Analog Digital Converter

Size: px
Start display at page:

Download "Analog Digital Converter"

Transcription

1 Analog Digital Converter - Overview Analog Digital Conversion - Operation Modes: Single Mode vs. Scan mode - Registers for Data, Control, Status - Using the ADC in Software - Handling of Interrupts Karl-Ragmar Riemschneider Processor Systems 1

2 Analog Signals and Internal Representation Processor Systems 2

3 Analog to Digital Conversion - Function of Two Dimensions! Processor Systems 3

4 Digital to Analog Conversion - Function of Two Dimensions! Processor Systems 4

5 Analog to Digital Conversion - Quantization in Two Dimensions Processor Systems 5

6 Digital to Analog Conversion - "staircase" effect Processor Systems 6

7 Typical Solution: Equidistant Steps in Time and Voltage Discreet Approximation of Analog Value with Quantization Errors Processor Systems 7

8 H8S/ A/D Converter Features 10-bit resolution - successive approximation method eight input channels - analog multiplexer reference voltage (Vref) pin to define the voltage range minimum conversion time: 6.7 µs per channel at 20 MHz system clock single mode: Single-channel A/D conversion 7.27 µs per channel at MHz system clock scan mode: continuous A/D conversion of a group channels (1 to 4 channels) conversion results are held in four 16-bit data registers - one register for one channel available integrated sample and hold function conversion start events: 1) software or 2) timer conversion start trigger (TPU or 8-bit timer) 3) an external signal (A/D trigger signal) on the ADTRG pin A/D conversion end interrupt (ADI) request can be generated at the end of A/D conversion Processor Systems 8

9 Block Diagram of the A/D Converter Processor Systems 9

10 Programmers Point of View Processor Systems 10

11 A/D Converter Registers Processor Systems 11

12 Accessing A/D Conversion Result Data Step 1: read sequences 10 bit resolution: Value 1: Step1, Step 2, - combine both to a 16 bit value in SW Value 2: Step1, Step 2, - combine both to a 16 bit value in SW... Step 2: or short read sequence 8 bit resolution (least significant two bits ignored) Value 1: Step1 use as 8 bit value in SW Value 2: Step1 use as 8 bit value in SW Processor Systems 12

13 A/D Converter Data Registers High/Low (ADDRxH, ADDRxL) ADC result (10 bit resolution) (fixed) Value (16 bit) for further processing Value (10 bit) => Quantization steps of 64 in terms of binary numbers Processor Systems 13

14 Example of use ADDRxH/ADDRxL #include <mpp1.h> /* delivers ADDRAH, ADDRAL macros */ void main(void){ unsigned short an0; an0 = ADDRAH << 2; /* Step1 : Read ADDRAH in lower 8 bits of a short and shift up 2, copy result short variable an0 */ an0 = ADDRAL >> 6; /* Step 2: Read now ADDRAL (from temp), shift it bit 6 down = shift out all zeros set lowest 2 bits with bitwise "or" in the variable an0, let all other bits unchanged */ Processor Systems 14

15 A/D Converter Operation Modes Operation Modes of the Analog Digital Converter Single Mode Scan Mode One channel + One conversion only Select with SCAN Bit = 0 *) ADST Bit = 1 starts ONE conversion ( clears automatically) On completion Flag ADF is set to 1 ( clearing by SW, not automatically) *) in A/D Control/Status Register ADSCR one group of channels (group = 1 channel min. to 4 channels max.) continuous conversion Select with SCAN Bit = 1 *) ADST Bit = 1 starts conversions ( not cleared automatically) ADST Bit = 0 stops conversions completion of the group the flag ADF is set to 1 ( clearing by SW, not automatically) *) in A/D Control/Status Register ADSCR Processor Systems 15

16 Fixed Correspondence of Analog Input Pins (ANx) and ADC Data Registers Pair (ADDRnH/ADDRnL) Processor Systems 16

17 ADC Status/Control Register ADSCR - Single Mode only Start/Stop Status Flag Control Bits for select of Channel Selection of the Analog Input Pin ANx Processor Systems 17

18 Analog Input Channels and Corresponding ADDR Registers (Scan Mode only) Define Members of the group Define the active group Possible Groups Member for scan mode: Group 0: AN0, AN0 + AN1, AN0 + AN1+ AN2, AN0 + AN1+ AN2 + AN3 Group 1: AN4, AN4 + AN5, AN4 + AN5+ AN6, AN7 + AN8+ AN9 + AN Processor Systems 18

19 Single Mode Flow (Example) Initializing: Select Single mode (SCAN = 0), Select Input channel AN1 (CH2 = 0, CH1 = 0, CH0 = 1), Interrupt service only: The A/D interrupt is enabled (ADIE = 1), Start: Start A/D conversion (ADST = 1). Conversion: When A/D conversion is completed, the result is transferred to ADDRB. Flag set: At the same time: the ADF flag is set to 1 => The ADST bit is auto-cleared to 0, and the A/D converter goes to a idle state. Interrupt service only: Step (3) If ADF = 1 and ADIE = 1 request of ADI interrupt is requested. If accepted the A/D interrupt handler starts. Flag Read: If the Software detects ADF is set to 1; (or the interrupt handler runs) Flag Reset: read ADDRB, then writes 0 to the ADF flag. Software Read: The Software has to do further (or the interrupt handler) reading and processes result (ADDRB). Restart: Software ADST set to 1 (or the interrupt handler at the end). Goto Step "Conversion" Processor Systems 19

20 Single Mode Example Processor Systems 20

21 Scan Mode Flow (Example) Initialization: Select Scan Mode (SCAN = 1), Conversion: First Channel Sec. Channel Third Channel Flag set Select Scan group 0 (CH2 = 0), Select Analog input channels AN0 to AN2 (CH1 = 1, CH0 = 0), Interrupt service only: Set ADIE bit to 1 Start A/D conversion (ADST = 1) When A/D conversion of the first channel (AN0) is completed, the result is transferred to ADDRA. Conversion of the second channel (AN1) starts automatically the result is transferred to ADDRB. Conversion of the third channel (AN1) starts automatically the result is transferred to ADDRC. Interrupt service only: If the ADIE bit is set to 1 at this time, an ADI interrupt is requested after A/D conversion group ends. When conversion of all the selected channels (AN0 to AN2) is completed, the ADF flag is set to 1 and conversion of the first channel (AN0) starts again. Loop As long as the ADST bit remains set to 1: Go to Step "Conversion" or Stop Restart When the ADST bit is by Software cleared to 0, A/D conversion stops. After that, if the ADST bit is set to 1, A/D conversion starts again from the first channel (AN0). Go to Step "Conversion" Processor Systems 21

