Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p.

Size: px
Start display at page:

Download "Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p."

Transcription

1 Preface p. xv Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. 6 Doppler Ambiguities and Blind Speeds in Pulsed Radard p. 7 Range Ambiguities and Blind Ranges in Pulsed Radars p. 9 Fast Fourier Transform p. 10 Coherence p. 10 Spectra and Waveforms of Stationary CW Radar p. 14 Waveforms and Spectra of Stationary High-PRF Radar p. 14 Spectra and Waveforms of Stationary Low-PRF Radar p. 18 Spectra and Waveforms of Stationary Medium-PRF Radar p. 20 Effects of Platform Motion on Clutter p. 23 CW Radar Clutter Spectrum p. 25 High-PRF Radar Clutter Spectrum p. 28 Low-PRF Radar Clutter Spectrum p. 31 Medium-PRF Radar Clutter Spectrum p. 34 Calculation of Clutter Power p. 36 Spectral Characteristics of a Pulsed Waveform p. 41 Continuous-Wave Signal: One Time Scale p. 43 Single Pulse of a Carrier: Two Time Scales p. 43 Infinite Pulse Train: Three Time Scales p. 43 Finite Pulse Train: Four Time Scales p. 43 Coherent Detection of a Pulsed Waveform p. 48 Single-Channel Detection p. 52 I/Q Detection p. 55 Reference p. 62 Low-PRF Mode p. 63 Antenna Scan Patterns p. 64 Displays p. 66 Range Profile p. 69 Clutter Spectra p. 69 Low-PRF Doppler Mode p. 72 Noncoherent Modes p. 77 Ground Map p. 78 Terrain Avoidance p. 78 Air-to-Air Ranging p. 78 Air-to-Ground Ranging p. 79 Terrain Following p. 81

2 Reference p. 81 High-PRF Mode p. 83 Waveform Characteristics p. 84 Establishing the Minimum PRF p. 86 Reducing the Effects of Eclipsing p. 87 Velocity Search Mode p. 93 Range-While-Search Mode p. 95 Range Resolution p. 97 Range Quantization p. 98 Effect of Linear FM Ranging on Clutter p. 98 Range-Gated High PRF p. 98 References p. 101 Medium-PRF Mode p. 103 Waveform Characteristics p. 104 Range Profile p. 104 Doppler Profile p. 104 Range Blind Zones p. 107 Search Mode p. 112 PRF Programming p. 112 Pulse Width Diversity p. 115 Processing p. 115 Preventing False Detections of Side-Lobe Clutter p. 117 Interleaved Modes p. 119 References p. 121 Phased-Array Pulse-Doppler Radar p. 123 Introduction p. 123 Electronic Scanning p. 123 Principles of Implementation p. 123 Effects on Radar Sensitivity p. 125 Antenna Side-Lobe Suppression p. 127 Software Functional Implementation p. 129 Radar Resource Management p. 129 Search p. 132 Track p. 134 Function Interleaving and Sensor Fusion p. 135 Phased-Array Hardware Implementation p. 136 Airborne Phased-Array Implementation p. 136 Examples of Airborne Phased-Array Implementation p. 137 Motivations for Solid-State Active Array p. 138 Solid-State Array Technology p. 139 Effects on Pulse-Doppler Operation p. 142

3 Electronic Beam-Scanning Effects p. 142 Spatial/Temporal Coherence p. 144 References p. 146 Suggested Reading p. 284 Doppler Processing p. 147 Moving-Target Indication p. 148 Pulse Cancelers p. 149 Matched Filters for Clutter Suppression p. 152 Blind Speeds and Staggered PRFs p. 154 MTI Figures of Merit p. 156 Limitations to MTI Performance p. 158 Pulse-Doppler Processing p. 159 The Discrete Time Fourier Transform of a Moving Target p. 159 Sampling the DTFT: The Discrete Fourier Transform p. 162 Matched Filter and Filter Bank Interpretations of Pulse-Doppler Processing With the DFT p. 166 Fine Doppler Estimation p. 168 Additional Doppler Processing Issues p. 169 Combined MTI and Pulse-Doppler Processing p. 169 Transient Effects p. 170 Overview of Displaced Phase Center Antenna Processing p. 170 References p. 172 Pulse Compression in Pulse-Doppler Radar Systems p. 173 Introduction p. 173 Frequency Modulation Techniques p. 179 Linear Frequency Modulation p. 179 Stretch p. 183 Frequency Stepping p. 185 Phase Modulation Techniques p. 188 Barker Codes p. 191 Combined Barker Codes p. 192 Pseudorandom Codes p. 195 Golay Side-Lobe Canceling Codes p. 197 Range Side Lobes And Weighting p. 199 Side-Lobe Suppression for FM Waveforms p. 199 Side-Lobe Suppression for Phase-Modulated Waveforms p. 200 The Radar Ambiguity Function p. 201 Summary p. 211 References p. 213 Synthetic-Aperture Processing p. 215 The Synthetic-Aperture Concept p. 217 Focused Forward-Squinted Strip-Mapping SAR Characteristics p. 219

4 Geometry p. 220 Resolution vs. Aperture Time p. 221 Point Scatterer Signature p. 222 Frequency Domain Interpretation of Linear FM--Deramp SAR Data p. 224 Doppler Bandwidth p. 225 Signal-to-Noise Ratio and Pulse Repetition Frequency p. 227 Other Synthetic-Aperture Modes p. 229 Doppler Beam Sharpening and Unfocused SAR p. 229 Spotlight SAR p. 230 Implementation of Focused SAR p. 232 SAR Matched Filtering p. 232 Basic Processing Algorithms p. 234 Direct Implementation of Matched-Filter SAR Processing p. 238 Fast Correlation Cross-Range Compression p. 240 Cross-Range Compression by Deramp and Spectral Analysis p. 241 Depth of Focus p. 242 Polar Format Processing for Spotlight SAR p. 242 Interferometric Three-Dimensional SAR p. 243 Other Aspects of SAR Operation p. 246 Phase Errors and Motion Compensation p. 246 Clutter Locking and Autofocus p. 251 Speckle Reduction p. 251 Summary p. 254 References p. 254 Medium-PRF Detectability and Range Resolving p. 257 Range-Doppler Blind Zones p. 258 Effects of the Number of Clear PRFs p. 260 The Effect of the Duty Cycle p. 261 Pulse Compression p. 264 Range Resolving p. 264 Reference p. 271 Selection of the Medium PRFs p. 273 Major-Minor PRF Selection Method p. 273 Selection of the First Major PRF p. 274 Selection of the First Set of Minor PRFs p. 275 Selection of the Second Major PRF Set p. 275 Selection of the Third Major PRF Set p. 276 M:N PRF Selection Method p. 277 Other PRF Selection and Ambiguity Resolution Methods p. 279 Blind Zone Charts p. 279 Comparison of M:N With Major-Minor p. 281

