MIMO RADAR SIGNAL PROCESSING

Size: px
Start display at page:

Download "MIMO RADAR SIGNAL PROCESSING"

Transcription

1 MIMO RADAR SIGNAL PROCESSING Edited by JIAN LI PETRE STOICA WILEY A JOHN WILEY & SONS, INC., PUBLICATION

2 PREFACE CONTRIBUTORS xiii xvii 1 MIMO Radar Diversity Means Superiority 1 Лап Li and Petre Stoica 1.1 Introduction Problem Formulation Parameter Identifiability Preliminary Analysis Sufficient and Necessary Conditions Numerical Examples Nonparametric Adaptive Techniques for Parameter Estimation Absence of Array Calibration Errors Presence of Array Calibration Errors Numerical Examples Parametric Techniques for Parameter Estimation ML and BIC Numerical Examples Transmit Beampattern Designs Beampattern Matching Design Minimum Sidelobe Beampattern Design Phased-Array Beampattern Design 39

3 1.6.4 Numerical Examples Application to Ultrasound Hyperthermia Treatment of Breast Cancer Conclusions 56 Appendix IA Generalized Likelihood Ratio Test 57 Appendix IB Lemma and Proof 59 Acknowledgments 60 References 60 MIMO Radar: Concepts, Performance Enhancements, and Applications 65 Keith W. Forsythe and Daniel W. Bliss 2.1 Introduction A Short History of Radar Definition and Characteristics of MIMO Radar Uses of MIMO Radar The Current State of МГМО Radar Research Chapter Outline Notation MIMO Radar Virtual Aperture МГМО Channel МГМО Virtual Array: Resolution and Sidelobes MIMO Radar in Clutter-Free Environments Limitations of Cramer-Rao Estimation Bounds Signal Model Fisher Information Matrix Waveform Correlation Optimization Examples 85' 2.5 Optimality of МГМО Radar for Detection Detection High SNR Weak-Signal Regime Optimal Beamforming without Search Nonfading Targets Some Additional Benefits of MIMO Radar МГМО Radar with Moving Targets in Clutter: GMTI Radars Signal Model Localization and Adapted SNR Inner Products and Beamwidths SNR Loss 103

4 vii SNR Loss and Waveform Optimization Area Search Rates Some Examples Summary 111 Appendix 2A A Localization Principle 111 Appendix 2B Bounds on R(N) 114 Appendix 2C An Operator Norm Inequality 115 Appendix 2D Negligible Terms 115 Appendix 2E Bound on Eigenvalues 115 Appendix 2F Some Inner Products 116 Appendix 2G An Invariant Inner Product 117 Appendix 2H Krönecker and Tensor Products 118 2H.1 Lexicographical Ordering 118 2H.2 Tensor and Krönecker Products 118 2H.3 Properties 119 Acknowledgments 119 References Generalized MIMO Radar Ambiguity Functions 123 Geoffrey San Antonio, Daniel R. Fuhrmann, and Frank C. Robey 3.1 Introduction Background MIMO Signal Model MIMO Parametric Channel Model Transmit Signal Model Channel and Target Models Received Signal Parametric Model MIMO Ambiguity Function MIMO Ambiguity Function Composition Cross-Correlation Function under Model Simplifications Autocorrelation Function and Transmit Beampatterns Results and Examples Orthogonal Signals Coherent Signals Conclusion 149 References 150

5 Vlll 4 Performance Bounds and Techniques for Target Localization Using MIMO Radars 153 Joseph Tabrikian 4.1 Introduction Problem Formulation Properties Virtual Aperture Extension Spatial Coverage and Probability of Exposure Beampattern Improvement Target Localization Maximum-Likelihood Estimation Transmission Diversity Smoothing Performance Lower Bound for Target Localization Cramer-Rao Bound The Barankin Bound Simulation Results Discussion and Conclusions 180 Appendix 4A Log-Likelihood Derivation 181 4A.1 General Model 182 4A.2 Single Range-Doppler with No Interference Appendix 4B Transmit-Receive Pattern Derivation 185 Appendix 4C Fisher Information Matrix Derivation 186 References Adaptive Signal Design For MEMO Radars 193 Benjamin Friedlander Introduction Problem Formulation Signal Model with Reduced Number of Range Cells Multipulse and Doppler Effects The Complete Model The Statistical Model Estimation Beamforming Solution Least-Squares Solutions Waveform Design for Estimation Detection The Optimal Detector The SINR

6 ix Optimal Waveform Design Suboptimal Waveform Design Constrained Design The Target and Clutter Models Numerical Examples МГМО Radar and Phased Arrays Scan Transmit Beam after Receive Adaptation of Transmit Beampattern Combined Transmit-Receive Beamforming 229 Appendix 5A Theoretical SINR Calculation 231 References MIMO Radar Spacetime Adaptive Processing and Signal Design 235 Chun-Yang Chen and P. P. Vaidyanathan 6.1 Introduction Notations The Virtual Array Concept Spacetime Adaptive Processing in МГМО Radar Signal Model Fully Adaptive MDVIO-STAP Comparison with SDVIO System The Virtual Array in STAP Clutter Subspace in MIMO Radar Clutter Rank in MIMO Radar: МГМО Extension of Brennan's Rule Data-Independent Estimation of the Clutter Subspace with PSWF New STAP Method for МГМО Radar The Proposed Method Complexity of the New Method Estimation of the Covariance Matrices Zero-Forcing Method Comparison with Other Methods Numerical Examples Signal Design of the STAP Radar System MIMO Radar Ambiguity Function Some Properties of the МГМО Ambiguity Function The МГМО Ambiguity Function of Periodic Pulse Radar Signals Frequency-Multiplexed LFM Signals Frequency-Hopping Signals 276

