Study of Directivity and Sensitivity Of A Clap Only On-Off Switch

Size: px
Start display at page:

Download "Study of Directivity and Sensitivity Of A Clap Only On-Off Switch"

Transcription

1 Study of Directivity and Sensitivity Of A Clap Only On-Off Switch Ajaykumar Maurya Dept. Of Electrical Engineering IIT Bombay Sarath M Dept. Of Electrical Engineering IIT Bombay Abstract Clap clap switches find applications in domains such as automation and security. A clap sound can be used as a triggering signal either to switch the relays on/off, or as alert signal for some Security System. However the sound is very directive and sensitive to noise floor. Also,being an impulse,it is difficult to distinguish between a clap and a similar impulsive sounds like bang,dog-barking, coughing,etc. Our report presents an efficient way to design omni-directional device for detecting clap from a distance and be able to distinguish it will other impulsive sounds using time and frequency domain analysis. Keywords Impulse,Correlation,Sampling,Threshold,Directivity, Sensitivity I. INTRODUCTION The basic motivation of the project was to develop a product which will make a person s life simpler, say to turn ON a particular device or an appliance, rather than the customary practice of switching ON the device explicitly, a simple clap would suffice, thereby reducing the human effort. In case of emergency, a clap switch can be used an emergency alert device. A. Block Diagram Clapping generates sound waves. A sensors which converts these sound waves into electrical signal is desired to detect the occurrence of sound event. Hence a microphone is used to sense audio signal whose output voltage level typically is of the order of few millivolts depending upon the loudness of sound and distance of source from the microphone. The block diagram of the circuit designed for the project is shown in Figure 1. Fig. 1: Simplified Block Diagram It consists of an op-amp based amplifier circuit, sufficient enough to amplify the electrical signals generated by microphone. This amplified signal is then fed to the Tiva TM4C129 module, wherein we perform some signal processing to distinguish clap signals from other randomly occurring signals. B. Basic Design Elements The clap activated switching device can basically be described as a low frequency sound pulse activated switch that is free from false triggering. The input component is a transducer that receives clap sound as input and converts it to electrical pulse.the transducer (microphone) is connected to an amplifier sub-circuit which is then fed to Tiva TM4C module. 1) The Sensor(Microphone): Microphones converts acoustic energy i.e. sound signal into an electrical signals. Basically, a microphone is made up of a diaphragm, which is a thin piece of material that vibrates when it is struck by sound wave. This causes other components in the microphone to vibrate leading to variations in some electrical quantities thereby causing electrical current to be generated. The current generated in the microphone is the electrical pulse. There are two major types of microphones based on the technical methods of converting sound into electricity namely the dynamic and condenser microphone. Condenser microphones generally have flatter frequency responses than dynamic, and therefore mean that a condenser microphone is more desirable if accurate sound is a prime consideration as required in this design. And hence, we have also preferred the same in the form of electret microphone. Figure 2. shows the basic circuit diagram for an electret microphone. An electret is a thin, Teflon-like material with a fixed charge bonded to its surface. The electret is housed between two electrodes, and the structure forms a capacitor which contains a fixed charge. Air pressure variations (sound waves) move one of the electrodes of the capacitor back and forth, changing the distance between the two electrodes, and modulating the capacitance of the structure. Because the charge on the microphone is fixed, varying the capacitance causes the voltage on the capacitor to also change, satisfying the equation: Q = CV (1) where Q is charge, C is capacitance, and V is voltage. Therefore the microphone capacitor acts as an accoupled voltage source. Because the charge on the microphone capacitor must be fixed, the amplifier circuitry directly in contact with it must have extremely high input impedance. Most electret microphones have an internal JFET which buffers the microphone capacitor. The voltage signal produced by sound modulates the gate voltage of the JFET, labeled VG in Figure 2 causing a change in the current flowing between the drain and source of the JFET (IMIC). An extremely high resistance, RG, may be included to bias the gate of the JFET.

2 Fig. 4: Basic Amplifier Circuit Fig. 2: Electret Microphone Circuit Fig. 3: Clap Waveform At figure 2 output flash memory. Since our idea was to perform certain signal processing on the samples of the external signals and distinguish it from the desired clap signal, both time domain and frequency domain analysis had to be performed. Tiva TM4C module has 12 bit precision ADC with a maximum sampling rate of 1 million samples per second. Also these, samples so generated can be directly processed in frequency domain using fast fourier transform. Thereby making the processing much simpler. II. DESIGN FLOW The electrical signals so generated from microphone are only of the order of millivolts, and hence an amplification stage is required. A non-inverting amplification stage using op-amp was hence designed initially with a variable gain and then the gain was fixed at 100 after observing the output wave forms. This stage was followed by a comparator circuit, which basically compares the amplified signal level with a predefined threshold which is depicted in figure 3. 2) Amplifier Stage: Operational amplifiers can be used in two basic configurations to create amplifier circuits. One is the inverting amplifier where the output is the inverse or 180 out of phase with the input, and the other is the non-inverting amplifier where the output is in the same sense or in phase with the input. The gain of the non-inverting amplifier circuit can be determined by the using the fact that the voltage at both inputs is the same. This arises from the fact that the gain of the amplifier is exceedingly high. If the output of the circuit remains within the supply rails of the amplifier, then the output voltage divided by the gain means that there is virtually no difference between the two inputs.and hence the gain is given by V out = 1 + R 2 R 1 V in (2) 3) Tiva TM4C Module: One of the prime requirement of our project was the huge amount of samples that we needed to store on the micro-controller, and hence Tiva TM4C was chosen as it has 256 KB of data memory and 1 MB of Fig. 5: Amplifier and Stage However, since our aim was to separate clap signals from almost all other signals, comparator stage is unnecessary and hence we removed the comparator stage. Now, from literature survey, it was found that clap signal had a frequency range ranging approximately from 2kHz to 3kHz, hence we designed a high quality factor band pass filter so as to notch out other undesired frequencies.