5 Dwell Time Allocation p. 281 References p. 284 Suggested Reading p. 284 Tracking Techniques p. 285 Fundamentals of Angle Tracking p. 286 Amplitude Comparison p. 286 Phase Comparison p. 286 Monopulse p. 289 Clutter and Multipath Interference p. 292 Fundamentals of Range Tracking p. 294 Doppler Tracking p. 294 CW Radar p. 298 High-PRF Pulse Doppler p. 303 Range-Gated Pulse Doppler p. 304 Velocity Ambiguities p. 306 Demodulation of Angle Errors p. 307 Monopulse p. 307 Conical Scan and Lobe-on-Receive p. 308 Clutter Considerations p. 309 High-PRF Radar p. 309 Medium- and Low-PRF Radar p. 311 Control of Doppler Blind Zones p. 314 Control of Range Blind Zones in Medium-PRF p. 314 Kalman and [alpha]-[beta] Trackers p. 315 [alpha]-[beta] Tracker p. 316 Extension to Kalman Filter Notation p. 317 Compensation for Own-Vehicle Motion p. 319 References p. 322 Target Detection by Airborne Radars p. 323 Mechanization of Target Detection p. 323 Operational Considerations p. 323 Implementation of Detection Processing p. 326 Noise-Limited Target Detection p. 329 Single-Pulse Detection p. 329 Matched Filtering p. 335 Extension to Pulse-Doppler Radar Detection p. 336 The Pulse-Doppler Radar Range Equation p. 339 Target Parameters p. 341 Power Gain p. 341 System Loss Factor p. 342 System Noise Temperature p. 346

6 Application of the Radar Range Equation p. 347 Implementation of System Detection Requirements p. 353 References p. 354 Effects of Clutter on Detection Performance p. 355 Introduction p. 355 Clutter Doppler Spectrum p. 356 Calculation of Clutter Power p. 362 Clutter Models p. 365 Overview of Clutter Characteristics p. 365 Sea Clutter Model p. 366 Land Clutter Model p. 366 Performance Degradation Due to Transmitter Stability p. 367 Clutter Sideband Masking p. 367 Sources of Spurious Components p. 368 Estimation of Subclutter Visibility p. 372 Clutter-Limited Detection p. 374 References p. 375 Target Fluctuation Effects p. 377 Complex Target RCS p. 377 Fluctuation Models p. 379 Fluctuation PDFs p. 379 Extension to Pulse-Doppler Radar p. 382 Engine Modulation p. 382 Detection Performance Against Fluctuating Targets p. 384 Noncoherently Integrated Returns p. 384 Fluctuation Loss p. 387 Cumulative Detection Performance p. 388 Composite Detection Assessment p. 393 References p. 397 Automatic Detection p. 399 Automatic Detection p. 399 Automatic Detection Requirements p. 399 Automatic Detection Implementation p. 400 M:N Processing p. 404 Cell-Averaging CFAR p. 406 Ordered-Statistic CFAR Processing p. 409 Other CFAR Techniques p. 413 Distribution-Free CFAR p. 415 Statistically Adaptive CFAR Processing p. 415 Summary p. 415 References p. 416

7 Suggested Reading p. 417 Fundamentals of Electronic Counter-Countermeasures p. 419 Trends in Electronic Protection p. 420 Fundamentals of Radar Vulnerability p. 421 Terminology p. 422 Overview of ECM Techniques p. 423 Generic Radar Description p. 429 Objectives and Effects of Electronic Countermeasures p. 432 Analyzing the Effects of Electronic Countermeasures p. 435 Single-Pulse Jamming-to-Signal Ratio p. 435 Effect of Radar Signal Processing p. 437 Generic and Robust ECCM Techniques p. 438 Physical Basis for Robust ECCM Techniques p. 438 Generic ECCM Techniques p. 440 Descriptions of Significant ECCM Techniques p. 441 Acceleration Limiting p. 441 Adaptive Receive Polarization p. 442 Angle Extent Estimator p. 443 Bandwidth Expansion p. 443 Beat Frequency Detector p. 446 Censored (Ordered-Statistic) CFAR p. 446 Cross-Polarization Cancellation p. 448 Doppler-Range Rate Comparison p. 449 Frequency Agility p. 449 Home-on-Jam p. 450 Leading/Trailing Edge Track p. 450 Narrowband Doppler Noise Detector p. 451 Narrow Pulse/Pulse Compression p. 451 Neural Net p. 452 Off-Boresight Tracking p. 452 PRF Jitter p. 452 Side-Lobe Blanking p. 453 Side-Lobe Canceler p. 454 Sniff p. 455 Space Time Adaptive Processing p. 457 Superresolution p. 461 Velocity Guard Gates p. 461 VGPO Reset p. 463 VGS ECCM--Dual Frequency p. 463 References p. 464 Suggested Reading p. 464

8 Clutter Map Computer Program p. 465 Range-Doppler Blind Zone Map Computer Program p. 475 Sea Clutter Model p. 479 ECM Descriptions p. 483 Barrage Noise p. 483 Blinking Spot Noise p. 483 Blinking Cooperative Doppler Noise p. 484 Cover Pulse p. 484 Cross-Polarization Jamming p. 484 Gate Stealer/Terrain Bounce p. 485 Multiple False Doppler Targets p. 485 Narrow Band Doppler Noise p. 485 Range Gate Pull-Off p. 485 Terrain Bounce p. 486 Towed Decoy p. 486 Velocity Gate Pull-Off p. 486 Glossary p. 489 About the Editors p. 493 Index p. 495 Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.