7 X 6.8 Conclusions 278 Acknowledgments 279 References Slow-Time MIMO SpaceTime Adaptive Processing 283 Vito F. Mecca, Dinesh Ramakrishnan, Frank C. Robey, and Jeffrey L. Krolik 7.1 Introduction МГМО Radar and Spatial Diversity MIMO and Target Fading MIMO and Processing Gain SIMO Radar Modeling and Processing Generalized Transmitted Radar Waveform SIMO Target Model SDVIO Covariance Models SDVIO Radar Processing Slow-Time MIMO Radar Modeling Slow-Time MIMO Target Model Slow-Time MMO Covariance Model Slow-Time MIMO Radar Processing Slow-Time МГМО Beampattern and VSWR Subarray Slow-Time MIMO SIMO versus Slow-Time МГМО Design Comparisons MIMO Radar Estimation of Transmit-Receive Directionality Spectrum OTHr Propagation and Clutter Model Simulations Examples Postreceive/Transmit Beamforming SINR Performance Transmit-Receive Spectrum Conclusion 316 Acknowledgment 316 References MIMO as a Distributed Radar System 319 H. D. Griffiths, C. J. Baker, P. F. Sammartino, and M. Rangaswamy 8.1 Introduction Systems Signal Model Spatial MIMO System 325

8 xi Netted Radar Systems Decentralized Radar Network (DRN) Performance False-Alarm Rate (FAR) Probability of Detection (P d ) Jamming Tolerance Coverage Conclusions 359 Acknowledgment 361 References 361 Concepts and Applications of A MIMO Radar System with Widely Separated Antennas 365 Hana Godrich, Alexander M. Haimovich, and Rick S. Blum 9.1 Background MIMO Radar Concept Signal Model Spatial Decorrelation Other Multiple Antenna Radars Noncoherent МГМО Radar Applications Diversity Gain Moving-Target Detection Coherent MIMO Radar Applications Ambiguity Function CRLB MLE Target Localization BLUE Target Localization GDOP Discussion Chapter Summary 399 Appendix 9A Deriving the FTM 400 Appendix 9B Deriving the CRLB on the Location Estimate Error 403 Appendix 9C MLE of Time Delays Error Statistics 405 Appendix 9D Deriving the Lowest GDOP for Special Cases 407 9D.1 Special Case: N x N MIMO 407 9D.2 Special Case: 1 x N MIMO 408 9D.3 General Case: M x N МГМО 408 Acknowledgments 408 References 408

9 Xll 10 SpaceTime Coding for MEMO Radar 411 Antonio De Maio and Marco Lops 10.1 Introduction System Model Detection In MEMO Radars Full-Rank Code Matrix Rank 1 Code Matrix Spacetime Code Design Chernoff-Bound-Based (CBB) Code Construction SCR-Based Code Construction Mutual-Information-Based (MIB) Code Construction The Interplay Between STC and Detection Performance Numerical Results Adaptive Implementation Conclusions 441 Acknowledgment 442 References 442 INDEX 445

MIMO RADAR SIGNAL PROCESSING

MIMO RADAR SIGNAL PROCESSING MIMO RADAR SIGNAL PROCESSING Edited by JIAN LI PETRE STOICA MIMO RADAR SIGNAL PROCESSING MIMO RADAR SIGNAL PROCESSING Edited by JIAN LI PETRE STOICA Copyright # 2009 by John Wiley & Sons, Inc. All rights

More information

Performance of MMSE Based MIMO Radar Waveform Design in White and Colored Noise

Performance of MMSE Based MIMO Radar Waveform Design in White and Colored Noise Performance of MMSE Based MIMO Radar Waveform Design in White Colored Noise Mr.T.M.Senthil Ganesan, Department of CSE, Velammal College of Engineering & Technology, Madurai - 625009 e-mail:tmsgapvcet@gmail.com

More information

Adaptive Wireless. Communications. gl CAMBRIDGE UNIVERSITY PRESS. MIMO Channels and Networks SIDDHARTAN GOVJNDASAMY DANIEL W.

Adaptive Wireless. Communications. gl CAMBRIDGE UNIVERSITY PRESS. MIMO Channels and Networks SIDDHARTAN GOVJNDASAMY DANIEL W. Adaptive Wireless Communications MIMO Channels and Networks DANIEL W. BLISS Arizona State University SIDDHARTAN GOVJNDASAMY Franklin W. Olin College of Engineering, Massachusetts gl CAMBRIDGE UNIVERSITY

More information

SIGNAL MODEL AND PARAMETER ESTIMATION FOR COLOCATED MIMO RADAR

SIGNAL MODEL AND PARAMETER ESTIMATION FOR COLOCATED MIMO RADAR SIGNAL MODEL AND PARAMETER ESTIMATION FOR COLOCATED MIMO RADAR Moein Ahmadi*, Kamal Mohamed-pour K.N. Toosi University of Technology, Iran.*moein@ee.kntu.ac.ir, kmpour@kntu.ac.ir Keywords: Multiple-input

More information

Systems. Advanced Radar. Waveform Design and Diversity for. Fulvio Gini, Antonio De Maio and Lee Patton. Edited by

Systems. Advanced Radar. Waveform Design and Diversity for. Fulvio Gini, Antonio De Maio and Lee Patton. Edited by Waveform Design and Diversity for Advanced Radar Systems Edited by Fulvio Gini, Antonio De Maio and Lee Patton The Institution of Engineering and Technology Contents Waveform diversity: a way forward to

More information

Principles of Modern Radar

Principles of Modern Radar Principles of Modern Radar Vol. I: Basic Principles Mark A. Richards Georgia Institute of Technology James A. Scheer Georgia Institute of Technology William A. Holm Georgia Institute of Technology PUBLiSH]J

More information

MIMO Radar Signal Processing of Space Time Coded Waveforms

MIMO Radar Signal Processing of Space Time Coded Waveforms MIMO Radar Signal Processing of Space Time Coded Waveforms IEEE Signal Processing Society Baltimore Chapter Meeting May, 008 Dr. Marshall Greenspan Senior Consulting Systems Engineer Northrop Grumman Corporation