22 Scan Mode Example Processor Systems 22

23 A/D Counter Clocks States are derived from System Clock (3 Examples) selectable prescaled clocks - ADC can internal scale CLK by 2 (CKS-Bit) TPU SCI ADC *) TPU SCI ADC *) TPU SCI ADC *) Processor Systems 23

24 AD Conversion Timing Processor Systems 24

25 AD Conversion Time Scan Mode: In the second and all subsequent conversions the conversion time t conv is fixed slow successive approximation: define internal prescale of clk/2 with setting of CKS = 0: t d =0, t spl = 63 and t conv = 256 [all in system clock states] fast successive approximation: define internal use of clk with setting CKS = 1 : t d = 0, t spl =31 and t conv = 128 [all in system clock states] Single Mode or in the first Cycle of Scan Mode the conversion time t conv varies marginally (AD conversion start delay t D varies due to different access time of ADCSR) t d =??, t spl =31 / 63 and t conv =?? [all in system clock states] Processor Systems 25

26 Conversion time Example at MHz Clock Scan Mode: In the second and all subsequent conversions the conversion time t _conv is fixed if CKS = 0 : 256 system clock states => 128 x ns = µs if CKS = 1 : 128 system clock states => 128 x ns = µs In Single Mode or in the first Cycle of Scan Mode see table: 259 clk states 266 clk states 131 clk states 134 clk states Processor Systems 26

27 A/D control status register ADCSR Processor Systems 27

28 A/D Conversion Control Register Processor Systems 28

29 External Trigger Input Timing - Example Trigger Delay Trigger Delay: defined hardware function 2 system clock rising edges and one falling edge min. time > 1.5 system clock states max. time < 3 system clock states approx. time > 2 system clock states Processor Systems 29

30 A/D Converter Interrupt Source ADI starts the interrupt service routine (ISR) which: => is a part of the controller application software (called interrupt handler) => reads ADDRAH and ADDRAL => and processes (or stores) the results Processor Systems 30

31 Equidistant Sampling & Equidistant Value Quantisation Equidistant Sampling (time) => Required from the most signal processing methods (filters, transforms...) => Systematic error: Max. Resolution Sampling Periods max. 1/2 delta t => errors: (sampling) time jitter, not often: sampling time drifts (R/C Sources) Equidistant Value Quantization => Required from binary arithmetic => Systematic error: Quantization max. 1/2 LSB => other Errors: Offset, Nonlinerarity, Fullscale Error (Factor), Missing Codes Processor Systems 31

32 Example 1 of ADC settings Vref = 5 V, AVss = 0 V, AVcc > 5 V, delta t = tconv = 128 x clk period (CKS=1) Processor Systems 32

33 Example 2 of ADC settings Vref = 3 V, AVss = 0 V, AVcc > 3 V, delta t = tconv = 256 x clk period (CKS=0) Processor Systems 33

34 A/D Converter Value Precision Terms Resolution ((Vmax-Vmin) / Number of Steps) Offset error ("Non zero value") Full-scale error ("Non Max value") Quantization error (1/LSB) Nonlinearity error (excluding offset error, full-scale error, or quantization error) Absolute error (includes the offset error, full-scale error, quantization error, and nonlinearity error) Relative error = Absolute error / value Relative error Full scale = Absolute error / Max value Processor Systems 34

35 Systematic Error - Quantization (1/2 LSB) Processor Systems 35

36 Adding 1/2 LSB with respect to the Quantization Error The digital output DO is expressed by the following formula: Processor Systems 36

37 Few other Errors of an ADC (Static view only) Processor Systems 37

38 Pins of A/D Converter Processor Systems 38

39 Analog signals are much more "sensitive" then digital! Processor Systems 39

40 Exercise Please see separated presentation Processor Systems 40

10-Bit A/D Converter: Example of Settings for Conversion in Single Mode

10-Bit A/D Converter: Example of Settings for Conversion in Single Mode s APPLICATION NOTE Introduction This application note describes an example of settings for A/D conversion on a single channel as an example of application of the 10-bit A/D converter of the SH7263 and

More information

Linear Integrated Circuits

Linear Integrated Circuits Linear Integrated Circuits Single Slope ADC Comparator checks input voltage with integrated reference voltage, V REF At the same time the number of clock cycles is being counted. When the integrator output

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers Timers Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA April 2, 2018 Aly El-Osery (NMT) EE 308: Microcontrollers

More information

Lecture #4 Outline. Announcements Project Proposal. AVR Processor Resources

Lecture #4 Outline. Announcements Project Proposal. AVR Processor Resources October 11, 2002 Stanford University - EE281 Lecture #4 #1 Announcements Project Proposal Lecture #4 Outline AVR Processor Resources A/D Converter (Analog to Digital) Analog Comparator Real-Time clock

More information

The University of Texas at Arlington Lecture 10 ADC and DAC

The University of Texas at Arlington Lecture 10 ADC and DAC The University of Texas at Arlington Lecture 10 ADC and DAC CSE 3442/5442 Measuring Physical Quantities (Digital) computers use discrete values, and use these to emulate continuous values if needed. In

More information

Analog-to-Digital Converter. Student's name & ID (1): Partner's name & ID (2): Your Section number & TA's name

Analog-to-Digital Converter. Student's name & ID (1): Partner's name & ID (2): Your Section number & TA's name MPSD A/D Lab Exercise Analog-to-Digital Converter Student's name & ID (1): Partner's name & ID (2): Your Section number & TA's name Notes: You must work on this assignment with your partner. Hand in a

More information

Notes on using the A/D Converter on the. FFMC8L/LC Microcontrollers. Fujitsu Mikroelektronik GmbH Vers. 1.0 by E. Bendels