Basic Radar Definitions Introduction p. 1 Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p.

Basic Radar Definitions Introduction p. 1 Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p. Basic Radar Definitions Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p. 11 Decibel representation of the radar equation p. 13 Radar frequencies p. 15

More information

Principles of Modern Radar

Principles of Modern Radar Principles of Modern Radar Vol. I: Basic Principles Mark A. Richards Georgia Institute of Technology James A. Scheer Georgia Institute of Technology William A. Holm Georgia Institute of Technology PUBLiSH]J

More information

Electronic Warfare (EW) Principles and Overview p. 1 Electronic Warfare Taxonomy p. 6 Electronic Warfare Definitions and Areas p.

Electronic Warfare (EW) Principles and Overview p. 1 Electronic Warfare Taxonomy p. 6 Electronic Warfare Definitions and Areas p. Electronic Warfare (EW) Principles and Overview p. 1 Electronic Warfare Taxonomy p. 6 Electronic Warfare Definitions and Areas p. 6 Electronic Warfare Support Measures (ESM) p. 6 Signals Intelligence (SIGINT)

More information

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target Moving Target Indicator 1 Objectives Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target velocity. Be able to

More information

Principles of Space- Time Adaptive Processing 3rd Edition. By Richard Klemm. The Institution of Engineering and Technology

Principles of Space- Time Adaptive Processing 3rd Edition. By Richard Klemm. The Institution of Engineering and Technology Principles of Space- Time Adaptive Processing 3rd Edition By Richard Klemm The Institution of Engineering and Technology Contents Biography Preface to the first edition Preface to the second edition Preface

More information

Introduction to Radar Systems. Clutter Rejection. MTI and Pulse Doppler Processing. MIT Lincoln Laboratory. Radar Course_1.ppt ODonnell

Introduction to Radar Systems. Clutter Rejection. MTI and Pulse Doppler Processing. MIT Lincoln Laboratory. Radar Course_1.ppt ODonnell Introduction to Radar Systems Clutter Rejection MTI and Pulse Doppler Processing Radar Course_1.ppt ODonnell 10-26-01 Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs

More information

Set No.1. Code No: R

Set No.1. Code No: R Set No.1 IV B.Tech. I Semester Regular Examinations, November -2008 RADAR SYSTEMS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours Max Marks: 80 Answer any

More information

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR 3 nd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry POLinSAR 2007 January 25, 2007 ESA/ESRIN Frascati, Italy MULTI-CHANNEL SAR EXPERIMENTS FROM THE

More information

Radar Equations. for Modern Radar. David K. Barton ARTECH HOUSE BOSTON LONDON. artechhouse.com

Radar Equations. for Modern Radar. David K. Barton ARTECH HOUSE BOSTON LONDON. artechhouse.com Radar Equations for Modern Radar David K Barton ARTECH HOUSE BOSTON LONDON artechhousecom Contents Preface xv Chapter 1 Development of the Radar Equation 1 11 Radar Equation Fundamentals 1 111 Maximum

More information

Modern Radar Systems (ATEP 01) 10 Apr Apr All rights reserved, PSATRI

Modern Radar Systems (ATEP 01) 10 Apr Apr All rights reserved, PSATRI Modern Radar Systems (ATEP 01) 10 Apr. - 14 Apr. 2016 Training Course Information: Modern Radar Systems (ATEP 01) 10 Apr. - 14 Apr. 2016 COURSE AIMS This course aims to impart an appreciation of the capabilities,

More information

3. give specific seminars on topics related to assigned drill problems

3. give specific seminars on topics related to assigned drill problems HIGH RESOLUTION AND IMAGING RADAR 1. Prerequisites Basic knowledge of radar principles. Good background in Mathematics and Physics. Basic knowledge of MATLAB programming. 2. Course format and dates The

More information

Lecture 3 SIGNAL PROCESSING

Lecture 3 SIGNAL PROCESSING Lecture 3 SIGNAL PROCESSING Pulse Width t Pulse Train Spectrum of Pulse Train Spacing between Spectral Lines =PRF -1/t 1/t -PRF/2 PRF/2 Maximum Doppler shift giving unambiguous results should be with in

More information

Simulations for Radar Systems Design

Simulations for Radar Systems Design Simulations for Radar Systems Design Bassem R. Mahafza, Ph.D. Decibel Research, Inc. Huntsville, Alabama Atef Z. Elsherbeni Professor Electrical Engineering Department The University of Mississippi Oxford,

More information

Modern Radar Systems

Modern Radar Systems Modern Radar Systems Second Edition Hamish Meikle ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Foreward Preface to the second edition Preface to the first edition xvii xix xxi Chapter 1 The radar

More information

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System Lecture Topics Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System 1 Remember that: An EM wave is a function of both space and time e.g.

More information

Boost Your Skills with On-Site Courses Tailored to Your Needs

Boost Your Skills with On-Site Courses Tailored to Your Needs Boost Your Skills with On-Site Courses Tailored to Your Needs www.aticourses.com The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current

More information

In the previous chapter, we examined the principal

In the previous chapter, we examined the principal Electronic Counter Countermeasures (ECCM) In the previous chapter, we examined the principal types of electronic countermeasures (ECM). We learned how each type is implemented and what its limitations

More information

Staggered PRI and Random Frequency Radar Waveform

Staggered PRI and Random Frequency Radar Waveform Tel Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences Staggered PRI and Random Frequency Radar Waveform Submitted as part of the requirements towards an M.Sc. degree in Physics School

More information

QUESTION BANK FOR IV B.TECH II SEMESTER ( )

QUESTION BANK FOR IV B.TECH II SEMESTER ( ) DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK F IV B.TECH II SEMESTER (2018 19) MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY (Autonomous Institution UGC, Govt. of India) (Affiliated

More information

Introduction Objective and Scope p. 1 Generic Requirements p. 2 Basic Requirements p. 3 Surveillance System p. 3 Content of the Book p.

