Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications

Size: px
Start display at page:

Download "Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications"

Transcription

1 Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications DARPA SBIR Topic: SB82-2, Phase II Army Contract W31P4Q-11-C-43 Program Summary September 2, 215 Jamie Bergin John Pierro Work funded by the Defense Advanced Research Projects Agency under Army Contract W31P4Q-11- C-43 The views, opinions, and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government 813 Boone Blvd. Suite 5 Vienna, Virginia (73) FAX: (73) These SBIR data are furnished with SBIR rights under Contract No. W31P4Q-11-C-43. For a period of 5 years after acceptance of all items to be delivered under this contract, the Government agrees to use these data for Government purposes only, and they shall not be disclosed outside the Government (including disclosure for procurement purposes) during such period without permission of the Contractor, except that, subject to the foregoing use and disclosure prohibitions, such data may be disclosed for use by support Contractors. After the aforesaid 5-year period the Government has a royalty-free license to use, and to authorize others to use on its behalf, these data for Government purposes, but is relieved of all disclosure prohibitions and assumes no liability for unauthorized use of these data by third parties. This Notice shall be affixed to any reproductions of these data, in whole or in part.

2 Background Hardware Summary Data Collection Summary Processing Results Next Phase Outline SB82-2/JSB 9/15-2

3 GMTI and Small UAVs Air Force JSTARS ~27 in. antenna 2 receive channels >5 meter antenna 3 receive channels Telephonics ZPY-4 Fire Scout UAV (unmanned Bell 47) Cost, Size, weight, and power (SWAP) constraints severely limit the antenna size and numbers of instrumented channels Slower UAV platform speeds can potentially help but can lead to sub-optimal endurance SB82-2/JSB 9/15-3

4 Solution: Multiple Input, Multiple Output (MIMO) Radar A unique mode that exploits multiwaveform and spatial diversity to enhance spatial and temporal resolution s 1 ( t) s ( ) s N (t) 2 t Particularly well-suited for small UAV radars with limited aperture h 1 h2 y1,1 y1, hn h 1 h2 y 1, N y 2, 1 y2, hn... h 1 h2 y 2, y N N, 1 y N, hn y N, N Made possible by recent advances in digital RF front ends à in particular digital waveform generators filter h n is matched to transmit signal s n (t) and has low correlation with all other signals SB82-2/JSB 9/15-4

5 MIMO Radar Properties MIMO radar provides a virtual increase in the antenna aperture The virtual array positions are the convolution of the transmit and receiver array element position real receive array real transmit array MIMO virtual array { 1} 1 * { 1} 1 { 1 2 1} Provides longer aperture and additional spatial channels needed for GMTI mode D. Bliss, et al., MIMO Radar: Resolution, Performance, and Waveforms, Proceedings of the 26 ASAP Workshop, MIT Lincoln Laboratory, Lexington, MA SB82-2/JSB 9/15-5

6 Radar Performance Improvement RMS error re. beamwidth Slow-Moving Targets conv. MIMO RMS error re. beamwidth Fast-Moving Targets conv. MIMO SNR (db) MIMO provides >2x improvement in target geolocation accuracy for slow-moving targets SNR (db) MIMO also provides better geolocation for fast-moving targets Better geolocation accuracy, fewer false alarms, robustness to jamming SB82-2/JSB 9/15-6

7 ZPY-4 Based MIMO Demonstration Unit New MIMO Architecture Laboratory Hardware full aperture beams same as Doppler Domain Multi-Access (DDMA) High power RF switches and phase shifters Fabricated by Microwave Applications Group (MAG) subarray 1 subarray 2 fixed phase shifts (time delays) 9 9 switching pulse-topulse Tx waveform (½ power into each path) Final integration and laboratory testing completed 7/14 SB82-2/JSB 9/15-7

8 ISL Proprietary/SBIR Data covered by rights statement on cover page of this briefing Aircraft Integration 2- channel GMTI array in lab test fixture GMTI array installed on Telephonics King Air 2 SB82-2/JSB 9/15-8

9 Background Hardware Summary Data Collection Summary Processing Results Next Phase Outline SB82-2/JSB 9/15-9

10 Phase Shifter Insertion Loss ~.4 db Fabricated by Microwave Applications Group (MAG) New Test First Test MAG modified the phase shifter with new Garnet material Eliminated large insertion loss at high power SB82-2/JSB 9/15-1

11 RDR 17B - Two Channel Antenna Feed Network RDR-17B Two Channel Antenna Feed Network J3 A ½ Height WR-9 Coupling Phase Shifter Phase Shifter Coupling J2 A ½ Height WR-9 Left Right J3 B ½ Height WR-9 J7 P9 P1 J6 J2 B ½ Height WR-9 J5 to GMTI Rcvr J1 WR-9 Tx J8 to GMTI Rcvr Cable Noise Source Phase Trimmer Cable J4 Note: Yellow J Numbers = Reassigned Number SB82-2/JSB 9/15-11

12 MIMO MIMO Test Setup Antenna Pedestal #2 (Rotating) 28VDC AP Interface 28VDC 28VDC 2VDC (+/-2VDC, 4Hz, AP Control) Signal Processor Receiver Transmitter Right Channel Rx Antenna Pedestal #1 (Stationary) SPORT Interface GMTI Switch Ctrl Noise Source Ctrl MIMO Enable Fiber Interface Left Phase Shift Ctrl Right Phase Shift Ctrl Left Channel Rx Load J5 J3-A MIMO Array J8 J2-A Load J3-B J1 J2-B ODL #1 ODL #2 RF Out RF Power Control SB82-2/JSB 9/15-12

13 High Power Testing (no antenna) Tx input (high power) termination loads optical delay line Phase shifters Rx signals (to ZPY-4) Phase shifter power and control Final integration and laboratory testing completed 7/14 SB82-2/JSB 9/15-13

14 Phase Shifter Results Measured phase difference between two Rx channels is 9 degrees as expected The phase difference errors are small SB82-2/JSB 9/15-14