Notes on using the A/D Converter on the. FFMC8L/LC Microcontrollers. Fujitsu Mikroelektronik GmbH Vers. 1.0 by E. Bendels Application Note Notes on using the A/D Converter on the FFMC8L/LC Microcontrollers Fujitsu Mikroelektronik GmbH Vers. 1.0 by E. Bendels The following Application note is intended to give some hints on

More information

Section 22. Basic 8-bit A/D Converter

Section 22. Basic 8-bit A/D Converter M Section 22. A/D Converter HIGHLIGHTS This section of the manual contains the following major topics: 22.1 Introduction...22-2 22.2 Control Registers...22-3 22.3 A/D Acquisition Requirements...22-6 22.4

More information

Grundlagen Microcontroller Analog I/O. Günther Gridling Bettina Weiss

Grundlagen Microcontroller Analog I/O. Günther Gridling Bettina Weiss Grundlagen Microcontroller Analog I/O Günther Gridling Bettina Weiss 1 Analog I/O Lecture Overview A/D Conversion Design Issues Representation Conversion Techniques ADCs in Microcontrollers Analog Comparators

More information

LM12L Bit + Sign Data Acquisition System with Self-Calibration

LM12L Bit + Sign Data Acquisition System with Self-Calibration LM12L458 12-Bit + Sign Data Acquisition System with Self-Calibration General Description The LM12L458 is a highly integrated 3.3V Data Acquisition System. It combines a fully-differential self-calibrating

More information

Analogue to Digital Conversion

Analogue to Digital Conversion Analogue to Digital Conversion Turns electrical input (voltage/current) into numeric value Parameters and requirements Resolution the granularity of the digital values Integral NonLinearity proportionality

More information

AN3137 Application note

AN3137 Application note Application note Analog-to-digital converter on STM8L and STM8AL devices: description and precision improvement techniques Introduction This application note describes the 12-bit analog-to-digital converter

More information

MICROPROCESSORS A (17.383) Fall Lecture Outline

MICROPROCESSORS A (17.383) Fall Lecture Outline MICROPROCESSORS A (17.383) Fall 2010 Lecture Outline Class # 07 October 26, 2010 Dohn Bowden 1 Today s Lecture Syllabus review Microcontroller Hardware and/or Interface Finish Analog to Digital Conversion

More information

Lecture 7: Analog Signals and Conversion

Lecture 7: Analog Signals and Conversion ECE342 Introduction to Embedded Systems Lecture 7: Analog Signals and Conversion Ying Tang Electrical and Computer Engineering Rowan University 1 Analog Signals Everywhere Everything is an analogy in the

More information

Using the M16C/62 Analog to Digital Converter in Repeat Sweep Mode 0

Using the M16C/62 Analog to Digital Converter in Repeat Sweep Mode 0 APPLICATION NOTE M16C/62 1.0 Abstract The following article outlines the steps necessary to set up, perform, and read multiple conversions on multiple channels using the onboard analog to digital converter

More information

DS1720 ECON-Digital Thermometer and Thermostat

DS1720 ECON-Digital Thermometer and Thermostat www.maxim-ic.com FEATURES Requires no external components Supply voltage range covers from 2.7V to 5.5V Measures temperatures from 55 C to +125 C in 0.5 C increments. Fahrenheit equivalent is 67 F to +257

More information

MCP3550/1/3. Low-Power, Single-Channel 22-Bit Delta-Sigma ADCs. Description: Features: Applications: Package Types. Block Diagram

MCP3550/1/3. Low-Power, Single-Channel 22-Bit Delta-Sigma ADCs. Description: Features: Applications: Package Types. Block Diagram Low-Power, Single-Channel 22-Bit Delta-Sigma ADCs Features: 22-Bit ADC in Small 8-pin MSOP Package with Automatic Internal Offset and Gain Calibration Low-Output Noise of 2.5 µv RMS with Effective Resolution

More information

AD Bit, 20/40/65 MSPS 3 V Low Power A/D Converter. Preliminary Technical Data

AD Bit, 20/40/65 MSPS 3 V Low Power A/D Converter. Preliminary Technical Data FEATURES Ultra Low Power 90mW @ 0MSPS; 135mW @ 40MSPS; 190mW @ 65MSPS SNR = 66.5 dbc (to Nyquist); SFDR = 8 dbc @.4MHz Analog Input ENOB = 10.5 bits DNL=± 0.5 LSB Differential Input with 500MHz Full Power

More information

Course Introduction. Content 20 pages 3 questions. Learning Time 30 minutes

Course Introduction. Content 20 pages 3 questions. Learning Time 30 minutes Purpose The intent of this course is to provide you with information about the main features of the S08 Timer/PWM (TPM) interface module and how to configure and use it in common applications. Objectives

More information

Using the M16C/62 Analog to Digital Converter in One-Shot Mode

Using the M16C/62 Analog to Digital Converter in One-Shot Mode APPLICATION NOTE M16C/62 1.0 Abstract The following article outlines the steps necessary to set up, perform, and read a single conversion using the onboard analog to digital converter (ADC) of the M16C.

More information

ANLAN203. KSZ84xx GPIO Pin Output Functionality. Introduction. Overview of GPIO and TOU

ANLAN203. KSZ84xx GPIO Pin Output Functionality. Introduction. Overview of GPIO and TOU ANLAN203 KSZ84xx GPIO Pin Output Functionality Introduction Devices in Micrel s ETHERSYNCH family have several GPIO pins that are linked to the internal IEEE 1588 precision time protocol (PTP) clock. These

More information

Roland Kammerer. 13. October 2010

Roland Kammerer. 13. October 2010 Peripherals Roland Institute of Computer Engineering Vienna University of Technology 13. October 2010 Overview 1. Analog/Digital Converter (ADC) 2. Pulse Width Modulation (PWM) 3. Serial Peripheral Interface

More information

Section bit A/D Converter

Section bit A/D Converter Section. 12-bit A/D Converter HIGHLIGHTS This section of the manual contains the following major topics:.1 Introduction... -2.2 Control Registers... -4.3 A/D Result Buffer... -4.4 A/D Terminology and Conversion

More information

LC 2 MOS 8-Channel, 12-Bit Serial, Data Acquisition System AD7890

LC 2 MOS 8-Channel, 12-Bit Serial, Data Acquisition System AD7890 a LC 2 MOS 8-Channel, 12-Bit Serial, Data Acquisition System AD7890 FEATURES Fast 12-Bit ADC with 5.9 s Conversion Time Eight Single-Ended Analog Input Channels Selection of Input Ranges: 10 V for AD7890-10

More information

Lab 10. Speed Control of a D.C. motor

Lab 10. Speed Control of a D.C. motor Lab 10. Speed Control of a D.C. motor Speed Measurement: Tach Amplitude Method References: STM32L100 Data Sheet (pin definitions) STM32L100 Ref. Manual (ADC, GPIO, Clocks) Motor Speed Control Project 1.