Introduction Objective and Scope p. 1 Generic Requirements p. 2 Basic Requirements p. 3 Surveillance System p. 3 Content of the Book p. Preface p. xi Acknowledgments p. xvii Introduction Objective and Scope p. 1 Generic Requirements p. 2 Basic Requirements p. 3 Surveillance System p. 3 Content of the Book p. 4 References p. 6 Maritime

More information

Special Projects Office. Mr. Lee R. Moyer Special Projects Office. DARPATech September 2000

Special Projects Office. Mr. Lee R. Moyer Special Projects Office. DARPATech September 2000 Mr. Lee R. Moyer DARPATech 2000 6-8 September 2000 1 CC&D Tactics Pose A Challenge to U.S. Targeting Systems The Challenge: Camouflage, Concealment and Deception techniques include: Masking: Foliage cover,

More information

Challenges in Advanced Moving-Target Processing in Wide-Band Radar

Challenges in Advanced Moving-Target Processing in Wide-Band Radar Challenges in Advanced Moving-Target Processing in Wide-Band Radar July 9, 2012 Douglas Page, Gregory Owirka, Howard Nichols 1 1 BAE Systems 6 New England Executive Park Burlington, MA 01803 Steven Scarborough,

More information

Target Echo Information Extraction

Target Echo Information Extraction Lecture 13 Target Echo Information Extraction 1 The relationships developed earlier between SNR, P d and P fa apply to a single pulse only. As a search radar scans past a target, it will remain in the

More information

INTRODUCTION. Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems

INTRODUCTION. Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems Tracking Radar H.P INTRODUCTION Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems 2 RADAR FUNCTIONS NORMAL RADAR FUNCTIONS 1. Range (from pulse

More information

Introduction p. 1 Review of Radar Principles p. 1 Tracking Radars and the Evolution of Monopulse p. 3 A "Baseline" Monopulse Radar p.

Introduction p. 1 Review of Radar Principles p. 1 Tracking Radars and the Evolution of Monopulse p. 3 A Baseline Monopulse Radar p. Preface p. xu Introduction p. 1 Review of Radar Principles p. 1 Tracking Radars and the Evolution of Monopulse p. 3 A "Baseline" Monopulse Radar p. 8 Advantages and Disadvantages of Monopulse p. 17 Non-Radar

More information

VHF Radar Target Detection in the Presence of Clutter *

VHF Radar Target Detection in the Presence of Clutter * BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 6, No 1 Sofia 2006 VHF Radar Target Detection in the Presence of Clutter * Boriana Vassileva Institute for Parallel Processing,

More information

DESIGN AND DEVELOPMENT OF SIGNAL

DESIGN AND DEVELOPMENT OF SIGNAL DESIGN AND DEVELOPMENT OF SIGNAL PROCESSING ALGORITHMS FOR GROUND BASED ACTIVE PHASED ARRAY RADAR. Kapil A. Bohara Student : Dept of electronics and communication, R.V. College of engineering Bangalore-59,

More information

Detection of Targets in Noise and Pulse Compression Techniques

Detection of Targets in Noise and Pulse Compression Techniques Introduction to Radar Systems Detection of Targets in Noise and Pulse Compression Techniques Radar Course_1.ppt ODonnell 6-18-2 Disclaimer of Endorsement and Liability The video courseware and accompanying

More information

The Delay-Doppler Altimeter

The Delay-Doppler Altimeter Briefing for the Coastal Altimetry Workshop The Delay-Doppler Altimeter R. K. Raney Johns Hopkins University Applied Physics Laboratory 05-07 February 2008 1 What is a Delay-Doppler altimeter? Precision

More information

Space-Time Adaptive Processing: Fundamentals

Space-Time Adaptive Processing: Fundamentals Wolfram Bürger Research Institute for igh-frequency Physics and Radar Techniques (FR) Research Establishment for Applied Science (FGAN) Neuenahrer Str. 2, D-53343 Wachtberg GERMANY buerger@fgan.de ABSTRACT

More information

A new Sensor for the detection of low-flying small targets and small boats in a cluttered environment

A new Sensor for the detection of low-flying small targets and small boats in a cluttered environment UNCLASSIFIED /UNLIMITED Mr. Joachim Flacke and Mr. Ryszard Bil EADS Defence & Security Defence Electronics Naval Radar Systems (OPES25) Woerthstr 85 89077 Ulm Germany joachim.flacke@eads.com / ryszard.bil@eads.com

More information

Introduction to Sensors for Ranging and Imaging. Dr. Graham Brooker S SCITEOT. publishmefinc. SciTech Publishing, Inc Raleigh, NC

Introduction to Sensors for Ranging and Imaging. Dr. Graham Brooker S SCITEOT. publishmefinc. SciTech Publishing, Inc Raleigh, NC Introduction to Sensors for Ranging and Imaging Dr. Graham Brooker S SCITEOT publishmefinc. SciTech Publishing, Inc Raleigh, NC www.scitechpub.com Introduction to Sensors for Ranging and Imaging Chapter

More information

Adaptive SAR Results with the LiMIT Testbed

Adaptive SAR Results with the LiMIT Testbed Adaptive SAR Results with the LiMIT Testbed Gerald Benitz Adaptive Sensor Array Processing Workshop 7 June 2005 999999-1 Outline LiMIT collection platform SAR sidelobe recovery Electronic Protection (EP)

More information

Radar Systems Engineering Lecture 12 Clutter Rejection

Radar Systems Engineering Lecture 12 Clutter Rejection Radar Systems Engineering Lecture 12 Clutter Rejection Part 1 - Basics and Moving Target Indication Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course 1 Block Diagram of Radar System Transmitter

More information

AIR ROUTE SURVEILLANCE 3D RADAR

AIR ROUTE SURVEILLANCE 3D RADAR AIR TRAFFIC MANAGEMENT AIR ROUTE SURVEILLANCE 3D RADAR Supplying ATM systems around the world for more than 30 years indracompany.com ARSR-10D3 AIR ROUTE SURVEILLANCE 3D RADAR ARSR 3D & MSSR Antenna Medium

More information

Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield?

Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield? Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield? By Sefa Tanis Share on As automotive radars become more widespread, the heavily occupied RF spectrum will resemble

More information

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Test & Measurement Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Modern radar systems serve a broad range of commercial, civil, scientific and military applications.

More information

Radar Systems Engineering Lecture 14 Airborne Pulse Doppler Radar

Radar Systems Engineering Lecture 14 Airborne Pulse Doppler Radar Radar Systems Engineering Lecture 14 Airborne Pulse Doppler Radar Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course 1 Examples of Airborne Radars F-16 APG-66, 68 Courtesy of US Navy Courtesy

More information

Range Instrumentation Radar Roadmap. Tim Boolos Ira Ekhaus Mike Kurecki BAE Systems Instrumentation Products and Sustainment

Range Instrumentation Radar Roadmap. Tim Boolos Ira Ekhaus Mike Kurecki BAE Systems Instrumentation Products and Sustainment Range Instrumentation Radar Roadmap Tim Boolos Ira Ekhaus Mike Kurecki BAE Systems Instrumentation Products and Sustainment Introduction Ground Based Test Instrumentation is the foundation of Test and

More information

Fundamental Concepts of Radar

Fundamental Concepts of Radar Fundamental Concepts of Radar Dr Clive Alabaster & Dr Evan Hughes White Horse Radar Limited Contents Basic concepts of radar Detection Performance Target parameters measurable by a radar Primary/secondary

More information

MAKING TRANSIENT ANTENNA MEASUREMENTS

MAKING TRANSIENT ANTENNA MEASUREMENTS MAKING TRANSIENT ANTENNA MEASUREMENTS Roger Dygert, Steven R. Nichols MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 ABSTRACT In addition to steady state performance, antennas

More information

RLSTAP Algorithm Development Tool for Analysis of Advanced Signal Processing Techniques

RLSTAP Algorithm Development Tool for Analysis of Advanced Signal Processing Techniques RLSTAP Algorithm Development Tool for Analysis of Advanced Signal Processing Techniques Mark L. Pugh and Peter A. Zulch USAF Rome Laboratory/OCSA 26 Electronic Parkway Rome, NY 13441-4515 Abstract Space

More information

Dhanalakshmi College of Engineering. Department of electronics and communication engineering. EC Radar and Navigational Aids

Dhanalakshmi College of Engineering. Department of electronics and communication engineering. EC Radar and Navigational Aids Dhanalakshmi College of Engineering Department of electronics and communication engineering EC6015 - Radar and Navigational Aids Unit I 1. What is radar? Radar is an electromagnetic system for the detection

More information

Optical Signal Processing

Optical Signal Processing Optical Signal Processing ANTHONY VANDERLUGT North Carolina State University Raleigh, North Carolina A Wiley-Interscience Publication John Wiley & Sons, Inc. New York / Chichester / Brisbane / Toronto

More information

Incoherent Scatter Experiment Parameters

Incoherent Scatter Experiment Parameters Incoherent Scatter Experiment Parameters At a fundamental level, we must select Waveform type Inter-pulse period (IPP) or pulse repetition frequency (PRF) Our choices will be dictated by the desired measurement

More information

UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1

UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1 UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1 The ability of a radar receiver to detect a weak echo signal is limited by the noise energy that occupies the same portion of the frequency spectrum as does

More information

Circular SAR GMTI Douglas Page, Gregory Owirka, Howard Nichols a, Steven Scarborough b a

Circular SAR GMTI Douglas Page, Gregory Owirka, Howard Nichols a, Steven Scarborough b a Circular SAR GMTI Douglas Page, Gregory Owirka, Howard Nichols a, Steven Scarborough b a BAE Systems Technology Solutions, 6 New England Executive Park, Burlington, MA 01803 b AFRL/RYA, 2241 Avionics Circle,

More information

Intelligent Approach to Improve Standard CFAR Detection in non-gaussian Sea Clutter THESIS

Intelligent Approach to Improve Standard CFAR Detection in non-gaussian Sea Clutter THESIS Intelligent Approach to Improve Standard CFAR Detection in non-gaussian Sea Clutter THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of

More information

Naval Surveillance Multi-beam Active Phased Array Radar (MAARS)

Naval Surveillance Multi-beam Active Phased Array Radar (MAARS) Naval Surveillance Multi-beam Active Phased Array Radar (MAARS) MAARS MAARS purpose: MAARS is multimode C-band acquisition radar for surveillance and weapon assignment. It perform automatic detection,

More information

PHASELOCK TECHNIQUES INTERSCIENCE. Third Edition. FLOYD M. GARDNER Consulting Engineer Palo Alto, California A JOHN WILEY & SONS, INC.