15 SBIR Data covered by rights statement on cover page of this briefing ISL Proprietary/SBIR Data covered by rights statement on cover page of this briefing Fire Scout Two-Channel GMTI Antenna with MIMO Mode Modifications SB82-2/JSB 9/15-15

16 Background Hardware Summary Data Collection Summary Processing Results Next Phase Outline SB82-2/JSB 9/15-16

17 Test Goals Goal #1: Measured Tx antenna patterns match patterns measured in the chamber (see slide 1) Goal #2: Demonstrate that MIMO system provides better than 5:1 beamsplit ratio for endo-clutter targets (see slide 17) Goal #3: Demonstrate that MIMO and GMTI systems provide the same probability of detection for exo-clutter targets (no data available to test this, although qualitative results using targets of opportunity indicate we are meeting this goal) Demonstrate the MIMO provides 2.5x reduction in bearing errors relative to GMTI for 2 db endo-clutter targets (see slide 19) SB82-2/JSB 9/15-17

18 ISL Proprietary/SBIR Data covered by rights statement on cover page of this briefing Data Collection Overview MTS locations and GPS ground truth for test target test site radar passes Good data collected 4/3/15 and 5/4/15 8 radar passes (4 water, 4 land) MIMO and baseline GMTI data Endo-clutter MTS target for most over-land passes Instrumented GPS vehicle (4 door sedan) for half the overland passes Many targets of opportunity SB82-2/JSB 9/15-18

19 Data Summary Date Flt # Time (EDT) Mode Clutter comments 12/11/14 1 AM GMTI MIMO land water No valid data. Was not able to pulse compress and Doppler process data to for valid clutter maps 2 PM GMTI MIMO land water 4/3/ : GMTI land water 2 17: MIMO land water Limited valid MIMO data. Clutter maps useful for qualitative assessment of MIMO Tx patterns. No GPS/INS Good data. Antenna not scanning for over-land pass. Limited CPIs with MTS Good data. 5/4/15 1 9:3 MIMO GMTI land water Good data. 2 11:3 MIMO land water Good data. ~8 GB of data collected SB82-2/JSB 9/15-19

20 Example Clutter Maps range (nmi) MIMO channel Doppler (hz) range (nmi) Doppler (hz) MIMO: Water relative power (db) range (nmi) 12 1 Baseline GMTI: Water 8 6 MIMO channel Doppler (hz) relative power (db) range (nmi) relative power (db) MIMO channel Doppler (hz) Baseline GMTI: Land range (nmi) Doppler (hz) MIMO: Land relative power (db) range (nmi) MIMO channel Doppler (hz) relative power (db) relative power (db) SB82-2/JSB 9/15-2

21 Background Hardware Summary Data Collection Summary Processing Results Next Phase Outline SB82-2/JSB 9/15-21

22 MIMO Processing Flow IQ samples Form MIMO channels (forward and aft beams Mocomp apply calibration Range/Doppler process all Rx and Tx Channels MIMO-STAP Multi-bin post Doppler Element space (5 Dop bins, 2 Rx, 2 Tx channels) CACFAR Bearing estimation (MLE) SB82-2/JSB 9/15-22

23 8 Rx Calibration Single Rx Channel Beamformed (no cal) Beamformed (w/ cal) range (nmi) rel. power (db) range (nmi) rel. power (db) range (nmi) rel. power (db) azimuth (deg.) azimuth (deg.) azimuth (deg.) -7 Over water GMTI data used to calibrate the two-channel Rx antenna Eigen-analysis based cal-on-clutter algorithm chan. -to-chan.phase error (deg.) Over-water calibration errors used to process the over-land data GMTI data set 21543_2117 (over water) used to calibrate the array CPI index SB82-2/JSB 9/15-23

24 Rx Calibration (cont.) relative power (db) Tx pattern 1 chan. BF w/o cal. BF w/ cal azimuth (deg.) Single over-land GMTI data set averaged over all ranges Rx calibration results in desired narrow two-way antenna pattern for beamformer ( BF ) results Cal errors estimated using water-only data and applied to over-land data set SB82-2/JSB 9/15-24

25 MIMO Tx Beam Patterns relative power (db) model estimated from clutter data Patterns estimated from MIMO over-water clutter data NOTE: Simple motion compensation used to convert Doppler axis to azimuth angle azimuth (deg.) SB82-2/JSB 9/15-25

26 Tx Calibration 8 Tx Channel 1 Tx Channel 2 Tx Beamformed range (nmi) rel. power (db) range (nmi) rel. power (db) range (nmi) rel. power (db) azimuth (deg.) azimuth (deg.) azimuth (deg.) 2 Tx channels were successfully combined (beamformed) to produce a pattern with sidelobes and beamwidth similar to the GMTI mode rel. phase between Tx channels (deg CPI Index 5-5 Antenna broadside SB82-2/JSB 9/15-26

27 Tx Calibration (cont.) relative power (db) noise GMTI - single chan. MIMO - Tx beamformed azimuth (deg.) Two Tx channels combined to form a narrow, low sidelobe beam in the antenna boresight direction Tx pattern formed in the signal processor using the two available Tx channels Beamwidth and sidelobes similar to GMTI transmit pattern SB82-2/JSB 9/15-27

28 ISL Proprietary/SBIR Data covered by rights statement on cover page of this briefing Targets of Opportunity Many targets of opportunity detected.4 Range re. MTS location (nmi).3 Targets on road in test area Note significant micro-doppler Target Doppler (mph) 4 6 Conventional beamforming CFAR normalization Largest targets have SNR order of 3 db SB82-2/JSB 9/15-28

29 Single CPI Bearing Estimates 5.2 Targets on road in test area range (nmi) range (nmi.) detections road Doppler (hz) azimuth (deg.) Bearing estimates of targets of opportunity correlate well with the road We used the road data to compute and error between the estimated bearing and true target bearing SB82-2/JSB 9/15-29

30 Exo-Clutter Geolocation Estimates STAP Conventional road latitude (deg.) Red: MIMO Blue: GMTI latitude (deg.) longitude (deg.) Targets with SNR > 3 db Doppler between 3 Hz and 1 Hz Single pass longitude (deg.) SB82-2/JSB 9/15-3