More information

ADC Parameters. ECE/CS 5780/6780: Embedded System Design. Common Encoding Schemes. Two-Bit Flash ADC. Sixteen-Bit Dual Slope ADC

ADC Parameters. ECE/CS 5780/6780: Embedded System Design. Common Encoding Schemes. Two-Bit Flash ADC. Sixteen-Bit Dual Slope ADC ADC Parameters ECE/CS 5780/6780: Embedded System Design Chris J. Myers Lecture 19: Analog-to-Digital Conversion Precision is number of distinguishable ADC inputs. Range is maximum and minimum ADC inputs.

More information

AD Channel, ±10 V Input Range, High Throughput, 24-Bit - ADC FEATURES FUNCTIONAL BLOCK DIAGRAM APPLICATIONS GENERAL DESCRIPTION

AD Channel, ±10 V Input Range, High Throughput, 24-Bit - ADC FEATURES FUNCTIONAL BLOCK DIAGRAM APPLICATIONS GENERAL DESCRIPTION 2-Channel, ±10 V Input Range, High Throughput, 24-Bit - ADC AD7732 FEATURES High resolution ADC 24 bits no missing codes ±0.0015% nonlinearity Optimized for fast channel switching 18-bit p-p resolution

More information

Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC)

Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC) 1 Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC) 2 1. DAC In an electronic circuit, a combination of high voltage (+5V) and low voltage (0V) is usually used to represent a binary

More information

Exercise 3: Sound volume robot

Exercise 3: Sound volume robot ETH Course 40-048-00L: Electronics for Physicists II (Digital) 1: Setup uc tools, introduction : Solder SMD Arduino Nano board 3: Build application around ATmega38P 4: Design your own PCB schematic 5:

More information

ML ML Bit A/D Converters With Serial Interface

ML ML Bit A/D Converters With Serial Interface Silicon-Gate CMOS SEMICONDUCTOR TECHNICAL DATA ML145040 ML145041 8-Bit A/D Converters With Serial Interface Legacy Device: Motorola MC145040, MC145041 The ML145040 and ML145041 are low-cost 8-bit A/D Converters

More information

The MC9S12 Pulse Width Modulation System. Pulse Width Modulation

The MC9S12 Pulse Width Modulation System. Pulse Width Modulation The MC9S12 Pulse Width Modulation System o Introduction to PWM o Review of the Output Compare Function o Using Output Compare to generate a PWM signal o Registers used to enable the Output Capture Function

More information

Programming Z-COMM Phase Locked Loops

Programming Z-COMM Phase Locked Loops Programming Z-COMM Phase Locked Loops Nomenclature Z-COMM has three models of Phase Locked Loops available, each using either the National Semiconductor or the Analog Devices PLL synthesizer chip. PSNxxxxx:

More information

8-Channel, 1 MSPS, 12-Bit SAR ADC with Temperature Sensor AD7298

8-Channel, 1 MSPS, 12-Bit SAR ADC with Temperature Sensor AD7298 8-Channel, 1 MSPS, 12-Bit SAR ADC with Temperature Sensor AD7298 FEATURES 12-bit SAR ADC 8 single-ended inputs Channel sequencer functionality Fast throughput of 1 MSPS Analog input range: 0 V to 2.5 V

More information

4-Channel, Simultaneous Sampling, High Speed, 12-Bit ADC AD7864

4-Channel, Simultaneous Sampling, High Speed, 12-Bit ADC AD7864 4-Channel, Simultaneous Sampling, High Speed, 12-Bit ADC AD7864 FEATURES High speed (1.65 μs) 12-bit ADC 4 simultaneously sampled inputs 4 track-and-hold amplifiers 0.35 μs track-and-hold acquisition time

More information

16-Channel, 1 MSPS, 12-Bit ADC with Sequencer in 28-Lead TSSOP AD7490

16-Channel, 1 MSPS, 12-Bit ADC with Sequencer in 28-Lead TSSOP AD7490 a FEATURES Fast Throughput Rate: 1 MSPS Specified for V DD of 2.7 V to 5.25 V Low Power at Max Throughput Rates: 5.4 mw Max at 870 ksps with 3 V Supplies 12.5 mw Max at 1 MSPS with 5 V Supplies 16 (Single-Ended)

More information

Getting Precise with MSP430 Sigma-Delta ADC Peripherals Vincent Chan MSP430 Business Development Manager TI Asia

Getting Precise with MSP430 Sigma-Delta ADC Peripherals Vincent Chan MSP430 Business Development Manager TI Asia Getting Precise with MSP43 Sigma-Delta ADC Peripherals Vincent Chan MSP43 Business Development Manager TI Asia vince-chan@ti.com 25 Texas Instruments Inc, Slide 1 Agenda Sigma-Delta basics & benefits Understanding

More information

AN4507 Application note

AN4507 Application note Application note PWM resolution enhancement through a dithering technique for STM32 advanced-configuration, general-purpose and lite timers Introduction Nowadays power-switching electronics exhibit remarkable

More information

DS1720. Econo Digital Thermometer and Thermostat PRELIMINARY FEATURES PIN ASSIGNMENT

DS1720. Econo Digital Thermometer and Thermostat PRELIMINARY FEATURES PIN ASSIGNMENT PRELIMINARY DS1720 Econo Digital Thermometer and Thermostat FEATURES Requires no external components Supply voltage range covers from 2.7V to 5.5V Measures temperatures from 55 C to +125 C in 0.5 C increments.