PHASELOCK TECHNIQUES INTERSCIENCE. Third Edition. FLOYD M. GARDNER Consulting Engineer Palo Alto, California A JOHN WILEY & SONS, INC. PHASELOCK TECHNIQUES Third Edition FLOYD M. GARDNER Consulting Engineer Palo Alto, California INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS PREFACE NOTATION xvii xix 1 INTRODUCTION 1 1.1

More information

Ionospheric Propagation Effects on W de Bandwidth Sig Si nals Dennis L. Knepp NorthWest Research NorthW Associates est Research Monterey California

Ionospheric Propagation Effects on W de Bandwidth Sig Si nals Dennis L. Knepp NorthWest Research NorthW Associates est Research Monterey California Ionospheric Propagation Effects on Wide Bandwidth Signals Dennis L. Knepp NorthWest Research Associates 2008 URSI General Assembly Chicago, August 2008 Ionospheric Effects on Propagating Signals Mean effects:

More information

Systems. Advanced Radar. Waveform Design and Diversity for. Fulvio Gini, Antonio De Maio and Lee Patton. Edited by

Systems. Advanced Radar. Waveform Design and Diversity for. Fulvio Gini, Antonio De Maio and Lee Patton. Edited by Waveform Design and Diversity for Advanced Radar Systems Edited by Fulvio Gini, Antonio De Maio and Lee Patton The Institution of Engineering and Technology Contents Waveform diversity: a way forward to

More information

5th International Conference on Advanced Materials and Computer Science (ICAMCS 2016)

5th International Conference on Advanced Materials and Computer Science (ICAMCS 2016) 5th International Conference on Advanced Materials and Computer Science (ICAMCS 216) Reusable Modeling of Pulsed Doppler Radar Seeker for Coherent Video Signal Simulation Jing Zhao1, a*, Shenshen Wang1,b,

More information

Copyrighted Material. Contents

Copyrighted Material. Contents Preface xiii 1 Introduction 1 1.1 Concepts 1 1.2 Spacecraft Sensors Cost 5 1.2.1 Introduction to Cost Estimating 5 1.2.2 Cost Data 7 1.2.3 Cost Estimating Methodologies 8 1.2.4 The Cost Estimating Relationship

More information

Kalman Tracking and Bayesian Detection for Radar RFI Blanking

Kalman Tracking and Bayesian Detection for Radar RFI Blanking Kalman Tracking and Bayesian Detection for Radar RFI Blanking Weizhen Dong, Brian D. Jeffs Department of Electrical and Computer Engineering Brigham Young University J. Richard Fisher National Radio Astronomy

More information

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand ni.com Design and test of RADAR systems Agenda Radar Overview Tools Overview VSS LabVIEW PXI Design and Simulation

More information

Optical Delay Line Application Note

Optical Delay Line Application Note 1 Optical Delay Line Application Note 1.1 General Optical delay lines system (ODL), incorporates a high performance lasers such as DFBs, optical modulators for high operation frequencies, photodiodes,

More information

Antenna Measurements using Modulated Signals

Antenna Measurements using Modulated Signals Antenna Measurements using Modulated Signals Roger Dygert MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 Abstract Antenna test engineers are faced with testing increasingly

More information

Lecture 9. Radar Equation. Dr. Aamer Iqbal. Radar Signal Processing Dr. Aamer Iqbal Bhatti

Lecture 9. Radar Equation. Dr. Aamer Iqbal. Radar Signal Processing Dr. Aamer Iqbal Bhatti Lecture 9 Radar Equation Dr. Aamer Iqbal 1 ystem Losses: Losses within the radar system itself are from many sources. everal are described below. L PL =the plumbing loss. L PO =the polarization loss. L

More information

Frequency Agility and Barrage Noise Jamming

Frequency Agility and Barrage Noise Jamming Exercise 1-3 Frequency Agility and Barrage Noise Jamming EXERCISE OBJECTIVE To demonstrate frequency agility, a radar electronic protection is used against spot noise jamming. To justify the use of barrage

More information

Active Cancellation Algorithm for Radar Cross Section Reduction

Active Cancellation Algorithm for Radar Cross Section Reduction International Journal of Computational Engineering Research Vol, 3 Issue, 7 Active Cancellation Algorithm for Radar Cross Section Reduction Isam Abdelnabi Osman, Mustafa Osman Ali Abdelrasoul Jabar Alzebaidi

More information

Wideband, Long-CPI GMTI

Wideband, Long-CPI GMTI Wideband, Long-CPI GMTI Ali F. Yegulalp th Annual ASAP Workshop 6 March 004 This work was sponsored by the Defense Advanced Research Projects Agency and the Air Force under Air Force Contract F968-00-C-000.

More information

Radar Systems Engineering Lecture 15 Parameter Estimation And Tracking Part 1

Radar Systems Engineering Lecture 15 Parameter Estimation And Tracking Part 1 Radar Systems Engineering Lecture 15 Parameter Estimation And Tracking Part 1 Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course 1 Block Diagram of Radar System Transmitter Propagation Medium

More information

Deceptive Jamming Using Amplitude-Modulated Signals

Deceptive Jamming Using Amplitude-Modulated Signals Exercise 3-1 Deceptive Jamming Using Amplitude-Modulated Signals EXERCISE OBJECTIVE To demonstrate the effect of AM noise and repeater inverse gain jamming, two angular deceptive EA used against sequential

More information

Radar-Verfahren und -Signalverarbeitung

Radar-Verfahren und -Signalverarbeitung Radar-Verfahren und -Signalverarbeitung - Lesson 2: RADAR FUNDAMENTALS I Hon.-Prof. Dr.-Ing. Joachim Ender Head of Fraunhoferinstitut für Hochfrequenzphysik and Radartechnik FHR Neuenahrer Str. 20, 53343

More information

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti Lecture 6 SIGNAL PROCESSING Signal Reception Receiver Bandwidth Pulse Shape Power Relation Beam Width Pulse Repetition Frequency Antenna Gain Radar Cross Section of Target. Signal-to-noise ratio Receiver

More information

Comparison of Two Detection Combination Algorithms for Phased Array Radars

Comparison of Two Detection Combination Algorithms for Phased Array Radars Comparison of Two Detection Combination Algorithms for Phased Array Radars Zhen Ding and Peter Moo Wide Area Surveillance Radar Group Radar Sensing and Exploitation Section Defence R&D Canada Ottawa, Canada

More information

A High-Resolution, Four-Band SAR Testbed with Real-Time Image Formation

A High-Resolution, Four-Band SAR Testbed with Real-Time Image Formation A High-Resolution, Four-Band SAR Testbed with Real-Time Image Formation Bruce Walker, Grant Sander, Marty Thompson, Bryan Burns, Rick Fellerhoff, and Dale Dubbert Sandia National Laboratories, P. O. Box