More information

Multipath Effect on Covariance Based MIMO Radar Beampattern Design

Multipath Effect on Covariance Based MIMO Radar Beampattern Design IOSR Journal of Engineering (IOSRJE) ISS (e): 225-32, ISS (p): 2278-879 Vol. 4, Issue 9 (September. 24), V2 PP 43-52 www.iosrjen.org Multipath Effect on Covariance Based MIMO Radar Beampattern Design Amirsadegh

More information

MIMO Radar Diversity Means Superiority

MIMO Radar Diversity Means Superiority MIMO Radar Diversity Means Superiority Jian Li and Petre Stoica Abstract A MIMO (multi-input multi-output) radar system, unlike a standard phased-array radar, can transmit via its antennas multiple probing

More information

Principles of Space- Time Adaptive Processing 3rd Edition. By Richard Klemm. The Institution of Engineering and Technology

Principles of Space- Time Adaptive Processing 3rd Edition. By Richard Klemm. The Institution of Engineering and Technology Principles of Space- Time Adaptive Processing 3rd Edition By Richard Klemm The Institution of Engineering and Technology Contents Biography Preface to the first edition Preface to the second edition Preface

More information

Ambiguity function of the transmit beamspace-based MIMO radar

Ambiguity function of the transmit beamspace-based MIMO radar Yongzhe Li Ambiguity function of the transmit beamspace-based MIMO radar School of Electrical Engineering Thesis submitted for changing the visiting student status at Aalto University. Espoo 20.10.2014

More information

MIMO Radar Waveform Constraints for GMTI

MIMO Radar Waveform Constraints for GMTI MIMO Radar Waveform Constraints for GMTI The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Forsythe,

More information

Signal Processing for MIMO and Passive Radar

Signal Processing for MIMO and Passive Radar 3rd International Workshop on Mathematical Issues in Information Sciences (MIIS 2014) Signal Processing for MIMO and Passive Radar Hongbin Li Signal Processing and Communication (SPAC) Laboratory Department

More information

MOVING TARGET DETECTION IN AIRBORNE MIMO RADAR FOR FLUCTUATING TARGET RCS MODEL. Shabnam Ghotbi,Moein Ahmadi, Mohammad Ali Sebt

MOVING TARGET DETECTION IN AIRBORNE MIMO RADAR FOR FLUCTUATING TARGET RCS MODEL. Shabnam Ghotbi,Moein Ahmadi, Mohammad Ali Sebt MOVING TARGET DETECTION IN AIRBORNE MIMO RADAR FOR FLUCTUATING TARGET RCS MODEL Shabnam Ghotbi,Moein Ahmadi, Mohammad Ali Sebt K.N. Toosi University of Technology Tehran, Iran, Emails: shghotbi@mail.kntu.ac.ir,

More information

Amultiple-input multiple-output (MIMO) radar uses multiple

Amultiple-input multiple-output (MIMO) radar uses multiple IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 6, JUNE 2007 2375 Iterative Generalized-Likelihood Ratio Test for MIMO Radar Luzhou Xu Jian Li, Fellow, IEEE Abstract We consider a multiple-input multiple-output

More information

STAP Capability of Sea Based MIMO Radar Using Virtual Array

STAP Capability of Sea Based MIMO Radar Using Virtual Array International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 7, Number 1 (2014), pp. 47-56 International Research Publication House http://www.irphouse.com STAP Capability

More information

5926 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 12, DECEMBER X/$ IEEE

5926 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 12, DECEMBER X/$ IEEE 5926 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 12, DECEMBER 2008 MIMO Radar Ambiguity Properties and Optimization Using Frequency-Hopping Waveforms Chun-Yang Chen, Student Member, IEEE, and

More information

Advances in Direction-of-Arrival Estimation

Advances in Direction-of-Arrival Estimation Advances in Direction-of-Arrival Estimation Sathish Chandran Editor ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xvii Acknowledgments xix Overview CHAPTER 1 Antenna Arrays for Direction-of-Arrival

More information

Coding for MIMO Communication Systems

Coding for MIMO Communication Systems Coding for MIMO Communication Systems Tolga M. Duman Arizona State University, USA Ali Ghrayeb Concordia University, Canada BICINTINNIAL BICENTENNIAL John Wiley & Sons, Ltd Contents About the Authors Preface

More information

RECENTLY, the concept of multiple-input multiple-output

RECENTLY, the concept of multiple-input multiple-output IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 2, FEBRUARY 2008 623 MIMO Radar Space Time Adaptive Processing Using Prolate Spheroidal Wave Functions Chun-Yang Chen, Student Member, IEEE, and P.

More information

MIMO RADAR DIVERSITY MEANS SUPERIORITY. Department of Electrical and Computer Engineering, University of Florida, Gainesville

MIMO RADAR DIVERSITY MEANS SUPERIORITY. Department of Electrical and Computer Engineering, University of Florida, Gainesville 1 MIMO RADAR DIVERSITY MEANS SUPERIORITY JIAN LI Department of Electrical and Computer Engineering, University of Florida, Gainesville PETRE STOICA Information Technology Department, Uppsala University,

More information

OVER the last decade, the multiple-input multiple-output

OVER the last decade, the multiple-input multiple-output IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 7, JULY 2011 3241 MIMO Radar Sensitivity Analysis for Target Detection Murat Akçakaya, Student Member, IEEE, and Arye Nehorai, Fellow, IEEE Abstract

More information

Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications

Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications DARPA SBIR Topic: SB82-2, Phase II Army Contract W31P4Q-11-C-43 Program Summary September