More information

Embedded Systems and Software. Analog to Digital Conversion

Embedded Systems and Software. Analog to Digital Conversion Embedded Systems and Software Analog to Digital Conversion Slide 1 Analog to Digital Conversion Analog or continuous signal Discrete-time or digital signal Other terms ADC, A/D Many different techniques

More information

Microprocessor & Interfacing Lecture Programmable Interval Timer

Microprocessor & Interfacing Lecture Programmable Interval Timer Microprocessor & Interfacing Lecture 30 8254 Programmable Interval Timer P A R U L B A N S A L A S S T P R O F E S S O R E C S D E P A R T M E N T D R O N A C H A R Y A C O L L E G E O F E N G I N E E

More information

IP-OptoAD16. Opto-Isolated 16-bit A/D Conversion IndustryPack. User s Manual

IP-OptoAD16. Opto-Isolated 16-bit A/D Conversion IndustryPack. User s Manual IP-OptoAD16 Opto-Isolated 16-bit A/D Conversion IndustryPack User s Manual SBS GreenSpring Modular I/O Subject to change without notice. Manual Revision: 2 7/27/99 Hardware Revision: A IP-OptoAD16 Opto-Isolated

More information

Page 1. So Far. Usage Examples. Input Capture Basics. Familiar with CS/ECE 6780/5780. Al Davis. Trigger interrupts on rising/falling/both edges

Page 1. So Far. Usage Examples. Input Capture Basics. Familiar with CS/ECE 6780/5780. Al Davis. Trigger interrupts on rising/falling/both edges So Far CS/ECE 6780/5780 Al Davis Today s topics: Input capture particular focus on timing measurements useful for 5780 Lab 7 Familiar with threads, semaphores, & interrupts Now move on to capturing edge

More information

EE 308 Spring 2015 The MC9S12 A/D Converter

EE 308 Spring 2015 The MC9S12 A/D Converter The MC9S12 A/D Converter o Introduction to A/D Converters o Single Channel vs Multiple Channels o Singe Conversion vs Multiple Conversions o MC9S12 A/C Registers o Using the MC9S12 A/D Converter o A C

More information

16.1 ADC ADC ADC10

16.1 ADC ADC ADC10 Chapter 27 The module is a high-performance 10-bit analog-to-digital converter. This chapter describes the operation of the module of the 4xx family. The is implemented on the MSP4340F41x2 devices. Topic

More information

Microcontroller Systems. ELET 3232 Topic 21: ADC Basics

Microcontroller Systems. ELET 3232 Topic 21: ADC Basics Microcontroller Systems ELET 3232 Topic 21: ADC Basics Objectives To understand the modes and features of the Analog-to-Digital Converter on the ATmega 128 To understand how to perform an Analog-to-Digital

More information

Unit-6 PROGRAMMABLE INTERRUPT CONTROLLERS 8259A-PROGRAMMABLE INTERRUPT CONTROLLER (PIC) INTRODUCTION

Unit-6 PROGRAMMABLE INTERRUPT CONTROLLERS 8259A-PROGRAMMABLE INTERRUPT CONTROLLER (PIC) INTRODUCTION M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e 1 PROGRAMMABLE INTERRUPT CONTROLLERS 8259A-PROGRAMMABLE INTERRUPT CONTROLLER (PIC) INTRODUCTION Microcomputer system design requires

More information

Microcontrollers: Lecture 3 Interrupts, Timers. Michele Magno

Microcontrollers: Lecture 3 Interrupts, Timers. Michele Magno Microcontrollers: Lecture 3 Interrupts, Timers Michele Magno 1 Calendar 07.04.2017: Power consumption; Low power States; Buses, Memory, GPIOs 20.04.2017 Serial Communications 21.04.2017 Programming STM32

More information

Section Bit A/D Converter with Threshold Detect

Section Bit A/D Converter with Threshold Detect 51 Section 51. 12-Bit A/D Converter with Threshold Detect 12-Bit A/D Converter HIGHLIGHTS This section of the manual contains the following major topics: 51.1 Introduction... 51-2 51.2 A/D Terminology

More information

Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect

Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect HIGHLIGHTS This section of the manual contains the following major topics: 1.0 Introduction... 2 2.0 Register Maps... 4 3.0

More information

ME 461 Laboratory #3 Analog-to-Digital Conversion

ME 461 Laboratory #3 Analog-to-Digital Conversion ME 461 Laboratory #3 Analog-to-Digital Conversion Goals: 1. Learn how to configure and use the MSP430 s 10-bit SAR ADC. 2. Measure the output voltage of your home-made DAC and compare it to the expected

More information

Sigma-Delta ADCs. Benefits and Features. General Description. Applications. Functional Diagram

Sigma-Delta ADCs. Benefits and Features. General Description. Applications. Functional Diagram EVALUATION KIT AVAILABLE MAX1415/MAX1416 General Description The MAX1415/MAX1416 low-power, 2-channel, serialoutput analog-to-digital converters (ADCs) use a sigmadelta modulator with a digital filter

More information

Frequency Synthesizer

Frequency Synthesizer 50Ω The Big Deal 7600 to 7800 MHz Low phase noise and spurious Fast settling time, 50µs Max Robust design and construction Frequency modulation capability Size 2.75" x 1.96" x 0.75" CASE STYLE: KF1336

More information

EE445L Fall 2011 Quiz 2A Page 1 of 6

EE445L Fall 2011 Quiz 2A Page 1 of 6 EE445L Fall 2011 Quiz 2A Page 1 of 6 Jonathan W. Valvano First: Last: November 18, 2011, 2:00pm-2:50pm. Open book, open notes, calculator (no laptops, phones, devices with screens larger than a TI-89 calculator,

More information

5 V, 14-Bit Serial, 5 s ADC in SO-8 Package AD7894

5 V, 14-Bit Serial, 5 s ADC in SO-8 Package AD7894 a FEATURES Fast 14-Bit ADC with 5 s Conversion Time 8-Lead SOIC Package Single 5 V Supply Operation High Speed, Easy-to-Use, Serial Interface On-Chip Track/Hold Amplifier Selection of Input Ranges 10 V