3 Fig. 6: A high Q band pass filter For the figure 5. the transfer function is given by, V o scr = V i 1 + s 2 C 2 R 2 + scr(2 K) where, K is given by, And bandwidth is given by, (3) K = R 4 R 5 (4) f H f L = (2 K) (5) However, desired result was not obtained even after the amplified analog signal was filtered using high Q band pass filter as undesired signals like desk banging etc where not getting properly filtered. Hence, we resorted to process the signals on Tiva TM4C board and analyze the samples. III. HARDWARE IMPLEMENTATION The clap-detector circuit was implemented on on a general purpose PCB as shown in figure 7. We have 4 LED s indicating the confidence levels of clap detection. The Tiva TM4C is programmed such that the when the real time samples passes each thresholds both frequency domain as well as time domain, the LED s indicating the confidence levels blinks in sequence. Also another LED has been set up to indicate the detection of signals other than clap signals. IV. SIGNAL PROCESSING The signals from different possible sources are sampled using ADC in Tiva TM4C with appropriate sampling rate. The samples were analyzed in both time domain and frequency domain.in time-domain the captured samples were crosscorrelated with a pre-loaded training sequence. Initial training is necessary as claps can be different for different person. In frequency domain Fast Fourier Transform(FFT) was performed on the samples so as the distinguish different frequencies. Appropriate results were displayed to distinguish the clap from other sounds. A. Time Domain Analysis Fig. 7: Clap Detector-Hardware The continuous time analog time domain signal from the amplifier circuit was fed to the analog read pin of Tiva TM4C module. The clap signals correspond to a frequency range of 2kHz to 3kHz, and hence the signals were sampled at a rate of 10k samples per second, satisfying the Nyquist criteria. Initially training sequences were generated by repeatedly clapping predefined number of times. The training sequence so obtained was recorded and analyzed for its time domain specification. These specifications along with each signals is pre-loaded as a training data in the Tiva module. For our application we have chosen the training data to be 10. Once the training data is loaded, the real time testing data is fed to the analog pin of Tiva. The sample rate (approx. 10K samples) and the number of samples (128) is kept same so as to correlate the data without zero padding.time domain correlation is done using Pearson s formula. numerator = X1 X2 X1 X2 (6) denominator1 = X1 X1 X1 X1 (7) denominator2 = X2 X2 X2 X2 (8) numerator r = (9) denominator1 denominator2 where X1 and X2 are the sample Vector to be correlated. The maximum output of ADC of Tiva TM4C is Also the maximum number to which a float is defined in Tiva is 4e9. By using Pearson s formula the summation term was crossing the maximum limit of a float thereby giving false reading for the same. Thus an optimal number of points was required to choose so as to get time time correlation as well as frequency resolution in frequency domain as per required. Hence 128 sample points were chosen where in the maximum limit the summation term can reach is 2.2e9 and the frequency resolution is 144Hz which is acceptable for our application.