More information

Adaptive Transmit and Receive Beamforming for Interference Mitigation

Adaptive Transmit and Receive Beamforming for Interference Mitigation IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 2, FEBRUARY 2014 235 Adaptive Transmit Receive Beamforming for Interference Mitigation Zhu Chen, Student Member, IEEE, Hongbin Li, Senior Member, IEEE, GuolongCui,

More information

WHY THE PHASED-MIMO RADAR OUTPERFORMS THE PHASED-ARRAY AND MIMO RADARS

WHY THE PHASED-MIMO RADAR OUTPERFORMS THE PHASED-ARRAY AND MIMO RADARS 18th European Signal Processing Conference (EUSIPCO-1) Aalborg, Denmark, August 3-7, 1 WHY THE PHASED- OUTPERFORMS THE PHASED-ARRAY AND S Aboulnasr Hassanien and Sergiy A. Vorobyov Dept. of Electrical

More information

Wireless Communications Over Rapidly Time-Varying Channels

Wireless Communications Over Rapidly Time-Varying Channels Wireless Communications Over Rapidly Time-Varying Channels Edited by Franz Hlawatsch Gerald Matz ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY

More information

Radar Equations. for Modern Radar. David K. Barton ARTECH HOUSE BOSTON LONDON. artechhouse.com

Radar Equations. for Modern Radar. David K. Barton ARTECH HOUSE BOSTON LONDON. artechhouse.com Radar Equations for Modern Radar David K Barton ARTECH HOUSE BOSTON LONDON artechhousecom Contents Preface xv Chapter 1 Development of the Radar Equation 1 11 Radar Equation Fundamentals 1 111 Maximum

More information

Space-Time Adaptive Processing Using Sparse Arrays

Space-Time Adaptive Processing Using Sparse Arrays Space-Time Adaptive Processing Using Sparse Arrays Michael Zatman 11 th Annual ASAP Workshop March 11 th -14 th 2003 This work was sponsored by the DARPA under Air Force Contract F19628-00-C-0002. Opinions,

More information

Beamforming in MIMO Radar Nilay Pandey Roll No-212EC6192

Beamforming in MIMO Radar Nilay Pandey Roll No-212EC6192 Beamforming in MIMO Radar Nilay Pandey Roll No-212EC6192 Department of Electronics and Communication Engineering National Institute of Technology Rourkela Rourkela 2014 Beamforming in MIMO Radar A thesis

More information

MIMO enabled multipath clutter rank estimation

MIMO enabled multipath clutter rank estimation MIMO enabled multipath clutter rank estimation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Mecca,

More information

Cooperative Sensing for Target Estimation and Target Localization

Cooperative Sensing for Target Estimation and Target Localization Preliminary Exam May 09, 2011 Cooperative Sensing for Target Estimation and Target Localization Wenshu Zhang Advisor: Dr. Liuqing Yang Department of Electrical & Computer Engineering Colorado State University

More information

TRANSMITS BEAMFORMING AND RECEIVER DESIGN FOR MIMO RADAR

TRANSMITS BEAMFORMING AND RECEIVER DESIGN FOR MIMO RADAR TRANSMITS BEAMFORMING AND RECEIVER DESIGN FOR MIMO RADAR 1 Nilesh Arun Bhavsar,MTech Student,ECE Department,PES S COE Pune, Maharastra,India 2 Dr.Arati J. Vyavahare, Professor, ECE Department,PES S COE

More information

Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO Radar: Overview on Target Localization

Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO Radar: Overview on Target Localization Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO Radar Overview on Target Localization Samiran Pramanik, 1 Nirmalendu Bikas Sinha, 2 C.K. Sarkar 3 1 College of Engineering &

More information

Contents at a Glance

Contents at a Glance Contents at a Glance Preface Acknowledgments V VII Chapter 1 MIMO systems: Multiple Antenna Techniques Yiqing Zhou, Zhengang Pan, Kai-Kit Wong 1 Chapter 2 Modeling of MIMO Mobile-to-Mobile Channels Matthias

More information

Antennas and Propagation. Chapter 5c: Array Signal Processing and Parametric Estimation Techniques

Antennas and Propagation. Chapter 5c: Array Signal Processing and Parametric Estimation Techniques Antennas and Propagation : Array Signal Processing and Parametric Estimation Techniques Introduction Time-domain Signal Processing Fourier spectral analysis Identify important frequency-content of signal

More information

Eigenvalues and Eigenvectors in Array Antennas. Optimization of Array Antennas for High Performance. Self-introduction

Eigenvalues and Eigenvectors in Array Antennas. Optimization of Array Antennas for High Performance. Self-introduction Short Course @ISAP2010 in MACAO Eigenvalues and Eigenvectors in Array Antennas Optimization of Array Antennas for High Performance Nobuyoshi Kikuma Nagoya Institute of Technology, Japan 1 Self-introduction

More information

Copyright 2013 IEEE. Published in the IEEE 2013 International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013), scheduled for

Copyright 2013 IEEE. Published in the IEEE 2013 International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013), scheduled for Copyright 2013 IEEE. Published in the IEEE 2013 International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013), scheduled for 26-31 May 2013 in Vancouver, British Columbia, Canada.