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion 02534567998 6 4 2 3 4 5 6 ANALOG to DIGITAL CONVERSION Analog variation (Continuous, smooth variation) Digitized Variation (Discrete set of points) N2 N1 Digitization applied

More information

DS1202, DS1202S. Serial Timekeeping Chip FEATURES PIN ASSIGNMENT. ORDERING INFORMATION DS pin DIP DS1202S 16 pin SOIC DS1202S8 8 pin SOIC

DS1202, DS1202S. Serial Timekeeping Chip FEATURES PIN ASSIGNMENT. ORDERING INFORMATION DS pin DIP DS1202S 16 pin SOIC DS1202S8 8 pin SOIC DS22, DS22S Serial Timekeeping Chip FEATURES Real time clock counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap year compensation 2 x 8 RAM for scratchpad data

More information

Analogue to Digital Conversion

Analogue to Digital Conversion Analogue to Digital Conversion Turns electrical input (voltage/current) into numeric value Parameters and requirements Resolution the granularity of the digital values Integral NonLinearity proportionality

More information

Outline. Analog/Digital Conversion

Outline. Analog/Digital Conversion Analog/Digital Conversion The real world is analog. Interfacing a microprocessor-based system to real-world devices often requires conversion between the microprocessor s digital representation of values

More information

4-Channel, 1 MSPS, 8-/10-/12-Bit ADCs with Sequencer in 16-Lead TSSOP AD7904/AD7914/AD7924

4-Channel, 1 MSPS, 8-/10-/12-Bit ADCs with Sequencer in 16-Lead TSSOP AD7904/AD7914/AD7924 a 4-Channel, 1 MSPS, 8-/10-/12-Bit ADCs with Sequencer in 16-Lead TSSOP AD7904/AD7914/AD7924 FEATURES Fast Throughput Rate: 1 MSPS Specified for V DD of 2.7 V to 5.25 V Low Power: 6 mw max at 1 MSPS with

More information

Cyber-Physical Systems ADC / DAC

Cyber-Physical Systems ADC / DAC Cyber-Physical Systems ADC / DAC ICEN 553/453 Fall 2018 Prof. Dola Saha 1 Analog-to-Digital Converter (ADC) Ø ADC is important almost to all application fields Ø Converts a continuous-time voltage signal

More information

Houngninou 2. Abstract

Houngninou 2. Abstract Houngninou 2 Abstract The project consists of designing and building a system that monitors the phase of two pulses A and B. Three colored LEDs are used to identify the phase comparison. When the rising

More information

General-Purpose OTP MCU with 14 I/O LInes

General-Purpose OTP MCU with 14 I/O LInes General-Purpose OTP MCU with 14 I/O LInes Product Specification PS004602-0401 PRELIMINARY ZiLOG Worldwide Headquarters 910 E. Hamilton Avenue Campbell, CA 95008 Telephone: 408.558.8500 Fax: 408.558.8300

More information

ANALOG TO DIGITAL (ADC) and DIGITAL TO ANALOG CONVERTERS (DAC)

ANALOG TO DIGITAL (ADC) and DIGITAL TO ANALOG CONVERTERS (DAC) COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) ANALOG TO DIGITAL (ADC) and DIGITAL TO ANALOG CONVERTERS (DAC) Connecting digital circuitry to sensor devices

More information

+3V/+5V, Low-Power, 8-Bit Octal DACs with Rail-to-Rail Output Buffers

+3V/+5V, Low-Power, 8-Bit Octal DACs with Rail-to-Rail Output Buffers 19-1844; Rev 1; 4/1 EVALUATION KIT AVAILABLE +3V/+5V, Low-Power, 8-Bit Octal DACs General Description The are +3V/+5V single-supply, digital serial-input, voltage-output, 8-bit octal digital-toanalog converters

More information

EE 308 Spring 2013 The MC9S12 Pulse Width Modulation System

EE 308 Spring 2013 The MC9S12 Pulse Width Modulation System The MC9S12 Pulse Width Modulation System o Introduction to PWM o Review of the Output Compare Function o Using Output Compare to generate a PWM signal o Registers used to enable the Output Capture Function

More information

Key Specifications f CLK e 8 MHz L f CLK e 6 MHz. Y Resolution 12-bit a sign or 8-bit a sign. Y 13-bit conversion time 5 5 ms 7 3 ms (max)

Key Specifications f CLK e 8 MHz L f CLK e 6 MHz. Y Resolution 12-bit a sign or 8-bit a sign. Y 13-bit conversion time 5 5 ms 7 3 ms (max) LM12434 LM12 L 438 12-Bit a Sign Data Acquisition System with Serial I O and Self-Calibration General Description The LM12434 and LM12 L 438 are highly integrated Data Acquisition Systems Operating on

More information

L9: Analog Building Blocks (OpAmps, A/D, D/A)

L9: Analog Building Blocks (OpAmps, A/D, D/A) L9: Analog Building Blocks (OpAmps, A/D, D/A) Courtesy of Dave Wentzloff. Used with permission. 1 Introduction to Operational Amplifiers v id in DC Model a v id LM741 Pinout out 10 to 15V Typically very

More information

Stand-Alone, 10-Channel, 10-Bit System Monitors with Internal Temperature Sensor and VDD Monitor

Stand-Alone, 10-Channel, 10-Bit System Monitors with Internal Temperature Sensor and VDD Monitor 19-2839; Rev 1; 6/10 Stand-Alone, 10-Channel, 10-Bit System Monitors General Description The are stand-alone, 10-channel (8 external, 2 internal) 10-bit system monitor ADCs with internal reference. A programmable

More information

Analogue Interfacing. What is a signal? Continuous vs. Discrete Time. Continuous time signals

Analogue Interfacing. What is a signal? Continuous vs. Discrete Time. Continuous time signals Analogue Interfacing What is a signal? Signal: Function of one or more independent variable(s) such as space or time Examples include images and speech Continuous vs. Discrete Time Continuous time signals

More information

Section 1. Fundamentals of DDS Technology

Section 1. Fundamentals of DDS Technology Section 1. Fundamentals of DDS Technology Overview Direct digital synthesis (DDS) is a technique for using digital data processing blocks as a means to generate a frequency- and phase-tunable output signal