31 Exo-Clutter Bearing Errors MIMO, STAP MIMO, Conv. GMTI, STAP GMTI, Conv..8 bearing error (deg.) SNR (db) Single pass SB82-2/JSB 9/15-31

32 MTS Conventional w/ CACFAR normalization -.2 range (nmi) Doppler (hz) STAP MTS return MTS Doppler: 97 Hz (3 kts) Radar data centered at MTS physical location MTS observed in STAP output Note: Doppler axis is flipped in radar dara range (nmi) Doppler (hz) SB82-2/JSB 9/15-32

33 Endo-Clutter Bearing Errors bearing error (deg.) MIMO GMTI SNR (db) MIMO provides Greater than 2x improvement in bearing accuracy at higher SNRs SB82-2/JSB 9/15-33

34 Background Hardware Summary Data Collection Summary Processing Results Next Phase Outline SB82-2/JSB 9/15-34

Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications

Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications DARPA SBIR Topic: SB82-2, Phase II Army Contract W31P4Q-11-C-43 Program Summary September

More information

Space-Time Adaptive Processing Using Sparse Arrays

Space-Time Adaptive Processing Using Sparse Arrays Space-Time Adaptive Processing Using Sparse Arrays Michael Zatman 11 th Annual ASAP Workshop March 11 th -14 th 2003 This work was sponsored by the DARPA under Air Force Contract F19628-00-C-0002. Opinions,

More information

Wideband, Long-CPI GMTI

Wideband, Long-CPI GMTI Wideband, Long-CPI GMTI Ali F. Yegulalp th Annual ASAP Workshop 6 March 004 This work was sponsored by the Defense Advanced Research Projects Agency and the Air Force under Air Force Contract F968-00-C-000.

More information

Challenges in Advanced Moving-Target Processing in Wide-Band Radar

Challenges in Advanced Moving-Target Processing in Wide-Band Radar Challenges in Advanced Moving-Target Processing in Wide-Band Radar July 9, 2012 Douglas Page, Gregory Owirka, Howard Nichols 1 1 BAE Systems 6 New England Executive Park Burlington, MA 01803 Steven Scarborough,

More information

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012 Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator F. Winterstein, G. Sessler, M. Montagna, M. Mendijur, G. Dauron, PM. Besso International Radar Symposium 2012 Warsaw,

More information

Introduction to Radar Systems. The Radar Equation. MIT Lincoln Laboratory _P_1Y.ppt ODonnell

Introduction to Radar Systems. The Radar Equation. MIT Lincoln Laboratory _P_1Y.ppt ODonnell Introduction to Radar Systems The Radar Equation 361564_P_1Y.ppt Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs presented on this server were prepared as an account

More information

Ka-Band Systems and Processing Approaches for Simultaneous High-Resolution Wide-Swath SAR Imaging and Ground Moving Target Indication

Ka-Band Systems and Processing Approaches for Simultaneous High-Resolution Wide-Swath SAR Imaging and Ground Moving Target Indication Ka-Band Systems and Processing Approaches for Simultaneous High-Resolution Wide-Swath SAR Imaging and Ground Moving Target Indication Advanced RF Sensors and Remote Sensing Instruments 2014 Ka-band Earth

More information

Adaptive SAR Results with the LiMIT Testbed

Adaptive SAR Results with the LiMIT Testbed Adaptive SAR Results with the LiMIT Testbed Gerald Benitz Adaptive Sensor Array Processing Workshop 7 June 2005 999999-1 Outline LiMIT collection platform SAR sidelobe recovery Electronic Protection (EP)

More information

Optical Delay Line Application Note

Optical Delay Line Application Note 1 Optical Delay Line Application Note 1.1 General Optical delay lines system (ODL), incorporates a high performance lasers such as DFBs, optical modulators for high operation frequencies, photodiodes,

More information

Introduction to Radar Systems. Clutter Rejection. MTI and Pulse Doppler Processing. MIT Lincoln Laboratory. Radar Course_1.ppt ODonnell

Introduction to Radar Systems. Clutter Rejection. MTI and Pulse Doppler Processing. MIT Lincoln Laboratory. Radar Course_1.ppt ODonnell Introduction to Radar Systems Clutter Rejection MTI and Pulse Doppler Processing Radar Course_1.ppt ODonnell 10-26-01 Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs

More information

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR 3 nd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry POLinSAR 2007 January 25, 2007 ESA/ESRIN Frascati, Italy MULTI-CHANNEL SAR EXPERIMENTS FROM THE

More information

Multifunction Phased Array

Multifunction Phased Array Multifunction Phased Array Radar (MPAR) John Cho 18 November 2014 Sponsors: Michael Emanuel, FAA Advanced Concepts and Technology Development (ANG-C63) Kurt Hondl, NOAA National Severe Storms Laboratory

More information

Principles of Modern Radar

Principles of Modern Radar Principles of Modern Radar Vol. I: Basic Principles Mark A. Richards Georgia Institute of Technology James A. Scheer Georgia Institute of Technology William A. Holm Georgia Institute of Technology PUBLiSH]J

More information

Radar Systems Engineering Lecture 14 Airborne Pulse Doppler Radar

Radar Systems Engineering Lecture 14 Airborne Pulse Doppler Radar Radar Systems Engineering Lecture 14 Airborne Pulse Doppler Radar Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course 1 Examples of Airborne Radars F-16 APG-66, 68 Courtesy of US Navy Courtesy

More information

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p.

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. Preface p. xv Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. 6 Doppler Ambiguities and Blind Speeds

More information

ADAPTIVE ANTENNAS. TYPES OF BEAMFORMING

ADAPTIVE ANTENNAS. TYPES OF BEAMFORMING ADAPTIVE ANTENNAS TYPES OF BEAMFORMING 1 1- Outlines This chapter will introduce : Essential terminologies for beamforming; BF Demonstrating the function of the complex weights and how the phase and amplitude

More information

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR David G. Long, Bryan Jarrett, David V. Arnold, Jorge Cano ABSTRACT Synthetic Aperture Radar (SAR) systems are typically very complex and expensive.