More information

THOMAS PANY SOFTWARE RECEIVERS

THOMAS PANY SOFTWARE RECEIVERS TECHNOLOGY AND APPLICATIONS SERIES THOMAS PANY SOFTWARE RECEIVERS Contents Preface Acknowledgments xiii xvii Chapter 1 Radio Navigation Signals 1 1.1 Signal Generation 1 1.2 Signal Propagation 2 1.3 Signal

More information

Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications

Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications DARPA SBIR Topic: SB82-2, Phase II Army Contract W31P4Q-11-C-43 Program Summary September

More information

MIMO RADAR DEMYSTIFIED AND WHERE IT MAKES SENSE TO USE

MIMO RADAR DEMYSTIFIED AND WHERE IT MAKES SENSE TO USE 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) MIMO RADAR DEMYSTIFIED AND WHERE IT MAKES SENSE TO USE Dr. Eli Brookner Raytheon Co. (Retired), 282 Marrett Road, Lexington,

More information

PRINCIPLES OF SPREAD-SPECTRUM COMMUNICATION SYSTEMS

PRINCIPLES OF SPREAD-SPECTRUM COMMUNICATION SYSTEMS PRINCIPLES OF SPREAD-SPECTRUM COMMUNICATION SYSTEMS PRINCIPLES OF SPREAD-SPECTRUM COMMUNICATION SYSTEMS By DON TORRIERI Springer ebook ISBN: 0-387-22783-0 Print ISBN: 0-387-22782-2 2005 Springer Science

More information

DECEPTION JAMMING SUPPRESSION FOR RADAR

DECEPTION JAMMING SUPPRESSION FOR RADAR DECEPTION JAMMING SUPPRESSION FOR RADAR Dr. Ayesha Naaz 1, Tahura Iffath 2 1 Associate Professor, 2 M.E. Student, ECED, Muffakham Jah college of Engineering and Technology, Hyderabad, (India) ABSTRACT

More information

Space-Time Adaptive Processing for Distributed Aperture Radars

Space-Time Adaptive Processing for Distributed Aperture Radars Space-Time Adaptive Processing for Distributed Aperture Radars Raviraj S. Adve, Richard A. Schneible, Michael C. Wicks, Robert McMillan Dept. of Elec. and Comp. Eng., University of Toronto, 1 King s College

More information

Challenges in Advanced Moving-Target Processing in Wide-Band Radar

Challenges in Advanced Moving-Target Processing in Wide-Band Radar Challenges in Advanced Moving-Target Processing in Wide-Band Radar July 9, 2012 Douglas Page, Gregory Owirka, Howard Nichols 1 1 BAE Systems 6 New England Executive Park Burlington, MA 01803 Steven Scarborough,

More information

6 Uplink is from the mobile to the base station.

6 Uplink is from the mobile to the base station. It is well known that by using the directional properties of adaptive arrays, the interference from multiple users operating on the same channel as the desired user in a time division multiple access (TDMA)

More information

MIMO RADAR: SIGNAL PROCESSING, WAVEFORM DESIGN, AND APPLICATIONS TO SYNTHETIC APERTURE IMAGING

MIMO RADAR: SIGNAL PROCESSING, WAVEFORM DESIGN, AND APPLICATIONS TO SYNTHETIC APERTURE IMAGING MIMO RADAR: SIGNAL PROCESSING, WAVEFORM DESIGN, AND APPLICATIONS TO SYNTHETIC APERTURE IMAGING A Dissertation Presented to The Academic Faculty By Michael S. Davis In Partial Fulfillment of the Requirements

More information

Wideband, Long-CPI GMTI

Wideband, Long-CPI GMTI Wideband, Long-CPI GMTI Ali F. Yegulalp th Annual ASAP Workshop 6 March 004 This work was sponsored by the Defense Advanced Research Projects Agency and the Air Force under Air Force Contract F968-00-C-000.

More information

Index. Cambridge University Press Fundamentals of Wireless Communication David Tse and Pramod Viswanath. Index.

Index. Cambridge University Press Fundamentals of Wireless Communication David Tse and Pramod Viswanath. Index. ad hoc network 5 additive white Gaussian noise (AWGN) 29, 30, 166, 241 channel capacity 167 capacity-achieving AWGN channel codes 170, 171 packing spheres 168 72, 168, 169 channel resources 172 bandwidth

More information

Modern Radar Systems

Modern Radar Systems Modern Radar Systems Second Edition Hamish Meikle ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Foreward Preface to the second edition Preface to the first edition xvii xix xxi Chapter 1 The radar

More information

Direction-of-Arrival Estimation and Cramer-Rao Bound for Multi-Carrier MIMO Radar

Direction-of-Arrival Estimation and Cramer-Rao Bound for Multi-Carrier MIMO Radar 06 4th European Signal Processing Conference EUSIPCO Direction-of-Arrival Estimation and Cramer-Rao Bound for Multi-Carrier MIMO Radar Michael Ulrich, Kilian Rambach and Bin Yang Institute of Signal Processing

More information

CHAPTER 8 MIMO. Xijun Wang

CHAPTER 8 MIMO. Xijun Wang CHAPTER 8 MIMO Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 10 2. Tse, Fundamentals of Wireless Communication, Chapter 7-10 2 MIMO 3 BENEFITS OF MIMO n Array gain The increase

More information

OPTIMAL POINT TARGET DETECTION USING DIGITAL RADARS

OPTIMAL POINT TARGET DETECTION USING DIGITAL RADARS OPTIMAL POINT TARGET DETECTION USING DIGITAL RADARS NIRMALENDU BIKAS SINHA AND M.MITRA 2 College of Engineering & Management, Kolaghat, K.T.P.P Township, Purba Medinipur, 727, W.B, India. 2 Bengal Engineering

More information

Waveform-Agile Sensing for Range and DoA Estimation in MIMO Radars

Waveform-Agile Sensing for Range and DoA Estimation in MIMO Radars Waveform-Agile ensing for Range and DoA Estimation in MIMO Radars Bhavana B. Manjunath, Jun Jason Zhang, Antonia Papandreou-uppappola, and Darryl Morrell enip Center, Department of Electrical Engineering,

More information

MIMO RADAR CAPABILITY ON POWERFUL JAMMERS SUPPRESSION

MIMO RADAR CAPABILITY ON POWERFUL JAMMERS SUPPRESSION 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) MIMO RADAR CAPABILITY ON POWERFUL JAMMERS SUPPRESSION Yongzhe Li, Sergiy A. Vorobyov, and Aboulnasr Hassanien Dept.