4 B. Frequency Domain Analysis The sampled real time signal is processed using 128 point DFT in frequency domain to detect the presence of frequencies between 2khz to 3 khz. The resolution for 128 point DFT is about 144 Hz. Also the amplitude for the corresponding frequencies plays a very important role as high amplitude may lead to false triggering. Higher point DFT can also be done as it will increase the resolution but on the cost of process time. We went for for 128 point DFT as higher points couldn t be processed on Tiva TM4C because of range limitation of floating point numbers. V. ALGORITHM Initially, the clap signals are amplified by a non-inverting amplifier of sufficient gain. This amplified signal is fed to the Tiva TM4C. Tiva is programmed to sample the analog input at the rate of approx. 10k samples per second. These samples so obtained are analyses in frequency-domain as well as timedomain. Initial analysis is done in frequency domain, were we filter out the incoming signals which do not fall in the range of clap-signals. This is done by specifying appropriate thresholds for the amplitudes in the frequency domain during the training process. Once we have filtered out all the signals which are out of band of the clap frequencies, we switch to time-domain analysis. In time domain we correlate the real time samples with the pre-loaded training sequence. After computing the correlation co-efficient, appropriate threshold is specified on the value of correlation coefficient so obtained during the training process. If the value of correlation coefficient is greater than the threshold then we say that a clap is detected. Figure 8 depicts the flow chart of the algorithm that we have implemented. VI. ANALYSIS AND INTERPRETATION Initially the system was trained with five claps at both near and far. By near clap, we mean a clap at an approximate distance of 30cm, and by far clap we mean a clap at a distance of 2-3m. These signals were sampled on Tiva TM4C and analyzed in Matlab. After repeating the experiments a number of times, the thresholds for both time-domain and frequency domain were set. Also these samples were preloaded into the Tiva TM4C for correlating it with the real time signals. Figures 8 to 25 and 12 to 29 depicts the training signals along with their FFT s processed in Matlab after extracting the samples using. As can be seen from the training data, a majority of the fret iva T M 4Cquencies for the clap signals, both near and far clap falls in the frequency range of 2-3kHz.Accordingly we chosen the lower cutoff frequency to be khz and the upper cutoff frequency to be khz. The frequency domain plots were processed with a resolution of about Hz as there was a computational limitation associated with the floating point numbers while loading the program onto the Tiva TM4C. Similarly after analyzing multiple data sets and correlating it with the preloaded training sequence using equation 9, a threshold of 0.15 was set on the value for correlation coefficient for clap detection. Fig. 8: Flow-Chart

5 Fig. 9: Far 1 Waveform Fig. 13: Far 1 Frequency Response Fig. 10: Far 2 Waveform Fig. 14: Far 2 Frequency Response Fig. 11: Far 3 Waveform Fig. 15: Far 3 Frequency Response Fig. 12: Far 4 Waveform Fig. 16: Far 4 Frequency Response

6 Fig. 17: Far 5 Waveform Fig. 21: Far 5 Frequency Response Fig. 18: Near 1 Waveform Fig. 22: Near 1 Frequency Response Fig. 19: Near 2 Waveform Fig. 23: Near 2 Frequency Response Fig. 20: Near 3 Waveform Fig. 24: Near 3 Frequency Response

7 Fig. 25: Near 4 Waveform Fig. 29: Near 4 Frequency Response Fig. 26: Near 5 Waveform Fig. 30: Near 5 Frequency Response Fig. 27: Test 1 Waveform Fig. 31: Test 1 Frequecy Response Fig. 28: Test 2 Waveform Fig. 32: Test 2 Frequency Response

8 Fig. 33: Test 3 Waveform Fig. 37: Test 3 Frequency Response Fig. 34: Test 4 Waveform Fig. 38: Test 4 Frequency Response Fig. 35: Test 5 Waveform Fig. 39: Test 5 Frequency Response Fig. 36: Test 6 Waveform Fig. 40: Test 6 Frequency Response

9 VII. RESULTS Correlation Table Testing Signals Freq(KHz) Near1 Near2 Near3 Near4 Near5 Far1 Far2 Far3 Far4 Far5 Pen-drop Click Bang Whistle Clap Clap The Correlation table shows the correlation co-efficient for various real time test signals with respect to stored sample. The frequency for Pen-drop, click bang and whistle were not in the range hence rejected. For the claps, as the frequency is within the band, time correlation is done with the store sample. For clap1, the correlation with near4 and far4 is greater than the threshold thus it is detected as a clap. Similarly for clap2 near2, near3, far2 and far3 correlation exceeds and get detected as clap. VIII. CONCLUSION AND FUTURE WORK We have successfully designed and implemented an efficient clap only detector. The system is highly sensitive and omni-directional. Testing the system showed 80% accuracy(40 out of 50 claps were detected) for a maximum distance of 4 meters. Out of remaining 20%, 12% were false negative and 8% were false positive. Overall this system is much more efficient compared to other existing counterparts. Future work includes more regressive training of the system using other efficient algorithms. ACKNOWLEDGMENT We would like to thank Prof. Siddharth Tallur for constantly helping and motivating us constantly in completion of the project. And Prof. Joseph John for giving insights on microphone operation. We also like to thank WEL Lab staffs, in particular Maheshwar Mangat Sir for his valuable inputs. REFERENCES [1] Wasim Ahmad and Ahmet M. Kondoz, Analysis And Synthesis Of Hand Clapping Sounds Based On Adaptive Dictionary, in Proceedings of the International Computer Music Conference University of Surrey, Guildford, United Kingdom [2] Seyi Stephen Olokede,Design of a Clap Activated Switch, in Leonardo Journal of Sciences, College of engineering and technology Olabisi onabanjo university,ibogun,ogun State [3] Bruno H. Repp,Sound Of Two Hands Clapping-An Exploratory Study, in The Journal of the Acoustical Society of America, Haskins Laboratories, Connecticut 1986.