More information

Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications

Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications Atindra Mitra Joe Germann John Nehrbass AFRL/SNRR SKY Computers ASC/HPC High Performance Embedded Computing

More information

MIMO Radar Signal Processing of Space Time Coded Waveforms

MIMO Radar Signal Processing of Space Time Coded Waveforms MIMO Radar Signal Processing of Space Time Coded Waveforms IEEE Signal Processing Society Baltimore Chapter Meeting May, 008 Dr. Marshall Greenspan Senior Consulting Systems Engineer Northrop Grumman Corporation

More information

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02 Introduction to Radar Systems Radar Antennas Radar Antennas - 1 Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs presented on this server were prepared as an account

More information

Multifunction Phased Array Radar Advanced Technology Demonstrator

Multifunction Phased Array Radar Advanced Technology Demonstrator Multifunction Phased Array Radar Advanced Technology Demonstrator David Conway Sponsors: Mike Emanuel, FAA ANG-C63 Kurt Hondl, NSSL Multifunction Phased Array Radar (MPAR) for Aircraft and Weather Surveillance

More information

The Challenge: Increasing Accuracy and Decreasing Cost

The Challenge: Increasing Accuracy and Decreasing Cost Solving Mobile Radar Measurement Challenges By Dingqing Lu, Keysight Technologies, Inc. Modern radar systems are exceptionally complex, encompassing intricate constructions with advanced technology from

More information

Tracking of Moving Targets with MIMO Radar

Tracking of Moving Targets with MIMO Radar Tracking of Moving Targets with MIMO Radar Peter W. Moo, Zhen Ding Radar Sensing & Exploitation Section DRDC Ottawa Research Centre Presentation to 2017 NATO Military Sensing Symposium 31 May 2017 waveform

More information

MIMO RADAR SIGNAL PROCESSING

MIMO RADAR SIGNAL PROCESSING MIMO RADAR SIGNAL PROCESSING Edited by JIAN LI PETRE STOICA WILEY A JOHN WILEY & SONS, INC., PUBLICATION PREFACE CONTRIBUTORS xiii xvii 1 MIMO Radar Diversity Means Superiority 1 Лап Li and Petre Stoica

More information

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM Yunling Lou, Yunjin Kim, and Jakob van Zyl Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, MS 300-243 Pasadena,

More information

DURIP Distributed SDR testbed for Collaborative Research. Wednesday, November 19, 14

DURIP Distributed SDR testbed for Collaborative Research. Wednesday, November 19, 14 DURIP Distributed SDR testbed for Collaborative Research Distributed Software Defined Radar Testbed Collaborative research resource based on software defined radar (SDR) platforms that can adaptively modify

More information

Fundamental Concepts of Radar

Fundamental Concepts of Radar Fundamental Concepts of Radar Dr Clive Alabaster & Dr Evan Hughes White Horse Radar Limited Contents Basic concepts of radar Detection Performance Target parameters measurable by a radar Primary/secondary

More information

Detection of Targets in Noise and Pulse Compression Techniques

Detection of Targets in Noise and Pulse Compression Techniques Introduction to Radar Systems Detection of Targets in Noise and Pulse Compression Techniques Radar Course_1.ppt ODonnell 6-18-2 Disclaimer of Endorsement and Liability The video courseware and accompanying

More information

Circular SAR GMTI Douglas Page, Gregory Owirka, Howard Nichols a, Steven Scarborough b a

Circular SAR GMTI Douglas Page, Gregory Owirka, Howard Nichols a, Steven Scarborough b a Circular SAR GMTI Douglas Page, Gregory Owirka, Howard Nichols a, Steven Scarborough b a BAE Systems Technology Solutions, 6 New England Executive Park, Burlington, MA 01803 b AFRL/RYA, 2241 Avionics Circle,

More information

Comparison of Two Detection Combination Algorithms for Phased Array Radars

Comparison of Two Detection Combination Algorithms for Phased Array Radars Comparison of Two Detection Combination Algorithms for Phased Array Radars Zhen Ding and Peter Moo Wide Area Surveillance Radar Group Radar Sensing and Exploitation Section Defence R&D Canada Ottawa, Canada

More information

Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications

Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications Atindra Mitra Joe Germann John Nehrbass AFRL/SNRR SKY Computers ASC/HPC High Performance Embedded Computing

More information

Amendment 0002 Special Notice N SN-0006 Future X-Band Radar (FXR) Industry Day

Amendment 0002 Special Notice N SN-0006 Future X-Band Radar (FXR) Industry Day Amendment 0002 Special Notice N00014-17-SN-0006 Future X-Band Radar (FXR) Industry Day The purposes of Amendment 0002 to Special Notice N00014-17-SN-0006 are as follows: 1. Revise Paragraph Number 5 entitled,

More information

Thu Truong, Michael Jones, George Bekken EE494: Senior Design Projects Dr. Corsetti. SAR Senior Project 1

Thu Truong, Michael Jones, George Bekken EE494: Senior Design Projects Dr. Corsetti. SAR Senior Project 1 Thu Truong, Michael Jones, George Bekken EE494: Senior Design Projects Dr. Corsetti SAR Senior Project 1 Outline Team Senior Design Goal UWB and SAR Design Specifications Design Constraints Technical Approach

More information

Effect of antenna properties on MIMO-capacity in real propagation channels

Effect of antenna properties on MIMO-capacity in real propagation channels [P5] P. Suvikunnas, K. Sulonen, J. Kivinen, P. Vainikainen, Effect of antenna properties on MIMO-capacity in real propagation channels, in Proc. 2 nd COST 273 Workshop on Broadband Wireless Access, Paris,

More information

Imaging Using Microwaves

Imaging Using Microwaves Imaging Using Microwaves Delivering Exceptional Service in the National Interest Data created by Interferometric Synthetic Aperture Radar Unclassified Unlimited Release Name/Org: _Judith A. Ruffner, _

More information

Radar Receiver Calibration Toolkit

Radar Receiver Calibration Toolkit Radar Receiver Calibration Toolkit Sam Petersen, Ryan Cantalupo Group 108 WPI Major Qualifying Project Wednesday October 16, 2013 This work is sponsored by the Department of the Air Force under Air Force