More information

Antenna Design and Site Planning Considerations for MIMO

Antenna Design and Site Planning Considerations for MIMO Antenna Design and Site Planning Considerations for MIMO Steve Ellingson Mobile & Portable Radio Research Group (MPRG) Dept. of Electrical & Computer Engineering Virginia Polytechnic Institute & State

More information

CDMA Systems Engineering Handbook

CDMA Systems Engineering Handbook CDMA Systems Engineering Handbook Jhong Sam Lee Leonard E. Miller Artech House Boston London Table of Contents Preface xix CHAPTER 1: INTRODUCTION AND REVIEW OF SYSTEMS ANALYSIS BASICS 1 1.1 Introduction

More information

JOINT TRANSMIT ARRAY INTERPOLATION AND TRANSMIT BEAMFORMING FOR SOURCE LOCALIZATION IN MIMO RADAR WITH ARBITRARY ARRAYS

JOINT TRANSMIT ARRAY INTERPOLATION AND TRANSMIT BEAMFORMING FOR SOURCE LOCALIZATION IN MIMO RADAR WITH ARBITRARY ARRAYS JOINT TRANSMIT ARRAY INTERPOLATION AND TRANSMIT BEAMFORMING FOR SOURCE LOCALIZATION IN MIMO RADAR WITH ARBITRARY ARRAYS Aboulnasr Hassanien, Sergiy A. Vorobyov Dept. of ECE, University of Alberta Edmonton,

More information

WIRELESS COMMUNICATIONS

WIRELESS COMMUNICATIONS WIRELESS COMMUNICATIONS P. Muthu Chidambara Nathan Associate Professor Department of Electronics and Communication Engineering National Institute of Technology Tiruchirappalli, Tamil Nadu New Delhi-110001

More information

Antenna Allocation for MIMO Radars with Collocated Antennas

Antenna Allocation for MIMO Radars with Collocated Antennas Antenna Allocation for MIMO Radars with Collocated Antennas A. A. Gorji a, T. Kirubarajan a,andr.tharmarasa a a Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario,

More information

Optimal Adaptive Waveform Design for Cognitive MIMO Radar

Optimal Adaptive Waveform Design for Cognitive MIMO Radar IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 61, NO 20, OCTOBER 15, 2013 5075 Optimal Adaptive Waveform Design for Cognitive MIMO Radar Wasim Huleihel, Joseph Tabrikian, Senior Member, IEEE, and Reuven

More information

MIMO Environmental Capacity Sensitivity

MIMO Environmental Capacity Sensitivity MIMO Environmental Capacity Sensitivity Daniel W. Bliss, Keith W. Forsythe MIT Lincoln Laboratory Lexington, Massachusetts bliss@ll.mit.edu, forsythe@ll.mit.edu Alfred O. Hero University of Michigan Ann

More information

Multiple Antenna Processing for WiMAX

Multiple Antenna Processing for WiMAX Multiple Antenna Processing for WiMAX Overview Wireless operators face a myriad of obstacles, but fundamental to the performance of any system are the propagation characteristics that restrict delivery

More information

Circular SAR GMTI Douglas Page, Gregory Owirka, Howard Nichols a, Steven Scarborough b a

Circular SAR GMTI Douglas Page, Gregory Owirka, Howard Nichols a, Steven Scarborough b a Circular SAR GMTI Douglas Page, Gregory Owirka, Howard Nichols a, Steven Scarborough b a BAE Systems Technology Solutions, 6 New England Executive Park, Burlington, MA 01803 b AFRL/RYA, 2241 Avionics Circle,

More information

Non Unuiform Phased array Beamforming with Covariance Based Method

Non Unuiform Phased array Beamforming with Covariance Based Method IOSR Journal of Engineering (IOSRJE) e-iss: 50-301, p-iss: 78-8719, Volume, Issue 10 (October 01), PP 37-4 on Unuiform Phased array Beamforming with Covariance Based Method Amirsadegh Roshanzamir 1, M.

More information

Multi-Waveform STAP. Shannon D. Blunt 1, John Jakabosky 1, Justin Metcalf 1, James Stiles 1, and Braham Himed 2 1

Multi-Waveform STAP. Shannon D. Blunt 1, John Jakabosky 1, Justin Metcalf 1, James Stiles 1, and Braham Himed 2 1 Multi-Waveform STAP Shannon D. Blunt 1, John Jakabosky 1, Justin Metcalf 1, James Stiles 1, and Braham imed 2 1 Radar Systems Lab, University of Kansas, Lawrence, KS 2 Sensors Directorate, Air Force Research

More information

Basic Radar Definitions Introduction p. 1 Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p.

Basic Radar Definitions Introduction p. 1 Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p. Basic Radar Definitions Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p. 11 Decibel representation of the radar equation p. 13 Radar frequencies p. 15

More information

SUPERRESOLUTION methods refer to techniques that

SUPERRESOLUTION methods refer to techniques that Engineering Letters, 19:1, EL_19_1_2 An Improved Spatial Smoothing Technique for DoA Estimation of Highly Correlated Signals Avi Abu Abstract Spatial superresolution techniques have been investigated for

More information

Mobile-to-Mobile Wireless Channels

Mobile-to-Mobile Wireless Channels Mobile-to-Mobile Wireless Channels Alenka Zajic ARTECH HOUSE BOSTON LONDON artechhouse.com Contents PREFACE xi ma Inroduction 1 1.1 Mobile-to-Mobile Communication Systems 2 1.1.1 Vehicle-to-Vehicle Communication

More information

MIMO Radar Ambiguity Properties and Optimization Using Frequency-Hopping Waveforms

MIMO Radar Ambiguity Properties and Optimization Using Frequency-Hopping Waveforms MIMO Radar Ambiguity Properties and Optimization Using -Hopping Waveforms Chun-Yang Chen, Student Member, IEEE, and P. P. Vaidyanathan, Fellow, IEEE Abstract The concept of MIMO (multiple-input multipleoutput)

More information

Ultra Wideband Signals and Systems in Communication Engineering

Ultra Wideband Signals and Systems in Communication Engineering Ultra Wideband Signals and Systems in Communication Engineering Second Edition M. Ghavami King's College London, UK L. B. Michael Japan R. Kohno Yokohama National University, Japan BICENTENNIAL 3 I CE

More information

B SCITEQ. Transceiver and System Design for Digital Communications. Scott R. Bullock, P.E. Third Edition. SciTech Publishing, Inc.