Intruder Alarm Name Mohamed Alsubaie MMU ID Supervisor Pr. Nicholas Bowring Subject Electronic Engineering Unit code 64ET3516

Intruder Alarm Name Mohamed Alsubaie MMU ID Supervisor Pr. Nicholas Bowring Subject Electronic Engineering Unit code 64ET3516 Intruder Alarm Name MMU ID Supervisor Subject Unit code Course Mohamed Alsubaie 09562211 Pr. Nicholas Bowring Electronic Engineering 64ET3516 BEng (Hons) Computer and Communication Engineering 1. Introduction

More information

Design and Implementation of Digital Stethoscope using TFT Module and Matlab Visualisation Tool

Design and Implementation of Digital Stethoscope using TFT Module and Matlab Visualisation Tool World Journal of Technology, Engineering and Research, Volume 3, Issue 1 (2018) 297-304 Contents available at WJTER World Journal of Technology, Engineering and Research Journal Homepage: www.wjter.com

More information

Using the VM1010 Wake-on-Sound Microphone and ZeroPower Listening TM Technology

Using the VM1010 Wake-on-Sound Microphone and ZeroPower Listening TM Technology Using the VM1010 Wake-on-Sound Microphone and ZeroPower Listening TM Technology Rev1.0 Author: Tung Shen Chew Contents 1 Introduction... 4 1.1 Always-on voice-control is (almost) everywhere... 4 1.2 Introducing

More information

Audio Visualiser using Field Programmable Gate Array(FPGA)

Audio Visualiser using Field Programmable Gate Array(FPGA) Audio Visualiser using Field Programmable Gate Array(FPGA) June 21, 2014 Aditya Agarwal Computer Science and Engineering,IIT Kanpur Bhushan Laxman Sahare Department of Electrical Engineering,IIT Kanpur

More information

ESE 150 Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 Lab 04: The Discrete Fourier Transform (DFT) LAB 04 In this lab we will do the following: 1. Use Matlab to perform the Fourier Transform on sampled data in the time domain, converting it to the frequency domain 2. Add two sinewaves together of differing

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects .3.4: Signal Conditioning Audio Application eal Analog Circuits Chapter : Lab Projects Overview: When making timevarying measurements, the sensor being used often has at least a few undesirable characteristics.

More information

Electronic Buzzer for Blind

Electronic Buzzer for Blind EE318 Electronic Design Lab Project Report, EE Dept, IIT Bombay, April 2009 Electronic Buzzer for Blind Group no. B08 Vaibhav Chaudhary (06007018) Anuj Jain (06007019)

More information

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-12 TRANSISTOR BIASING Emitter Current Bias Thermal Stability (RC Coupled Amplifier) Hello everybody! In our series of lectures

More information

Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

More information

Control of Electrical Lights and Fans using TV Remote

Control of Electrical Lights and Fans using TV Remote EE 389 Electronic Design Lab -II, Project Report, EE Dept., IIT Bombay, October 2005 Control of Electrical Lights and Fans using TV Remote Group No. D10 Liji Jayaprakash (02d07021)

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 422G - Signals and Systems Laboratory Lab 3 FIR Filters Written by Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 September 19, 2015 Objectives:

More information

Physics 303 Fall Module 4: The Operational Amplifier

Physics 303 Fall Module 4: The Operational Amplifier Module 4: The Operational Amplifier Operational Amplifiers: General Introduction In the laboratory, analog signals (that is to say continuously variable, not discrete signals) often require amplification.

More information

CHAPTER 7 HARDWARE IMPLEMENTATION

CHAPTER 7 HARDWARE IMPLEMENTATION 168 CHAPTER 7 HARDWARE IMPLEMENTATION 7.1 OVERVIEW In the previous chapters discussed about the design and simulation of Discrete controller for ZVS Buck, Interleaved Boost, Buck-Boost, Double Frequency

More information

Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce

Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce Capacitive Touch Sensing Tone Generator Corey Cleveland and Eric Ponce Table of Contents Introduction Capacitive Sensing Overview Reference Oscillator Capacitive Grid Phase Detector Signal Transformer

More information

Week 8 AM Modulation and the AM Receiver

Week 8 AM Modulation and the AM Receiver Week 8 AM Modulation and the AM Receiver The concept of modulation and radio transmission is introduced. An AM receiver is studied and the constructed on the prototyping board. The operation of the AM

More information

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture 26 Mathematical operations Hello everybody! In our series of lectures on basic

More information

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202)

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Department of Electronic Engineering NED University of Engineering & Technology LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Instructor Name: Student Name: Roll Number: Semester: Batch:

More information

ESE 150 Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 Lab 04: The Discrete Fourier Transform (DFT) LAB 04 In this lab we will do the following: 1. Use Matlab to perform the Fourier Transform on sampled data in the time domain, converting it to the frequency domain 2. Add two sinewaves together of differing

More information

Chapter 2 Analog-to-Digital Conversion...