More information

DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM

DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM A. Patyuchenko, M. Younis, G. Krieger German Aerospace Center (DLR), Microwaves and Radar Institute, Muenchner Strasse

More information

3. give specific seminars on topics related to assigned drill problems

3. give specific seminars on topics related to assigned drill problems HIGH RESOLUTION AND IMAGING RADAR 1. Prerequisites Basic knowledge of radar principles. Good background in Mathematics and Physics. Basic knowledge of MATLAB programming. 2. Course format and dates The

More information

Study of Polarimetric Calibration for Circularly Polarized Synthetic Aperture Radar

Study of Polarimetric Calibration for Circularly Polarized Synthetic Aperture Radar Study of Polarimetric Calibration for Circularly Polarized Synthetic Aperture Radar 2016.09.07 CEOS WORKSHOP 2016 Yuta Izumi, Sevket Demirci, Mohd Zafri Baharuddin, and Josaphat Tetuko Sri Sumantyo JOSAPHAT

More information

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target Moving Target Indicator 1 Objectives Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target velocity. Be able to

More information

UAVSAR in Africa. Quality Assurance and Preliminary Results. Brian Hawkins, UAVSAR Team

UAVSAR in Africa. Quality Assurance and Preliminary Results. Brian Hawkins, UAVSAR Team Photo by Sassan Saatchi UAVSAR in Africa Quality Assurance and Preliminary Results Brian Hawkins, UAVSAR Team CEOS SAR Cal/Val Workshop 2016 Copyright 2016 California Institute of Technology. Government

More information

Wave Sensing Radar and Wave Reconstruction

Wave Sensing Radar and Wave Reconstruction Applied Physical Sciences Corp. 475 Bridge Street, Suite 100, Groton, CT 06340 (860) 448-3253 www.aphysci.com Wave Sensing Radar and Wave Reconstruction Gordon Farquharson, John Mower, and Bill Plant (APL-UW)

More information

Spread Spectrum-Digital Beam Forming Radar with Single RF Channel for Automotive Application

Spread Spectrum-Digital Beam Forming Radar with Single RF Channel for Automotive Application Spread Spectrum-Digital Beam Forming Radar with Single RF Channel for Automotive Application Soumyasree Bera, Samarendra Nath Sur Department of Electronics and Communication Engineering, Sikkim Manipal

More information

FLY EYE RADAR MINE DETECTION GROUND PENETRATING RADAR ON TETHERED DRONE PASSIVE RADAR FOR SMALL UAS PASSIVE SMALL PROJECTILE TRACKING RADAR

FLY EYE RADAR MINE DETECTION GROUND PENETRATING RADAR ON TETHERED DRONE PASSIVE RADAR FOR SMALL UAS PASSIVE SMALL PROJECTILE TRACKING RADAR PASSIVE RADAR FOR SMALL UAS PLANAR MONOLITHICS INDUSTRIES, INC. East Coast: 7311F GROVE ROAD, FREDERICK, MD 21704 USA PHONE: 301-662-5019 FAX: 301-662-2029 West Coast: 4921 ROBERT J. MATHEWS PARKWAY, SUITE

More information

Gain And Arbitrary Beamwidth Measurement For Identical Test Antennas

Gain And Arbitrary Beamwidth Measurement For Identical Test Antennas Simple Antenna Measurements Using DAMs5.0 Advanced Software DESKTOP ANTENNA TEST SYSTEM Gain And Arbitrary Beamwidth Measurement For Identical Test Antennas This note demonstrates the measurement proceeder

More information

An Accurate phase calibration Technique for digital beamforming in the multi-transceiver TIGER-3 HF radar system

An Accurate phase calibration Technique for digital beamforming in the multi-transceiver TIGER-3 HF radar system An Accurate phase calibration Technique for digital beamforming in the multi-transceiver TIGER-3 HF radar system H. Nguyen, J. Whittington, J. C Devlin, V. Vu and, E. Custovic. Department of Electronic

More information

Target Echo Information Extraction

Target Echo Information Extraction Lecture 13 Target Echo Information Extraction 1 The relationships developed earlier between SNR, P d and P fa apply to a single pulse only. As a search radar scans past a target, it will remain in the

More information

AIR ROUTE SURVEILLANCE 3D RADAR

AIR ROUTE SURVEILLANCE 3D RADAR AIR TRAFFIC MANAGEMENT AIR ROUTE SURVEILLANCE 3D RADAR Supplying ATM systems around the world for more than 30 years indracompany.com ARSR-10D3 AIR ROUTE SURVEILLANCE 3D RADAR ARSR 3D & MSSR Antenna Medium

More information

SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS

SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS Daniel Doonan, Chris Utley, and Hua Lee Imaging Systems Laboratory Department of Electrical

More information

Designing and Verifying Advanced Radar Systems within Complex Environment Scenarios

Designing and Verifying Advanced Radar Systems within Complex Environment Scenarios Designing and Verifying Advanced Radar Systems within Complex Environment Scenarios Aik-Chun, NG Keysight Technologies Aerospace Defense Symposium 111 1 Design and Test Challenges Challenges: Signal complexity

More information

Low Cost Very Large Diamond Turned Metal Mirror! Mirror Technology SBIR/STTR Workshop June 20 th to 23 rd, 2011 Greenbelt Marriott, Greenbelt, Md.

Low Cost Very Large Diamond Turned Metal Mirror! Mirror Technology SBIR/STTR Workshop June 20 th to 23 rd, 2011 Greenbelt Marriott, Greenbelt, Md. Low Cost Very Large Diamond Turned Metal Mirror! Contract No. NNX10CB49C (SBIR 08-2 S2.04-9926) (MSFC)! Mirror Technology SBIR/STTR Workshop June 20 th to 23 rd, 2011 Greenbelt Marriott, Greenbelt, Md.