B SCITEQ. Transceiver and System Design for Digital Communications. Scott R. Bullock, P.E. Third Edition. SciTech Publishing, Inc. Transceiver and System Design for Digital Communications Scott R. Bullock, P.E. Third Edition B SCITEQ PUBLISHtN^INC. SciTech Publishing, Inc. Raleigh, NC Contents Preface xvii About the Author xxiii Transceiver

More information

Waveform-Space-Time Adaptive Processing for Distributed Aperture Radars

Waveform-Space-Time Adaptive Processing for Distributed Aperture Radars Waveform-Space-Time Adaptive Processing for Distributed Aperture Radars Raviraj S. Adve, Dept. of Elec. and Comp. Eng., University of Toronto Richard A. Schneible, Stiefvater Consultants, Marcy, NY Gerard

More information

COMBINED BEAMFORMING WITH ALAMOUTI CODING USING DOUBLE ANTENNA ARRAY GROUPS FOR MULTIUSER INTERFERENCE CANCELLATION

COMBINED BEAMFORMING WITH ALAMOUTI CODING USING DOUBLE ANTENNA ARRAY GROUPS FOR MULTIUSER INTERFERENCE CANCELLATION Progress In Electromagnetics Research, PIER 88, 23 226, 2008 COMBINED BEAMFORMING WITH ALAMOUTI CODING USING DOUBLE ANTENNA ARRAY GROUPS FOR MULTIUSER INTERFERENCE CANCELLATION Y. Wang and G. S. Liao National

More information

Maneuverable Array. Jeffrey S. Rogers. Department of Electrical and Computer Engineering Duke University. Approved: Jeffrey Krolik, Advisor

Maneuverable Array. Jeffrey S. Rogers. Department of Electrical and Computer Engineering Duke University. Approved: Jeffrey Krolik, Advisor Localization of Dynamic Acoustic Sources with a Maneuverable Array by Jeffrey S. Rogers Department of Electrical and Computer Engineering Duke University Date: Approved: Jeffrey Krolik, Advisor Leslie

More information

Frequency Diverse Array Radar Data Processing

Frequency Diverse Array Radar Data Processing Frequency Diverse Array Radar Data Processing Yunhan Dong National Security and ISR Division Defence Science and Technology Group Australia yunhan.dong@dst.defence.gov.au Abstract The frequency diverse

More information

CHAPTER 2 WIRELESS CHANNEL

CHAPTER 2 WIRELESS CHANNEL CHAPTER 2 WIRELESS CHANNEL 2.1 INTRODUCTION In mobile radio channel there is certain fundamental limitation on the performance of wireless communication system. There are many obstructions between transmitter

More information

Performance Evaluation of STBC-OFDM System for Wireless Communication

Performance Evaluation of STBC-OFDM System for Wireless Communication Performance Evaluation of STBC-OFDM System for Wireless Communication Apeksha Deshmukh, Prof. Dr. M. D. Kokate Department of E&TC, K.K.W.I.E.R. College, Nasik, apeksha19may@gmail.com Abstract In this paper

More information

Mobile Broadband Multimedia Networks

Mobile Broadband Multimedia Networks Mobile Broadband Multimedia Networks Techniques, Models and Tools for 4G Edited by Luis M. Correia v c» -''Vi JP^^fte«jfc-iaSfllto ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN

More information

E-VEHICLE: AN IMPLICATION TO NEXT GENERATION TRANSPORTATION

E-VEHICLE: AN IMPLICATION TO NEXT GENERATION TRANSPORTATION E-VEHICLE: AN IMPLICATION TO NEXT GENERATION TRANSPORTATION 1 SOURAV CHAKRABORTY and 1 PROSENJIT KUMAR SUTRADHAR 1 Final year B.Tech (ECE) Student in College of Engineering and Management, Kolaghat K.T.P.P

More information

This is a repository copy of Robust DOA estimation for a mimo array using two calibrated transmit sensors.

This is a repository copy of Robust DOA estimation for a mimo array using two calibrated transmit sensors. This is a repository copy of Robust DOA estimation for a mimo array using two calibrated transmit sensors. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/76522/ Proceedings

More information

3G Evolution. Outline. Chapter: Multi-antenna configurations. Introduction. Introduction. Multi-antenna techniques. Multiple receiver antennas, SIMO

3G Evolution. Outline. Chapter: Multi-antenna configurations. Introduction. Introduction. Multi-antenna techniques. Multiple receiver antennas, SIMO Chapter: 3G Evolution 6 Outline Introduction Multi-antenna configurations Multi-antenna t techniques Vanja Plicanic vanja.plicanic@eit.lth.se lth Multi-antenna techniques Multiple transmitter antennas,

More information

MULTIPLE-INPUT multiple-output (MIMO) radar

MULTIPLE-INPUT multiple-output (MIMO) radar 4994 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010 MIMO Radar Detection and Adaptive Design Under a Phase Synchronization Mismatch Murat Akçakaya, Student Member, IEEE, and Arye

More information

Adaptive SAR Results with the LiMIT Testbed

Adaptive SAR Results with the LiMIT Testbed Adaptive SAR Results with the LiMIT Testbed Gerald Benitz Adaptive Sensor Array Processing Workshop 7 June 2005 999999-1 Outline LiMIT collection platform SAR sidelobe recovery Electronic Protection (EP)