More information

µtasker Document µtasker Hardware Timers

µtasker Document µtasker Hardware Timers Embedding it better... µtasker Document utaskerhwtimers.doc/0.07 Copyright 2016 M.J.Butcher Consulting Table of Contents 1. Introduction...3 2. Timer Control Interface...3 3. Configuring a Single-Shot

More information

16-Bit, Low-Power, 2-Channel, Sigma-Delta ADC MX7705

16-Bit, Low-Power, 2-Channel, Sigma-Delta ADC MX7705 General Description The MX7705 low-power, 2-channel, serial-output analog-to-digital converter (ADC) includes a sigma-delta modulator with a digital filter to achieve 16-bit resolution with no missing

More information

LM12454,LM12458,LM12H458

LM12454,LM12458,LM12H458 LM12454,LM12458,LM12H458 LM12454/LM12458/LM12H458 12-Bit + Sign Data Acquisition System with Self-Calibration Literature Number: SNAS079A 12-Bit + Sign Data Acquisition System with Self-Calibration General

More information

MCP3426/7/8. 16-Bit, Multi-Channel ΔΣ Analog-to-Digital Converter with I 2 C Interface and On-Board Reference. Features.

MCP3426/7/8. 16-Bit, Multi-Channel ΔΣ Analog-to-Digital Converter with I 2 C Interface and On-Board Reference. Features. 16-Bit, Multi-Channel ΔΣ Analog-to-Digital Converter with I 2 C Interface and On-Board Reference Features 16-bit ΔΣ ADC with Differential Inputs: - 2 channels: MCP3426 and MCP3427-4 channels: MCP3428 Differential

More information

GigaDevice Semiconductor Inc. GD32F10xxx ARM Cortex -M3 32-bit MCU. Application Note AN003

GigaDevice Semiconductor Inc. GD32F10xxx ARM Cortex -M3 32-bit MCU. Application Note AN003 GigaDevice Semiconductor Inc. GD32F10xxx ARM Cortex -M3 32-bit MCU Application Note AN003 Table of Contents Table of Contents 1 List of Tables. 2 1 Introduction. 3 2 ADC power-on status 3 2.1 ADCON operation

More information

Hello and welcome to this Renesas Interactive Course that provides an overview of the timers found on RL78 MCUs.

Hello and welcome to this Renesas Interactive Course that provides an overview of the timers found on RL78 MCUs. Hello and welcome to this Renesas Interactive Course that provides an overview of the timers found on RL78 MCUs. 1 The purpose of this course is to provide an introduction to the RL78 timer Architecture.

More information

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range 19-2755; Rev 1; 8/3 16-Bit, 135ksps, Single-Supply ADCs with General Description The 16-bit, low-power, successiveapproximation analog-to-digital converters (ADCs) feature automatic power-down, a factory-trimmed

More information

8-Channel, 1 MSPS, 10-Bit SAR ADC AD7298-1

8-Channel, 1 MSPS, 10-Bit SAR ADC AD7298-1 8-Channel, 1 MSPS, 10-Bit SAR ADC AD7298-1 FEATURES 10-bit SAR ADC 8 single-ended inputs Channel sequencer functionality Fast throughput of 1 MSPS Analog input range: 0 V to 2.5 V Temperature range: 40

More information

ELCT 912: Advanced Embedded Systems

ELCT 912: Advanced Embedded Systems ELCT 912: Advanced Embedded Systems Lecture 5: PIC Peripherals on Chip Dr. Mohamed Abd El Ghany, Department of Electronics and Electrical Engineering The PIC Family: Peripherals Different PICs have different

More information

± SLAS262C OCTOBER 2000 REVISED MAY 2003

± SLAS262C OCTOBER 2000 REVISED MAY 2003 14-Bit Resolution for TLC3574/78, 12-Bit for TLC2574/2578 Maximum Throughput 200-KSPS Multiple Analog Inputs: 8 Single-Ended Channels for TLC3578/2578 4 Single-Ended Channels for TLC3574/2574 Analog Input

More information

1. R-2R ladder Digital-Analog Converters (DAC). Connect the DAC boards (2 channels) and Nexys 4 board according to Fig. 1.

1. R-2R ladder Digital-Analog Converters (DAC). Connect the DAC boards (2 channels) and Nexys 4 board according to Fig. 1. Analog-Digital and Digital-Analog Converters Digital Electronics Labolatory Ernest Jamro, Maciej Wielgosz, Piotr Rzeszut Dep. of Electronics, AGH-UST, Kraków Poland, 2015-01-10 1. R-2R ladder Digital-Analog

More information

SDIC XX 5075 SD5075. Two Wires Communication Digital Temperature Sensor. Features. Description. Applications. Ordering Information

SDIC XX 5075 SD5075. Two Wires Communication Digital Temperature Sensor. Features. Description. Applications. Ordering Information Two Wires Communication Digital Temperature Sensor Features 2 bits digital temperature readout, 0.0625 resolution ±0.8 maximum error at -40 ~+00 range ±.5 maximum error at -55 ~+25 range Two wires communication

More information

ADC Bit µp Compatible A/D Converter

ADC Bit µp Compatible A/D Converter ADC1001 10-Bit µp Compatible A/D Converter General Description The ADC1001 is a CMOS, 10-bit successive approximation A/D converter. The 20-pin ADC1001 is pin compatible with the ADC0801 8-bit A/D family.