More information

Adaptive Antennas. Randy L. Haupt

Adaptive Antennas. Randy L. Haupt Adaptive Antennas Randy L. Haupt The Pennsylvania State University Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 haupt@ieee.org Abstract: This paper presents some types of adaptive

More information

Radar Systems Engineering Lecture 15 Parameter Estimation And Tracking Part 1

Radar Systems Engineering Lecture 15 Parameter Estimation And Tracking Part 1 Radar Systems Engineering Lecture 15 Parameter Estimation And Tracking Part 1 Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course 1 Block Diagram of Radar System Transmitter Propagation Medium

More information

Small Airport Surveillance Sensor (SASS)

Small Airport Surveillance Sensor (SASS) Small Airport Surveillance Sensor (SASS) Matthew J. Rebholz 27 October 2015 Sponsor: Matthew Royston, ANG-C52, Surveillance Branch (Andras Kovacs, Manager) Distribution Statement A. Approved for public

More information

Principles of Space- Time Adaptive Processing 3rd Edition. By Richard Klemm. The Institution of Engineering and Technology

Principles of Space- Time Adaptive Processing 3rd Edition. By Richard Klemm. The Institution of Engineering and Technology Principles of Space- Time Adaptive Processing 3rd Edition By Richard Klemm The Institution of Engineering and Technology Contents Biography Preface to the first edition Preface to the second edition Preface

More information

A Proposed FrFT Based MTD SAR Processor

A Proposed FrFT Based MTD SAR Processor A Proposed FrFT Based MTD SAR Processor M. Fathy Tawfik, A. S. Amein,Fathy M. Abdel Kader, S. A. Elgamel, and K.Hussein Military Technical College, Cairo, Egypt Abstract - Existing Synthetic Aperture Radar

More information

GPS Beamforming with Low-cost RTL-SDRs Wil Myrick, Ph.D.

GPS Beamforming with Low-cost RTL-SDRs Wil Myrick, Ph.D. with Low-cost RTL-SDRs Wil Myrick, Ph.D. September 13, 2017 Conference 2017 Recap from GRCon 2016 MWF Invented by Dr. Scott Goldstein and Dr. Irving Reed (1996) Initial Release (2001) Revisited GPS Work

More information

Lecture 9. Radar Equation. Dr. Aamer Iqbal. Radar Signal Processing Dr. Aamer Iqbal Bhatti

Lecture 9. Radar Equation. Dr. Aamer Iqbal. Radar Signal Processing Dr. Aamer Iqbal Bhatti Lecture 9 Radar Equation Dr. Aamer Iqbal 1 ystem Losses: Losses within the radar system itself are from many sources. everal are described below. L PL =the plumbing loss. L PO =the polarization loss. L

More information

ELEC RADAR FRONT-END SUMMARY

ELEC RADAR FRONT-END SUMMARY ELEC Radar Front-End is designed for FMCW (including CW) radar application. The output frequency of each RX provides range, speed, and amplitude information to DSP. It will detect target azimuth angle

More information

Multi-Waveform STAP. Shannon D. Blunt 1, John Jakabosky 1, Justin Metcalf 1, James Stiles 1, and Braham Himed 2 1

Multi-Waveform STAP. Shannon D. Blunt 1, John Jakabosky 1, Justin Metcalf 1, James Stiles 1, and Braham Himed 2 1 Multi-Waveform STAP Shannon D. Blunt 1, John Jakabosky 1, Justin Metcalf 1, James Stiles 1, and Braham imed 2 1 Radar Systems Lab, University of Kansas, Lawrence, KS 2 Sensors Directorate, Air Force Research

More information

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8 BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT FOR. 2.4GHz LE MODULE MODEL NUMBER: RN4020

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8 BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT FOR. 2.4GHz LE MODULE MODEL NUMBER: RN4020 FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8 BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT FOR 2.4GHz LE MODULE MODEL NUMBER: RN4020 REPORT NUMBER: 14U17191-1 ISSUE DATE: MARCH 21, 2014

More information

200-GHz 8-µs LFM Optical Waveform Generation for High- Resolution Coherent Imaging

200-GHz 8-µs LFM Optical Waveform Generation for High- Resolution Coherent Imaging Th7 Holman, K.W. 200-GHz 8-µs LFM Optical Waveform Generation for High- Resolution Coherent Imaging Kevin W. Holman MIT Lincoln Laboratory 244 Wood Street, Lexington, MA 02420 USA kholman@ll.mit.edu Abstract:

More information

Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 100 Suwanee, GA 30024

Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 100 Suwanee, GA 30024 Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 1 Suwanee, GA 324 ABSTRACT Conventional antenna measurement systems use a multiplexer or

More information

Evaluation of Millimeter wave Radar using Stepped Multiple Frequency Complementary Phase Code modulation

Evaluation of Millimeter wave Radar using Stepped Multiple Frequency Complementary Phase Code modulation Evaluation of Millimeter wave Radar using Stepped Multiple Frequency Complementary Phase Code modulation Masato WATANABE and Takayuki INABA Graduate School of Electro-Communications, The University of

More information

On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets

On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets Mohammed Eltayeb*, Junil Choi*, Tareq Al-Naffouri #, and Robert W. Heath Jr.* * Wireless Networking and Communications

More information

Frequency Agility and Barrage Noise Jamming

Frequency Agility and Barrage Noise Jamming Exercise 1-3 Frequency Agility and Barrage Noise Jamming EXERCISE OBJECTIVE To demonstrate frequency agility, a radar electronic protection is used against spot noise jamming. To justify the use of barrage

More information

Dr. Ali Muqaibel. Associate Professor. Electrical Engineering Department King Fahd University of Petroleum & Minerals Dhahran, Saudi Arabia

Dr. Ali Muqaibel. Associate Professor. Electrical Engineering Department King Fahd University of Petroleum & Minerals Dhahran, Saudi Arabia By Associate Professor Electrical Engineering Department King Fahd University of Petroleum & Minerals Dhahran, Saudi Arabia Wednesday, December 1, 14 1 st Saudi Symposium for RADAR Technology 9 1 December

More information

Basic Radar Definitions Introduction p. 1 Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p.