Chapter 2 Analog-to-Digital Conversion... Chapter... 5 This chapter examines general considerations for analog-to-digital converter (ADC) measurements. Discussed are the four basic ADC types, providing a general description of each while comparing

More information

CHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations

CHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations CHAPTER 3 Instrumentation Amplifier (IA) Background 3.1 Introduction The IAs are key circuits in many sensor readout systems where, there is a need to amplify small differential signals in the presence

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

ECEN Network Analysis Section 3. Laboratory Manual

ECEN Network Analysis Section 3. Laboratory Manual ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

More information

Experiment # 4. Frequency Modulation

Experiment # 4. Frequency Modulation ECE 416 Fall 2002 Experiment # 4 Frequency Modulation 1 Purpose In Experiment # 3, a modulator and demodulator for AM were designed and built. In this experiment, another widely used modulation technique

More information

Typical Doppler Signal Amplifier Application Note AN-04

Typical Doppler Signal Amplifier Application Note AN-04 Typical Doppler Signal Amplifier Application Note AN-04 RFbeam Microwave GmbH www.rfbeam.ch April 16, 2012 1/5 About This Document This application note describes a simple IF signal amplifier for Radar

More information

Interactive Tone Generator with Capacitive Touch. Corey Cleveland and Eric Ponce. Project Proposal

Interactive Tone Generator with Capacitive Touch. Corey Cleveland and Eric Ponce. Project Proposal Interactive Tone Generator with Capacitive Touch Corey Cleveland and Eric Ponce Project Proposal Overview Capacitance is defined as the ability for an object to store charge. All objects have this ability,

More information

Module 2. Measurement Systems. Version 2 EE IIT, Kharagpur 1

Module 2. Measurement Systems. Version 2 EE IIT, Kharagpur 1 Module Measurement Systems Version EE IIT, Kharagpur 1 Lesson 9 Signal Conditioning Circuits Version EE IIT, Kharagpur Instructional Objective The reader, after going through the lesson would be able to:

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

Transmit filter designs for ADSL modems

Transmit filter designs for ADSL modems Transmit filter designs for ADSL modems 1. OBJECTIVES... 2 2. REFERENCE... 2 3. CIRCUITS... 2 4. COMPONENTS AND SPECIFICATIONS... 3 5. DISCUSSION... 3 6. PRE-LAB... 4 6.1 RECORDING SPECIFIED OPAMP PARAMETERS

More information

The operational amplifier

The operational amplifier The operational amplifier Long before the advent of digital electronic technology, computers were built to electronically perform calculations by employing voltages and currents to represent numerical

More information

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

Data acquisition and instrumentation. Data acquisition

Data acquisition and instrumentation. Data acquisition Data acquisition and instrumentation START Lecture Sam Sadeghi Data acquisition 1 Humanistic Intelligence Body as a transducer,, data acquisition and signal processing machine Analysis of physiological

More information

II. WORKING PRINCIPLE The block diagram depicting the working principle of the proposed topology is as given below in Fig.2.

II. WORKING PRINCIPLE The block diagram depicting the working principle of the proposed topology is as given below in Fig.2. PIC Based Seven-Level Cascaded H-Bridge Multilevel Inverter R.M.Sekar, Baladhandapani.R Abstract- This paper presents a multilevel inverter topology in which a low switching frequency is made use taking

More information

Spectrum analyzer for frequency bands of 8-12, and MHz

Spectrum analyzer for frequency bands of 8-12, and MHz EE389 Electronic Design Lab Project Report, EE Dept, IIT Bombay, November 2006 Spectrum analyzer for frequency bands of 8-12, 12-16 and 16-20 MHz Group No. D-13 Paras Choudhary (03d07012)

More information

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

More information

Florida Atlantic University Biomedical Signal Processing Lab Experiment 2 Signal Transduction: Building an analog Electrocardiogram (ECG)

Florida Atlantic University Biomedical Signal Processing Lab Experiment 2 Signal Transduction: Building an analog Electrocardiogram (ECG) Florida Atlantic University Biomedical Signal Processing Lab Experiment 2 Signal Transduction: Building an analog Electrocardiogram (ECG) 1. Introduction: The Electrocardiogram (ECG) is a technique of

More information

ECEN 474/704 Lab 6: Differential Pairs

ECEN 474/704 Lab 6: Differential Pairs ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers

More information

LIMITATIONS IN MAKING AUDIO BANDWIDTH MEASUREMENTS IN THE PRESENCE OF SIGNIFICANT OUT-OF-BAND NOISE

LIMITATIONS IN MAKING AUDIO BANDWIDTH MEASUREMENTS IN THE PRESENCE OF SIGNIFICANT OUT-OF-BAND NOISE LIMITATIONS IN MAKING AUDIO BANDWIDTH MEASUREMENTS IN THE PRESENCE OF SIGNIFICANT OUT-OF-BAND NOISE Bruce E. Hofer AUDIO PRECISION, INC. August 2005 Introduction There once was a time (before the 1980s)

More information

6.101 Introductory Analog Electronics Laboratory

6.101 Introductory Analog Electronics Laboratory 6.101 Introductory Analog Electronics Laboratory Spring 2015, Instructor Gim Hom Project Proposal Transmitting, Receiving, and Interpreting ECG Waveforms Daniel Moon (dhmoon@mit.edu) Thipok (Ben) Rak-amnouykit