More information

SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES

SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES Chris Oliver, CBE, NASoftware Ltd 28th January 2007 Introduction Both satellite and airborne SAR data is subject to a number of perturbations which stem from

More information

Dynamically Configured Waveform-Agile Sensor Systems

Dynamically Configured Waveform-Agile Sensor Systems Dynamically Configured Waveform-Agile Sensor Systems Antonia Papandreou-Suppappola in collaboration with D. Morrell, D. Cochran, S. Sira, A. Chhetri Arizona State University June 27, 2006 Supported by

More information

1. Explain how Doppler direction is identified with FMCW radar. Fig Block diagram of FM-CW radar. f b (up) = f r - f d. f b (down) = f r + f d

1. Explain how Doppler direction is identified with FMCW radar. Fig Block diagram of FM-CW radar. f b (up) = f r - f d. f b (down) = f r + f d 1. Explain how Doppler direction is identified with FMCW radar. A block diagram illustrating the principle of the FM-CW radar is shown in Fig. 4.1.1 A portion of the transmitter signal acts as the reference

More information

THOMAS PANY SOFTWARE RECEIVERS

THOMAS PANY SOFTWARE RECEIVERS TECHNOLOGY AND APPLICATIONS SERIES THOMAS PANY SOFTWARE RECEIVERS Contents Preface Acknowledgments xiii xvii Chapter 1 Radio Navigation Signals 1 1.1 Signal Generation 1 1.2 Signal Propagation 2 1.3 Signal

More information

GUIDED WEAPONS RADAR TESTING

GUIDED WEAPONS RADAR TESTING GUIDED WEAPONS RADAR TESTING by Richard H. Bryan ABSTRACT An overview of non-destructive real-time testing of missiles is discussed in this paper. This testing has become known as hardware-in-the-loop

More information

IMAGE FORMATION THROUGH WALLS USING A DISTRIBUTED RADAR SENSOR NETWORK. CIS Industrial Associates Meeting 12 May, 2004 AKELA

IMAGE FORMATION THROUGH WALLS USING A DISTRIBUTED RADAR SENSOR NETWORK. CIS Industrial Associates Meeting 12 May, 2004 AKELA IMAGE FORMATION THROUGH WALLS USING A DISTRIBUTED RADAR SENSOR NETWORK CIS Industrial Associates Meeting 12 May, 2004 THROUGH THE WALL SURVEILLANCE IS AN IMPORTANT PROBLEM Domestic law enforcement and

More information

Ambiguity Function Analysis of SFCW and Comparison of Impulse GPR and SFCW GPR

Ambiguity Function Analysis of SFCW and Comparison of Impulse GPR and SFCW GPR Ambiguity Function Analysis of SFCW and Comparison of Impulse GPR and SFCW GPR Shrikant Sharma, Paramananda Jena, Ramchandra Kuloor Electronics and Radar Development Establishment (LRDE), Defence Research

More information

INTRODUCTION TO RADAR SIGNAL PROCESSING

INTRODUCTION TO RADAR SIGNAL PROCESSING INTRODUCTION TO RADAR SIGNAL PROCESSING Christos Ilioudis University of Strathclyde c.ilioudis@strath.ac.uk Overview History of Radar Basic Principles Principles of Measurements Coherent and Doppler Processing

More information

Unique Capabilities. Multifunction Phased-Array Radar Symposium Phased-Array Radar Workshop. 17 November, 2009

Unique Capabilities. Multifunction Phased-Array Radar Symposium Phased-Array Radar Workshop. 17 November, 2009 Phased-Array Radar Unique Capabilities Dr. Sebastián Torres CIMMS /The University of Oklahoma and National Severe Storms Laboratory/NOAA Multifunction Phased-Array Radar Symposium Phased-Array Radar Workshop

More information

Electronic Attacks against FM, DAB Wissenschaft + Technologie. and DVB-T based Passive Radar Systems

Electronic Attacks against FM, DAB Wissenschaft + Technologie. and DVB-T based Passive Radar Systems armasuisse Science and Technology Electronic Attacks against FM, DAB Wissenschaft + Technologie and DVB-T based Passive Radar Systems Christof Schüpbach, D. W. O Hagan, S. Paine Agenda Overview FM DAB

More information

Radar observables: Target range Target angles (azimuth & elevation) Target size (radar cross section) Target speed (Doppler) Target features (imaging)

Radar observables: Target range Target angles (azimuth & elevation) Target size (radar cross section) Target speed (Doppler) Target features (imaging) Fundamentals of Radar Prof. N.V.S.N. Sarma Outline 1. Definition and Principles of radar 2. Radar Frequencies 3. Radar Types and Applications 4. Radar Operation 5. Radar modes What What is is Radar? Radar?

More information

Courseware Sample F0

Courseware Sample F0 Telecommunications Radar Courseware Sample 28923-F0 TELECOMMUNICATIONS RADAR COURSEWARE SAMPLE by the Staff of Lab-Volt (Quebec) Ltd Copyright 2001 Lab-Volt Ltd All rights reserved. No part of this publication

More information

200-GHz 8-µs LFM Optical Waveform Generation for High- Resolution Coherent Imaging

200-GHz 8-µs LFM Optical Waveform Generation for High- Resolution Coherent Imaging Th7 Holman, K.W. 200-GHz 8-µs LFM Optical Waveform Generation for High- Resolution Coherent Imaging Kevin W. Holman MIT Lincoln Laboratory 244 Wood Street, Lexington, MA 02420 USA kholman@ll.mit.edu Abstract:

More information

SPEC. Intelligent EW Systems for Complex Spectrum Operations ADEP. ADEP Product Descriptions

SPEC. Intelligent EW Systems for Complex Spectrum Operations ADEP. ADEP Product Descriptions Intelligent EW Systems for Complex Spectrum Operations ADEP TM Dynamic Engagement Products for Configurable Operational Response & Advanced Range Solutions ADEP Product Descriptions SPEC SPEC ADEP Overview