More information

Phased Array Antennas

Phased Array Antennas Phased Array Antennas Second Edition R. С HANSEN Consulting Engineer R. C. Hansen, Inc. www.rchansen.com WILEY A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface to the First Edition Preface to the

More information

Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers

Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers Navjot Kaur and Lavish Kansal Lovely Professional University, Phagwara, E-mails: er.navjot21@gmail.com,

More information

Cognitive Radio Techniques

Cognitive Radio Techniques Cognitive Radio Techniques Spectrum Sensing, Interference Mitigation, and Localization Kandeepan Sithamparanathan Andrea Giorgetti ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xxi 1 Introduction

More information

Space-Time Adaptive Processing: Fundamentals

Space-Time Adaptive Processing: Fundamentals Wolfram Bürger Research Institute for igh-frequency Physics and Radar Techniques (FR) Research Establishment for Applied Science (FGAN) Neuenahrer Str. 2, D-53343 Wachtberg GERMANY buerger@fgan.de ABSTRACT

More information

Introduction p. 1 Review of Radar Principles p. 1 Tracking Radars and the Evolution of Monopulse p. 3 A "Baseline" Monopulse Radar p.

Introduction p. 1 Review of Radar Principles p. 1 Tracking Radars and the Evolution of Monopulse p. 3 A Baseline Monopulse Radar p. Preface p. xu Introduction p. 1 Review of Radar Principles p. 1 Tracking Radars and the Evolution of Monopulse p. 3 A "Baseline" Monopulse Radar p. 8 Advantages and Disadvantages of Monopulse p. 17 Non-Radar

More information

Journal Publications

Journal Publications Journal Publications 1. A. Aubry, M. Lops, A. M. Tulino, L. Venturino, On MIMO Detection under non-gaussian Scattering Targets, IEEE Transactions on Information Theory, in press. 2. D.Angelosante, E. Grossi,

More information

INTRODUCTION TO RF PROPAGATION

INTRODUCTION TO RF PROPAGATION INTRODUCTION TO RF PROPAGATION John S. Seybold, Ph.D.,WILEY- 'interscience JOHN WILEY & SONS, INC. Preface XIII 1. Introduction 1.1 Frequency Designations 1 1.2 Modes of Propagation 3 1.2.1 Line-of-Sight

More information

COMMUNICATION SYSTEMS

COMMUNICATION SYSTEMS COMMUNICATION SYSTEMS 4TH EDITION Simon Hayhin McMaster University JOHN WILEY & SONS, INC. Ш.! [ BACKGROUND AND PREVIEW 1. The Communication Process 1 2. Primary Communication Resources 3 3. Sources of

More information

Joint DOA and Array Manifold Estimation for a MIMO Array Using Two Calibrated Antennas

Joint DOA and Array Manifold Estimation for a MIMO Array Using Two Calibrated Antennas 1 Joint DOA and Array Manifold Estimation for a MIMO Array Using Two Calibrated Antennas Wei Zhang #, Wei Liu, Siliang Wu #, and Ju Wang # # Department of Information and Electronics Beijing Institute

More information

Target Echo Information Extraction

Target Echo Information Extraction Lecture 13 Target Echo Information Extraction 1 The relationships developed earlier between SNR, P d and P fa apply to a single pulse only. As a search radar scans past a target, it will remain in the

More information

Direction of Arrival Estimation in Smart Antenna for Marine Communication. Deepthy M Vijayan, Sreedevi K Menon /16/$31.

Direction of Arrival Estimation in Smart Antenna for Marine Communication. Deepthy M Vijayan, Sreedevi K Menon /16/$31. International Conference on Communication and Signal Processing, April 6-8, 2016, India Direction of Arrival Estimation in Smart Antenna for Marine Communication Deepthy M Vijayan, Sreedevi K Menon Abstract

More information

Performance Analysis of MUSIC and MVDR DOA Estimation Algorithm

Performance Analysis of MUSIC and MVDR DOA Estimation Algorithm Volume-8, Issue-2, April 2018 International Journal of Engineering and Management Research Page Number: 50-55 Performance Analysis of MUSIC and MVDR DOA Estimation Algorithm Bhupenmewada 1, Prof. Kamal

More information

A Single Channel GLR Detector for High- Frequency Surface Wave Radar

A Single Channel GLR Detector for High- Frequency Surface Wave Radar ISS: 458-9403 Vol. 3 Issue, December - 06 A Single Channel GLR Detector for igh- Frequency Surface Wave Radar M. R. Moniri, M. ezamabadi Yadegar-e-Imam Khomeini (RA) Shahre Rey Branch, Islamic Azad University

More information

Joint Waveform Optimization and Adaptive Processing for Random-phase Radar Signals

Joint Waveform Optimization and Adaptive Processing for Random-phase Radar Signals DRDC-RDDC-013-P1 Joint Waveform Optimization and Adaptive Processing for Random-phase Radar Signals A. A. Gorji, R. J. Riddolls, Maryam Ravan, Raviraj S. Adve Department of Electrical and Computer Engineering,

More information

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p.

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. Preface p. xv Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. 6 Doppler Ambiguities and Blind Speeds

More information

Channel Modeling between Seaborne MIMO Radar and MIMO Cellular System

Channel Modeling between Seaborne MIMO Radar and MIMO Cellular System Channel Modeling between Seaborne MIMO Radar and MIMO Cellular System Awais Khawar, Ahmed Abdelhadi, and T. Charles Clancy {awais, aabdelhadi, tcc}@vt.edu Ted and Karyn Hume Center for National Security

More information

Ultra Wideband Signals and Systems in Communication Engineering M. Ghavami King s College London, UK L. B. Michael Japan R. Kohno Yokohama National University, Japan John Wiley & Sons, Ltd Ultra Wideband

More information