More information

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017 AN-1106 Custom Instrumentation Author: Craig Cary Date: January 16, 2017 Abstract This application note describes some of the fine points of designing an instrumentation amplifier with op-amps. We will

More information

ULTRASONIC TRANSMITTER & RECEIVER

ULTRASONIC TRANSMITTER & RECEIVER ELECTRONIC WORKSHOP II Mini-Project Report on ULTRASONIC TRANSMITTER & RECEIVER Submitted by Basil George 200831005 Nikhil Soni 200830014 AIM: To build an ultrasonic transceiver to send and receive data

More information

UNIT-3. Electronic Measurements & Instrumentation

UNIT-3.   Electronic Measurements & Instrumentation UNIT-3 1. Draw the Block Schematic of AF Wave analyzer and explain its principle and Working? ANS: The wave analyzer consists of a very narrow pass-band filter section which can Be tuned to a particular

More information

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated Rev. D CE Series Power Amplifier Service Manual 3 Circuit Theory 3.0 Overview This section of the manual explains the general operation of the CE power amplifier. Topics covered include Front End Operation,

More information

15 th Asia Pacific Conference for Non-Destructive Testing (APCNDT2017), Singapore.

15 th Asia Pacific Conference for Non-Destructive Testing (APCNDT2017), Singapore. Time of flight computation with sub-sample accuracy using digital signal processing techniques in Ultrasound NDT Nimmy Mathew, Byju Chambalon and Subodh Prasanna Sudhakaran More info about this article:

More information

Transmit filter designs for ADSL modems

Transmit filter designs for ADSL modems EE 233 Laboratory-4 1. Objectives Transmit filter designs for ADSL modems Design a filter from a given topology and specifications. Analyze the characteristics of the designed filter. Use SPICE to verify

More information

Instrumentation amplifier

Instrumentation amplifier Instrumentationamplifieris a closed-loop gainblock that has a differential input and an output that is single-ended with respect to a reference terminal. Application: are intended to be used whenever acquisition

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 8 AMPLITUDE MODULATION AND DEMODULATION OBJECTIVES The focus of this lab is to familiarize the student

More information

Digital Applications of the Operational Amplifier

Digital Applications of the Operational Amplifier Lab Procedure 1. Objective This project will show the versatile operation of an operational amplifier in a voltage comparator (Schmitt Trigger) circuit and a sample and hold circuit. 2. Components Qty

More information

Putting it all Together

Putting it all Together ECE 2C Laboratory Manual 5b Putting it all Together.continuation of Lab 5a In-Lab Procedure At this stage you should have your transmitter circuit hardwired on a vectorboard, and your receiver circuit

More information

Massachusetts Institute of Technology MIT

Massachusetts Institute of Technology MIT Massachusetts Institute of Technology MIT Real Time Wireless Electrocardiogram (ECG) Monitoring System Introductory Analog Electronics Laboratory Guilherme K. Kolotelo, Rogers G. Reichert Cambridge, MA

More information

Chapter 5: Signal conversion

Chapter 5: Signal conversion Chapter 5: Signal conversion Learning Objectives: At the end of this topic you will be able to: explain the need for signal conversion between analogue and digital form in communications and microprocessors

More information

Lab 4 Digital Scope and Spectrum Analyzer

Lab 4 Digital Scope and Spectrum Analyzer Lab 4 Digital Scope and Spectrum Analyzer Page 4.1 Lab 4 Digital Scope and Spectrum Analyzer Goals Review Starter files Interface a microphone and record sounds, Design and implement an analog HPF, LPF

More information

Definitions. Spectrum Analyzer

Definitions. Spectrum Analyzer SIGNAL ANALYZERS Spectrum Analyzer Definitions A spectrum analyzer measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure

More information

Measurement, Sensors, and Data Acquisition in the Two-Can System

Measurement, Sensors, and Data Acquisition in the Two-Can System Measurement, Sensors, and Data Acquisition in the Two-Can System Prof. R.G. Longoria Updated Fall 2010 Goal of this week s lab Gain familiarity with using sensors Gain familiarity with using DAQ hardware

More information

Learning Objectives:

Learning Objectives: Learning Objectives: At the end of this topic you will be able to; recall the conditions for maximum voltage transfer between sub-systems; analyse a unity gain op-amp voltage follower, used in impedance

More information

Josephson Engineering, Inc. 329A Ingalls Street Santa Cruz, California Josephson Engineering Rev B

Josephson Engineering, Inc. 329A Ingalls Street Santa Cruz, California Josephson Engineering Rev B C725 Users Guide Josephson Engineering, Inc. 329A Ingalls Street Santa Cruz, California +1 831 420 0888 www.josephson.com 2017 Josephson Engineering Rev B C725 Users Guide Josephson C725 microphones are

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Interface Electronic Circuits

Interface Electronic Circuits Lecture (5) Interface Electronic Circuits Part: 1 Prof. Kasim M. Al-Aubidy Philadelphia University-Jordan AMSS-MSc Prof. Kasim Al-Aubidy 1 Interface Circuits: An interface circuit is a signal conditioning