More information

Fractional Fourier Transform Based Co-Radar Waveform: Experimental Validation

Fractional Fourier Transform Based Co-Radar Waveform: Experimental Validation Fractional Fourier Transform Based Co-Radar Waveform: Experimental Validation D. Gaglione 1, C. Clemente 1, A. R. Persico 1, C. V. Ilioudis 1, I. K. Proudler 2, J. J. Soraghan 1 1 University of Strathclyde

More information

Advances in Direction-of-Arrival Estimation

Advances in Direction-of-Arrival Estimation Advances in Direction-of-Arrival Estimation Sathish Chandran Editor ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xvii Acknowledgments xix Overview CHAPTER 1 Antenna Arrays for Direction-of-Arrival

More information

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April ISSN Modern Radar Signal Processor

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April ISSN Modern Radar Signal Processor International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 12 Modern Radar Signal Processor Dr. K K Sharma Assoc Prof, Department of Electronics & Communication, Lingaya

More information

Spread Spectrum Techniques

Spread Spectrum Techniques 0 Spread Spectrum Techniques Contents 1 1. Overview 2. Pseudonoise Sequences 3. Direct Sequence Spread Spectrum Systems 4. Frequency Hopping Systems 5. Synchronization 6. Applications 2 1. Overview Basic

More information

Introduction to Microwave Remote Sensing

Introduction to Microwave Remote Sensing Introduction to Microwave Remote Sensing lain H. Woodhouse The University of Edinburgh Scotland Taylor & Francis Taylor & Francis Group Boca Raton London New York A CRC title, part of the Taylor & Francis

More information

Rapid scanning with phased array radars issues and potential resolution. Dusan S. Zrnic, V.M.Melnikov, and R.J.Doviak

Rapid scanning with phased array radars issues and potential resolution. Dusan S. Zrnic, V.M.Melnikov, and R.J.Doviak Rapid scanning with phased array radars issues and potential resolution Dusan S. Zrnic, V.M.Melnikov, and R.J.Doviak Z field, Amarillo 05/30/2012 r=200 km El = 1.3 o From Kumjian ρ hv field, Amarillo 05/30/2012

More information

A Stepped Frequency CW SAR for Lightweight UAV Operation

A Stepped Frequency CW SAR for Lightweight UAV Operation UNCLASSIFIED/UNLIMITED A Stepped Frequency CW SAR for Lightweight UAV Operation ABSTRACT Dr Keith Morrison Department of Aerospace, Power and Sensors University of Cranfield, Shrivenham Swindon, SN6 8LA

More information

Ocean SAR altimetry. from SIRAL2 on CryoSat2 to Poseidon-4 on Jason-CS

Ocean SAR altimetry. from SIRAL2 on CryoSat2 to Poseidon-4 on Jason-CS Ocean SAR altimetry from SIRAL2 on CryoSat2 to Poseidon-4 on Jason-CS Template reference : 100181670S-EN L. Phalippou, F. Demeestere SAR Altimetry EGM NOC, Southampton, 26 June 2013 History of SAR altimetry

More information

Evaluation of Millimeter wave Radar using Stepped Multiple Frequency Complementary Phase Code modulation

Evaluation of Millimeter wave Radar using Stepped Multiple Frequency Complementary Phase Code modulation Evaluation of Millimeter wave Radar using Stepped Multiple Frequency Complementary Phase Code modulation Masato WATANABE and Takayuki INABA Graduate School of Electro-Communications, The University of

More information

Signal Detection with EM1 Receivers

Signal Detection with EM1 Receivers Signal Detection with EM1 Receivers Werner Schaefer Hewlett-Packard Company Santa Rosa Systems Division 1400 Fountaingrove Parkway Santa Rosa, CA 95403-1799, USA Abstract - Certain EM1 receiver settings,

More information

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Tobias Rommel, German Aerospace Centre (DLR), tobias.rommel@dlr.de, Germany Gerhard Krieger, German Aerospace Centre (DLR),

More information

Study on the UWB Rader Synchronization Technology

Study on the UWB Rader Synchronization Technology Study on the UWB Rader Synchronization Technology Guilin Lu Guangxi University of Technology, Liuzhou 545006, China E-mail: lifishspirit@126.com Shaohong Wan Ari Force No.95275, Liuzhou 545005, China E-mail:

More information

COMMUNICATION SYSTEMS

COMMUNICATION SYSTEMS COMMUNICATION SYSTEMS 4TH EDITION Simon Hayhin McMaster University JOHN WILEY & SONS, INC. Ш.! [ BACKGROUND AND PREVIEW 1. The Communication Process 1 2. Primary Communication Resources 3 3. Sources of

More information

SODAR- sonic detecting and ranging

SODAR- sonic detecting and ranging Active Remote Sensing of the PBL Immersed vs. remote sensors Active vs. passive sensors RADAR- radio detection and ranging WSR-88D TDWR wind profiler SODAR- sonic detecting and ranging minisodar RASS RADAR

More information

Session 1: General Radar Background

Session 1: General Radar Background Session 1: General Radar Background What you will learn: What and why is radar Multiple radar examples and explanations Key radar sub-systems Key issues concerning radar sub-systems performance Principal

More information

Impulse Response as a Measurement of the Quality of Chirp Radar Pulses

Impulse Response as a Measurement of the Quality of Chirp Radar Pulses Impulse Response as a Measurement of the Quality of Chirp Radar Pulses Thomas Hill and Shigetsune Torin RF Products (RTSA) Tektronix, Inc. Abstract Impulse Response can be performed on a complete radar

More information

MTD Signal Processing for Surveillance Radar Application

MTD Signal Processing for Surveillance Radar Application MTD Signal Processing for Surveillance Radar Application Vishwanath G R, Naveen Kumar M, Mahesh Dali Department of Telecommunication Engineering, Dayananda Sagar College of Engineering, Bangalore-560078,

More information

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR David G. Long, Bryan Jarrett, David V. Arnold, Jorge Cano ABSTRACT Synthetic Aperture Radar (SAR) systems are typically very complex and expensive.

More information