOS, or CMOS, needs both PMOS and NMOS FET devices for their logic gates to be realized

### TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

### I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

### Field Effect Transistors

Field Effect Transistors LECTURE NO. - 41 Field Effect Transistors www.mycsvtunotes.in JFET MOSFET CMOS Field Effect transistors - FETs First, why are we using still another transistor? BJTs had a small

### Integrated Circuit: Classification:

Integrated Circuit: It is a miniature, low cost electronic circuit consisting of active and passive components that are irreparably joined together on a single crystal chip of silicon. Classification:

### EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices

EIE209 Basic Electronics Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

### TRANSISTOR TRANSISTOR

It is made up of semiconductor material such as Si and Ge. Usually, it comprises of three terminals namely, base, emitter and collector for providing connection to the external circuit. Today, some transistors

### UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences.

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Discussion #9 EE 05 Spring 2008 Prof. u MOSFETs The standard MOSFET structure is shown

### Lab 2: Discrete BJT Op-Amps (Part I)

Lab 2: Discrete BJT Op-Amps (Part I) This is a three-week laboratory. You are required to write only one lab report for all parts of this experiment. 1.0. INTRODUCTION In this lab, we will introduce and

### Chapter 3: TRANSISTORS. Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh

Chapter 3: TRANSISTORS Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh OUTLINE Transistors Bipolar Junction Transistor (BJT) Operation of Transistor Transistor parameters Load Line Biasing