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #5 Fall 2011 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2002 Closed Book and Notes 1. Be sure to fill in your

More information

Laboratory Project 4: Frequency Response and Filters

Laboratory Project 4: Frequency Response and Filters 2240 Laboratory Project 4: Frequency Response and Filters K. Durney and N. E. Cotter Electrical and Computer Engineering Department University of Utah Salt Lake City, UT 84112 Abstract-You will build a

More information

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning Objectives: Use analog OP AMP circuits to scale the output of a sensor to signal levels commonly found in practical

More information

Analog Synthesizer: Functional Description

Analog Synthesizer: Functional Description Analog Synthesizer: Functional Description Documentation and Technical Information Nolan Lem (2013) Abstract This analog audio synthesizer consists of a keyboard controller paired with several modules

More information

MAE334 - Introduction to Instrumentation and Computers. Final Exam. December 11, 2006

MAE334 - Introduction to Instrumentation and Computers. Final Exam. December 11, 2006 MAE334 - Introduction to Instrumentation and Computers Final Exam December 11, 2006 o Closed Book and Notes o No Calculators 1. Fill in your name on side 2 of the scoring sheet (Last name first!) 2. Fill

More information

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers BME/ISE 3512 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and

More information

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ELECTROMYOGRAM (EMG) DETECTOR WITH AUDIOVISUAL OUTPUT

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ELECTROMYOGRAM (EMG) DETECTOR WITH AUDIOVISUAL OUTPUT UNIVESITY OF UTAH ELECTICAL AND COMPUTE ENGINEEING DEPATMENT ECE 3110 LABOATOY EXPEIMENT NO. 5 ELECTOMYOGAM (EMG) DETECTO WITH AUDIOVISUAL OUTPUT Pre-Lab Assignment: ead and review Sections 2.4, 2.8.2,

More information

Precision Rectifier Circuits

Precision Rectifier Circuits Precision Rectifier Circuits Rectifier circuits are used in the design of power supply circuits. In such applications, the voltage being rectified are usually much greater than the diode voltage drop,

More information

1818. Evaluation of arbitrary waveform acoustic signal generation techniques in dispersive waveguides

1818. Evaluation of arbitrary waveform acoustic signal generation techniques in dispersive waveguides 1818. Evaluation of arbitrary waveform acoustic signal generation techniques in dispersive waveguides V. Augutis 1, D. Gailius 2, E. Vastakas 3, P. Kuzas 4 Kaunas University of Technology, Institute of

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Amplitude Amplitude Discrete Fourier Transform (DFT) DFT transforms the time domain signal samples to the frequency domain components. DFT Signal Spectrum Time Frequency DFT is often used to do frequency

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

ELG3336 Design of Mechatronics System

ELG3336 Design of Mechatronics System ELG3336 Design of Mechatronics System Elements of a Data Acquisition System 2 Analog Signal Data Acquisition Hardware Your Signal Data Acquisition DAQ Device System Computer Cable Terminal Block Data Acquisition

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 22.

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 22. FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 22 Optical Receivers Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering,

More information

Infrared Communications Lab

Infrared Communications Lab Infrared Communications Lab This lab assignment assumes that the student knows about: Ohm s Law oltage, Current and Resistance Operational Amplifiers (See Appendix I) The first part of the lab is to develop

More information

The Fundamentals of Mixed Signal Testing

The Fundamentals of Mixed Signal Testing The Fundamentals of Mixed Signal Testing Course Information The Fundamentals of Mixed Signal Testing course is designed to provide the foundation of knowledge that is required for testing modern mixed

More information

MUSIC RESPONSIVE LIGHT SYSTEM

MUSIC RESPONSIVE LIGHT SYSTEM MUSIC RESPONSIVE LIGHT SYSTEM By Andrew John Groesch Final Report for ECE 445, Senior Design, Spring 2013 TA: Lydia Majure 1 May 2013 Project 49 Abstract The system takes in a musical signal as an acoustic

More information

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS 6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS Laboratory based hardware prototype is developed for the z-source inverter based conversion set up in line with control system designed, simulated and discussed

More information

EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

More information

Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS

Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 6 Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS Goal The goals of this experiment are: - Verify the operation of a differential ADC; - Find the

More information

Laboratory Assignment 5 Amplitude Modulation

Laboratory Assignment 5 Amplitude Modulation Laboratory Assignment 5 Amplitude Modulation PURPOSE In this assignment, you will explore the use of digital computers for the analysis, design, synthesis, and simulation of an amplitude modulation (AM)

More information

Sampling and Reconstruction of Analog Signals

Sampling and Reconstruction of Analog Signals Sampling and Reconstruction of Analog Signals Chapter Intended Learning Outcomes: (i) Ability to convert an analog signal to a discrete-time sequence via sampling (ii) Ability to construct an analog signal

More information

Microphone Probe. ReallyEasyData. com

Microphone Probe. ReallyEasyData. com Microphone Probe 9200008 Uses This high quality microphone can be used to display and study waveforms of sound from: A human voice Any other audible sound found in a student s environment. It is also ideal