More information

I2C Demonstration Board I 2 C-bus Protocol

I2C Demonstration Board I 2 C-bus Protocol I2C 2005-1 Demonstration Board I 2 C-bus Protocol Oct, 2006 I 2 C Introduction I ² C-bus = Inter-Integrated Circuit bus Bus developed by Philips in the early 80s Simple bi-directional 2-wire bus: serial

More information

APPLICATION NOTE. Atmel AVR127: Understanding ADC Parameters. Atmel 8-bit Microcontroller. Features. Introduction

APPLICATION NOTE. Atmel AVR127: Understanding ADC Parameters. Atmel 8-bit Microcontroller. Features. Introduction APPLICATION NOTE Atmel AVR127: Understanding ADC Parameters Atmel 8-bit Microcontroller Features Getting introduced to ADC concepts Understanding various ADC parameters Understanding the effect of ADC

More information

TIP500. Optically Isolated 16 Channel 12 Bit ADC. Version 1.1. User Manual. Issue January 2010

TIP500. Optically Isolated 16 Channel 12 Bit ADC. Version 1.1. User Manual. Issue January 2010 The Embedded I/O Company TIP500 Optically Isolated 16 Channel 12 Bit ADC Version 1.1 User Manual Issue 1.1.9 January 2010 TEWS TECHNOLOGIES GmbH Am Bahnhof 7 25469 Halstenbek, Germany Phone: +49 (0) 4101

More information

1 A1 PROs. Ver0.1 Ai9943. Complete 10-bit, 25MHz CCD Signal Processor. Features. General Description. Applications. Functional Block Diagram

1 A1 PROs. Ver0.1 Ai9943. Complete 10-bit, 25MHz CCD Signal Processor. Features. General Description. Applications. Functional Block Diagram 1 A1 PROs A1 PROs Ver0.1 Ai9943 Complete 10-bit, 25MHz CCD Signal Processor General Description The Ai9943 is a complete analog signal processor for CCD applications. It features a 25 MHz single-channel

More information

8-Channel, 200 ksps, 12-Bit ADC with Sequencer in 20-Lead TSSOP AD7927

8-Channel, 200 ksps, 12-Bit ADC with Sequencer in 20-Lead TSSOP AD7927 Data Sheet FEATURES Fast throughput rate: 200 ksps Specified for AVDD of 2.7 V to 5.25 V Low power 3.6 mw maximum at 200 ksps with 3 V supply 7.5 mw maximum at 200 ksps with 5 V supply 8 (single-ended)

More information

CDK bit, 25 MSPS 135mW A/D Converter

CDK bit, 25 MSPS 135mW A/D Converter CDK1304 10-bit, 25 MSPS 135mW A/D Converter FEATURES n 25 MSPS converter n 135mW power dissipation n On-chip track-and-hold n Single +5V power supply n TTL/CMOS outputs n 5pF input capacitance n Tri-state

More information

FUNCTIONAL BLOCK DIAGRAM 8-BIT AUX DAC 8-BIT AUX DAC 10-BIT AUX DAC LATCH LATCH LATCH

FUNCTIONAL BLOCK DIAGRAM 8-BIT AUX DAC 8-BIT AUX DAC 10-BIT AUX DAC LATCH LATCH LATCH a FEATURES Single +5 V Supply Receive Channel Differential or Single-Ended Analog Inputs Auxiliary Set of Analog I & Q Inputs Two Sigma-Delta A/D Converters Choice of Two Digital FIR Filters Root-Raised-Cosine

More information

Simultaneous Sampling Dual 175 ksps 14-Bit ADC AD7863

Simultaneous Sampling Dual 175 ksps 14-Bit ADC AD7863 Simultaneous Sampling Dual 175 ksps 14-Bit ADC AD7863 FEATURES Two fast 14-bit ADCs Four input channels Simultaneous sampling and conversion 5.2 μs conversion time Single supply operation Selection of

More information

LC 2 MOS 8-Channel, 12-Bit Serial Data Acquisition System AD7890

LC 2 MOS 8-Channel, 12-Bit Serial Data Acquisition System AD7890 LC 2 MOS 8-Channel, 12-Bit Serial Data Acquisition System AD7890 FEATURES Fast 12-bit ADC with 5.9 μs conversion time Eight single-ended analog input channels Selection of input ranges: ±10 V for AD7890-10

More information

Testing A/D Converters A Practical Approach

Testing A/D Converters A Practical Approach Testing A/D Converters A Practical Approach Mixed Signal The seminar entitled Testing Analog-to-Digital Converters A Practical Approach is a one-day information intensive course, designed to address the

More information

Figure 1. C805193x/92x Capacitive Touch Sense Development Platform

Figure 1. C805193x/92x Capacitive Touch Sense Development Platform CAPACITIVE TOUCH SENSE SOLUTION RELEVANT DEVICES The concepts and example code in this application note are applicable to the following device families: C8051F30x, C8051F31x, C8051F320/1, C8051F33x, C8051F34x,

More information

Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which

Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which behaves like ADC with external analog part and configurable

More information

UNDERSTANDING THE DDC112 s CONTINUOUS AND NON-CONTINUOUS MODES OVERVIEW

UNDERSTANDING THE DDC112 s CONTINUOUS AND NON-CONTINUOUS MODES OVERVIEW UNDERSTANDING THE DDC112 s CONTINUOUS AND NON-CONTINUOUS MODES By Jim Todsen This application bulletin provides additional information on how the DDC112 s continuous and non-continuous modes work and how

More information

THE PERFORMANCE TEST OF THE AD CONVERTERS EMBEDDED ON SOME MICROCONTROLLERS

THE PERFORMANCE TEST OF THE AD CONVERTERS EMBEDDED ON SOME MICROCONTROLLERS THE PERFORMANCE TEST OF THE AD CONVERTERS EMBEDDED ON SOME MICROCONTROLLERS R. Holcer Department of Electronics and Telecommunications, Technical University of Košice, Park Komenského 13, SK-04120 Košice,

More information

ADC081C021/ADC081C027

ADC081C021/ADC081C027 I 2 C-Compatible, 8-Bit Analog-to-Digital Converter with Alert Function General Description The ADC081C021 is a low-power, monolithic, 8-bit, analog-to-digital converter (ADC) that operates from a +2.7

More information

Chapter 6 PROGRAMMING THE TIMERS

Chapter 6 PROGRAMMING THE TIMERS Chapter 6 PROGRAMMING THE TIMERS Force Outputs on Outcompare Input Captures Programmabl e Prescaling Prescaling Internal clock inputs Timer-counter Device Free Running Outcompares Lesson 2 Free Running

More information

8253 functions ( General overview )

8253 functions ( General overview ) What are these? The Intel 8253 and 8254 are Programmable Interval Timers (PITs), which perform timing and counting functions. They are found in all IBM PC compatibles. 82C54 which is a superset of the

More information