Basic Radar Definitions Introduction p. 1 Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p. Basic Radar Definitions Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p. 11 Decibel representation of the radar equation p. 13 Radar frequencies p. 15

More information

Space-Time Adaptive Processing: Fundamentals

Space-Time Adaptive Processing: Fundamentals Wolfram Bürger Research Institute for igh-frequency Physics and Radar Techniques (FR) Research Establishment for Applied Science (FGAN) Neuenahrer Str. 2, D-53343 Wachtberg GERMANY buerger@fgan.de ABSTRACT

More information

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC MIMO in 4G Wireless Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC About the presenter: Iqbal is the founder of training and consulting firm USPurtek LLC, which specializes

More information

Application Article SAR Experiments Using a Conformal Antenna Array Radar Demonstrator

Application Article SAR Experiments Using a Conformal Antenna Array Radar Demonstrator Antennas and Propagation Volume 212, Article ID 142542, 7 pages doi:1.1155/212/142542 Application Article SAR Experiments Using a Conformal Antenna Array Radar Demonstrator Peter Knott, Thomas Bertuch,

More information

Exercise 1-3. Radar Antennas EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS. Antenna types

Exercise 1-3. Radar Antennas EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS. Antenna types Exercise 1-3 Radar Antennas EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the role of the antenna in a radar system. You will also be familiar with the intrinsic characteristics

More information

Resonant MEMS Acoustic Switch Package with Integral Tuning Helmholtz Cavity

Resonant MEMS Acoustic Switch Package with Integral Tuning Helmholtz Cavity Resonant MEMS Acoustic Switch Package with Integral Tuning Helmholtz Cavity J. Bernstein, M. Bancu, D. Gauthier, M. Hansberry, J. LeBlanc, O. Rappoli, M. Tomaino-Iannucci, M. Weinberg May 1, 2018 Outline

More information

Ground System Training Department

Ground System Training Department Module 7: IPSTAR Uplink Access Test (IUAT) Ground System Training Department 2012-03-Standard (iuat1.14)-uti-101 THAICOM Public Company Limited Module Objectives At the end of the module the participant

More information

WHITE PAPER. Hybrid Beamforming for Massive MIMO Phased Array Systems

WHITE PAPER. Hybrid Beamforming for Massive MIMO Phased Array Systems WHITE PAPER Hybrid Beamforming for Massive MIMO Phased Array Systems Introduction This paper demonstrates how you can use MATLAB and Simulink features and toolboxes to: 1. Design and synthesize complex

More information

The DARPA 100Gb/s RF Backbone Program

The DARPA 100Gb/s RF Backbone Program The DARPA 100Gb/s RF Backbone Program Dr. Ted Woodward Program Manager, DARPA/STO Briefing Prepared for NSF mmw RCN workshop Madison, WI 19 July 2017 1 100 Gb/s RF Backbone (100G) Objective: Capacity AND

More information

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing GMAT 9600 Principles of Remote Sensing Week 4 Radar Background & Surface Interactions Acknowledgment Mike Chang Natural Resources Canada Process of Atmospheric Radiation Dr. Linlin Ge and Prof Bruce Forster

More information

The Delay-Doppler Altimeter

The Delay-Doppler Altimeter Briefing for the Coastal Altimetry Workshop The Delay-Doppler Altimeter R. K. Raney Johns Hopkins University Applied Physics Laboratory 05-07 February 2008 1 What is a Delay-Doppler altimeter? Precision

More information

Design of a Free Space Optical Communication Module for Small Satellites

Design of a Free Space Optical Communication Module for Small Satellites Design of a Free Space Optical Communication Module for Small Satellites Ryan W. Kingsbury, Kathleen Riesing Prof. Kerri Cahoy MIT Space Systems Lab AIAA/USU Small Satellite Conference August 6 2014 Problem

More information

MEMS And Advanced Radar

MEMS And Advanced Radar MEMS And Advanced Radar Dr. John K. Smith DARPA Tech 99: MEMS And Advanced Radar Page 1 Active ESA DARPA Tech 99: MEMS And Advanced Radar Page 2 T / R Module TX Controller Logic RX DARPA Tech 99: MEMS

More information

SIGNAL MODEL AND PARAMETER ESTIMATION FOR COLOCATED MIMO RADAR

SIGNAL MODEL AND PARAMETER ESTIMATION FOR COLOCATED MIMO RADAR SIGNAL MODEL AND PARAMETER ESTIMATION FOR COLOCATED MIMO RADAR Moein Ahmadi*, Kamal Mohamed-pour K.N. Toosi University of Technology, Iran.*moein@ee.kntu.ac.ir, kmpour@kntu.ac.ir Keywords: Multiple-input

More information

Amherst, MA I This document has been appmoved. idistribution is unlimited.

Amherst, MA I This document has been appmoved. idistribution is unlimited. AD-A273 568 USE OF MICROWAVE POLARIMETRY TO ENHANCE SAR IMAGES OF THE OCEAN SURFACE r T IC (Y. -i ECTE DEC091993" T Dr. Robert E. McIntosh omnet: R.MCINTOSH Department of Electrical and Computer Engineering

More information

A HILBERT TRANSFORM BASED RECEIVER POST PROCESSOR

A HILBERT TRANSFORM BASED RECEIVER POST PROCESSOR A HILBERT TRANSFORM BASED RECEIVER POST PROCESSOR 1991 Antenna Measurement Techniques Association Conference D. Slater Nearfield Systems Inc. 1330 E. 223 rd Street Bldg. 524 Carson, CA 90745 310-518-4277

More information

Challenges of 5G mmwave RF Module. Ren-Jr Chen M300/ICL/ITRI 2018/06/20

Challenges of 5G mmwave RF Module. Ren-Jr Chen M300/ICL/ITRI 2018/06/20 Challenges of 5G mmwave RF Module Ren-Jr Chen rjchen@itri.org.tw M300/ICL/ITRI 2018/06/20 Agenda 5G Vision and Scenarios mmwave RF module considerations mmwave RF module solution for OAI Conclusion 2 5G

More information

Addressing the Challenges of Radar and EW System Design and Test using a Model-Based Platform