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

Digitally controlled Active Noise Reduction with integrated Speech Communication

Digitally controlled Active Noise Reduction with integrated Speech Communication Digitally controlled Active Noise Reduction with integrated Speech Communication Herman J.M. Steeneken and Jan Verhave TNO Human Factors, Soesterberg, The Netherlands herman@steeneken.com ABSTRACT Active

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

For the filter shown (suitable for bandpass audio use) with bandwidth B and center frequency f, and gain A:

For the filter shown (suitable for bandpass audio use) with bandwidth B and center frequency f, and gain A: Basic Op Amps The operational amplifier (Op Amp) is useful for a wide variety of applications. In the previous part of this article basic theory and a few elementary circuits were discussed. In order to

More information

Operational Amplifier BME 360 Lecture Notes Ying Sun

Operational Amplifier BME 360 Lecture Notes Ying Sun Operational Amplifier BME 360 Lecture Notes Ying Sun Characteristics of Op-Amp An operational amplifier (op-amp) is an analog integrated circuit that consists of several stages of transistor amplification

More information

Digital Signal Processing. VO Embedded Systems Engineering Armin Wasicek WS 2009/10

Digital Signal Processing. VO Embedded Systems Engineering Armin Wasicek WS 2009/10 Digital Signal Processing VO Embedded Systems Engineering Armin Wasicek WS 2009/10 Overview Signals and Systems Processing of Signals Display of Signals Digital Signal Processors Common Signal Processing

More information

Chapter 4: AC Circuits and Passive Filters

Chapter 4: AC Circuits and Passive Filters Chapter 4: AC Circuits and Passive Filters Learning Objectives: At the end of this topic you will be able to: use V-t, I-t and P-t graphs for resistive loads describe the relationship between rms and peak

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 14: Special-purpose op-amp circuits Prof. Manar Mohaisen Department of EEC Engineering eview of the Precedent Lecture Introduce the level detection op-amp circuits

More information

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1.

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1. Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in AC circuit analysis. In this laboratory session, each student will:

More information

Optical Power Meter Basics

Optical Power Meter Basics Optical Power Meter Basics Introduction An optical power meter measures the photon energy in the form of current or voltage from an optical detector such as a semiconductor, a thermopile, or a pyroelectric

More information

SENSOR AND MEASUREMENT EXPERIMENTS

SENSOR AND MEASUREMENT EXPERIMENTS SENSOR AND MEASUREMENT EXPERIMENTS Page: 1 Contents 1. Capacitive sensors 2. Temperature measurements 3. Signal processing and data analysis using LabVIEW 4. Load measurements 5. Noise and noise reduction

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase.

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase. P a g e 2 Contents 1) Oscillators 3 Sinusoidal Oscillators Phase Shift Oscillators 4 Wien Bridge Oscillators 4 Square Wave Generator 5 Triangular Wave Generator Using Square Wave Generator 6 Using Comparator

More information

Design And Implementation Of Low Cost Microwave Motion. Sensor Based Security System

Design And Implementation Of Low Cost Microwave Motion. Sensor Based Security System Design And Implementation Of Low Cost Microwave Motion Sensor Based Security System M. S. S. Bhavani 1, Dr. K. Babulu 2 1 (Department of Electronics and Communication Engineering, JNTU Kakinada) 2 (Head

More information

Auto Harmonizer. EEL 4924 Electrical Engineering Design (Senior Design) Final Design Report 26 April 2012

Auto Harmonizer. EEL 4924 Electrical Engineering Design (Senior Design) Final Design Report 26 April 2012 Auto Harmonizer EEL 4924 Electrical Engineering Design (Senior Design) Final Design Report 26 April 2012 Team Name: Slubberdegullions Team Members: Josh Elliott and Henry Hatton, Jr. Project Abstract:

More information

Coming to Grips with the Frequency Domain

Coming to Grips with the Frequency Domain XPLANATION: FPGA 101 Coming to Grips with the Frequency Domain by Adam P. Taylor Chief Engineer e2v aptaylor@theiet.org 48 Xcell Journal Second Quarter 2015 The ability to work within the frequency domain

More information

Chapter 8: Field Effect Transistors

Chapter 8: Field Effect Transistors Chapter 8: Field Effect Transistors Transistors are different from the basic electronic elements in that they have three terminals. Consequently, we need more parameters to describe their behavior than

More information

Small Signal Pulse Detection

Small Signal Pulse Detection EE318 Electronic Design Lab Project Report, EE Dept, IIT Bombay, April 2007 Small Signal Pulse Detection Group No: B07 Rahul S. K. (04007018) Gaurav Sushil (04007015)

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Phy 335, Unit 4 Transistors and transistor circuits (part one) Mini-lecture topics (multiple lectures): Phy 335, Unit 4 Transistors and transistor circuits (part one) p-n junctions re-visited How does a bipolar transistor works; analogy with a valve Basic circuit

More information