Addressing the Challenges of Radar and EW System Design and Test using a Model-Based Platform Addressing the Challenges of Radar and EW System Design and Test using a Model-Based Platform By Dingqing Lu, Agilent Technologies Radar systems have come a long way since their introduction in the Today

More information

A TURNKEY NEAR-FIELD MEASUREMENT SYSTEM FOR PULSE MODE APPLICATIONS

A TURNKEY NEAR-FIELD MEASUREMENT SYSTEM FOR PULSE MODE APPLICATIONS A TURNKEY NEAR-FIELD MEASUREMENT SYSTEM FOR PULSE MODE APPLICATIONS David S. Fooshe 1, Kenneth Thompson 2, Matt Harvey 3 1 Nearfield Systems Inc. 1330 E. 223rd Street Bldg 524 Carson, CA 90745 USA (310)

More information

Boost Your Skills with On-Site Courses Tailored to Your Needs

Boost Your Skills with On-Site Courses Tailored to Your Needs Boost Your Skills with On-Site Courses Tailored to Your Needs www.aticourses.com The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current

More information

Keysight EEsof EDA Generating Multi-Dimensional Signals to Test Radar/EW Systems. Application Note

Keysight EEsof EDA Generating Multi-Dimensional Signals to Test Radar/EW Systems. Application Note Keysight EEsof EDA Generating Multi-Dimensional Signals to Test Radar/EW Systems Application Note Introduction Modern Electronic Warfare (EW) systems are designed to monitor a speciied environment for

More information

Reconfigurable Hybrid Beamforming Architecture for Millimeter Wave Radio: A Tradeoff between MIMO Diversity and Beamforming Directivity

Reconfigurable Hybrid Beamforming Architecture for Millimeter Wave Radio: A Tradeoff between MIMO Diversity and Beamforming Directivity Reconfigurable Hybrid Beamforming Architecture for Millimeter Wave Radio: A Tradeoff between MIMO Diversity and Beamforming Directivity Hybrid beamforming (HBF), employing precoding/beamforming technologies

More information

A High-Resolution, Four-Band SAR Testbed with Real-Time Image Formation

A High-Resolution, Four-Band SAR Testbed with Real-Time Image Formation A High-Resolution, Four-Band SAR Testbed with Real-Time Image Formation Bruce Walker, Grant Sander, Marty Thompson, Bryan Burns, Rick Fellerhoff, and Dale Dubbert Sandia National Laboratories, P. O. Box

More information

Naval Surveillance Multi-beam Active Phased Array Radar (MAARS)

Naval Surveillance Multi-beam Active Phased Array Radar (MAARS) Naval Surveillance Multi-beam Active Phased Array Radar (MAARS) MAARS MAARS purpose: MAARS is multimode C-band acquisition radar for surveillance and weapon assignment. It perform automatic detection,

More information

...This paper is UNCLASSIFIED

...This paper is UNCLASSIFIED ...This paper is Approved for public release; distribution A High Resolution, Light-Weight, Synthetic Aperture Radar for UAV Application June 1999 W. H. Hensley, A. W. Doeny, B. C. Walker Sandia National

More information

CSU-CHILL Radar. Outline. Brief History of the Radar

CSU-CHILL Radar. Outline. Brief History of the Radar CSU-CHILL Radar October 12, 2009 Outline Brief history Overall Architecture Radar Hardware Transmitter/timing generator Microwave hardware (Frequency chain, front-end) Antenna Digital receiver Radar Software

More information

White Paper. Gallium Nitride (GaN) Enabled C-Band T/R Modules

White Paper. Gallium Nitride (GaN) Enabled C-Band T/R Modules White Paper Gallium Nitride (GaN) Enabled C-Band T/R Modules Technical Contact: Rick Sturdivant, President Microwave Packaging Technology, Inc. Mobile: 310-980-3039 rsturdivant@mptcorp.com Business Contact:

More information

A TECHNIQUE TO EVALUATE THE IMPACT OF FLEX CABLE PHASE INSTABILITY ON mm-wave PLANAR NEAR-FIELD MEASUREMENT ACCURACIES

A TECHNIQUE TO EVALUATE THE IMPACT OF FLEX CABLE PHASE INSTABILITY ON mm-wave PLANAR NEAR-FIELD MEASUREMENT ACCURACIES A TECHNIQUE TO EVALUATE THE IMPACT OF FLEX CABLE PHASE INSTABILITY ON mm-wave PLANAR NEAR-FIELD MEASUREMENT ACCURACIES Daniël Janse van Rensburg Nearfield Systems Inc., 133 E, 223rd Street, Bldg. 524,

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.2 MICROPHONE ARRAY

More information

Discoverer II Space Based Radar Concept

Discoverer II Space Based Radar Concept Discoverer II Space Based Radar Concept DARPATech 2000 Sept 2000 Allan Steinhardt Outline The Discoverer II Concept New Capabilities Active Electronic Scanned Antenna Space Based Information Processing

More information

5G Antenna System Characteristics and Integration in Mobile Devices Sub 6 GHz and Milli-meter Wave Design Issues

5G Antenna System Characteristics and Integration in Mobile Devices Sub 6 GHz and Milli-meter Wave Design Issues 5G Antenna System Characteristics and Integration in Mobile Devices Sub 6 GHz and Milli-meter Wave Design Issues November 2017 About Ethertronics Leader in advanced antenna system technology and products

More information

RLSTAP Algorithm Development Tool for Analysis of Advanced Signal Processing Techniques

RLSTAP Algorithm Development Tool for Analysis of Advanced Signal Processing Techniques RLSTAP Algorithm Development Tool for Analysis of Advanced Signal Processing Techniques Mark L. Pugh and Peter A. Zulch USAF Rome Laboratory/OCSA 26 Electronic Parkway Rome, NY 13441-4515 Abstract Space

More information

System configurations. Main features. I TScan SOLUTION FOR

System configurations. Main features. I TScan SOLUTION FOR TScan TScan is a fast and ultra-accurate planar near-field scanner with the latest motor drive and encoder technologies. High acceleration of the linear motors for stepped and continuous mode operation

More information