Basic SAR Analysis. New York City. CEE 6100/ CSS 6600 Remote Sensing Fundamentals Lab #8: Radar

Size: px
Start display at page:

Download "Basic SAR Analysis. New York City. CEE 6100/ CSS 6600 Remote Sensing Fundamentals Lab #8: Radar"

Transcription

1 1 Basic SAR Analysis Images for this tutorial were taken from the SIR C/X archive at This web site has a good collection of examples of multi frequency, multi polarization images for a variety of applications. The specific images discussed in this exercise may be downloaded from the class web site: New York City: NYC_ _p45621.tif Pishan: Pishan_China_ _p46177.tif Stockholm_ _p49516.tif New York City This is radar image of the New York city metropolitan area. The island of Manhattan appears in the center of the image. The green-colored rectangle on Manhattan is Central Park. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on October 10, North is toward the upper right. The area shown is 75.0 kilometers by 48.8 kilometers (46.5 miles by 30.2 miles). The image is centered at 40.7 degrees north latitude and 73.8 degrees west longitude. Red: L-band HH; Green: L-band HV; Blue: C-band HV In general: light blue areas correspond to dense urban development, green areas to moderately vegetated zones and black areas to bodies of water. The radar illumination is from the left of the image. The Hudson River is the black strip that runs from the left edge to the upper right corner of the image. It separates New Jersey, in the upper left of the image, from New York. The Atlantic Ocean is at the bottom of the image where two barrier islands along the southern shore of Long Island are also visible. John F. Kennedy International Airport is visible above these islands. Long Island Sound, separating Long Island from Connecticut, is the dark area right of the center of the image. Many bridges are visible in the image, including the Verrazano Narrows, George Washington and Brooklyn bridges. Examine the image in detail: 1. Download the file NYC_ _p45621.tif from the course web site. 2. Load the image into ENVI and display as a color image (the default). Figure 1: NY City radar image

2 2 3. Display the individual bands as separate images (Select the gray scale option and remember to select a new display for each image) 4. Link the set of images. In any of the image windows, select Tools > Link > Link Displays. When you change the size of a window or move the view in any one image window the other windows will track the move. 5. You may find it helpful to locate the area in Google Earth or Google Maps for reference and identification of individual features. 6. Corner reflection: Locate the area with the bright return in the L-band HH image in the lower left corner of the image. The bright sections correspond to areas where the streets are oriented perpendicular to the radar look direction, thus providing efficient corner reflectors The area is only bright in the like-polarization image, In the cross-polarization images, the return is relatively bright and uniform regardless of the orientation of the streets. (Why?) 7. Texture: JFK airport is located along the causeway below the bright areas. You can identify the airport in the cross polarization images by the dark runways bounded by the slightly brighter grass areas. This is most obvious in the C-band HV image. The runways are relatively smooth at the radar wavelengths and reflect most of the radiation away from the radar. Grass is slightly rougher and returns some radiation even though the vegetation is generally darker (water content). Figure 2: Area near JFK airport 8. Water is also smooth (in this image) at the radar wavelengths and is uniformly dark, generally contrasting well with the land. Note, however that the land-water difference is dependent on

3 3 look-angle and the relative roughness of the land surface. There are a number of small, marshy islands in the bay to the right of the airport in the images above. The islands are only apparent in the C-band image, in part because the marsh grasses are rough at the C-band wavelength and relatively smooth in L-band. Also, the grasses are probably partially submerged (water reflection). The land water distinction can also be confounded by smooth shores (e.g., mud flats). 9. Vegetation: Parkland is generally darker than the surrounding city areas. The vegetated areas do not contain coherent corner reflectors and the water content tends to subdue the return. Return from vegetation also tends to favor multiple scattering which favors depolarization. There is an interesting contrast between the parkland (toward the top of the image above) and the marshland around the bay. The marshland tends to be brighter than the parkland in the C-band HV image while both are about the same tone in the L-band HV. The marsh practically disappears in the L- band HH image. The parkland vegetation is predominantly trees and shrubs more responsive to longer wavelengths than the low and relatively uniform marsh grasses. Figure 3: New York Harbor 10. Shift to New York Harbor on the left side of the image. The bright spots in the harbor are ships (tankers, container ships, etc.) anchored in the harbor. Together with the water they form small corner reflectors and provide strong return in all three images. Even boats too small to be resolved in the image will act as point corner reflectors. Transmission line: In the upper right of L-band HH (red) L-band HV (green) C-band HV (blue)

4 4 11. Figure 3 is a series of dots arcing upward toward the top of the image. These are the metal towers of a transmission line passing through a marshy pond area. The towers provide a strong radar return in all the images. 12. Arched road: Just below the transmission line is a curving road passing through the flat, marshy area (highlighted by the zoom box). The portions of the road at an angle to the radar look direction provide a strong radar return. As the road becomes increasingly parallel to the radar look direction and the signal diminishes noticeably. When at an angle to the radar the sides of the elevated structure provide a surface to reflect radiation. When the road is parallel to the look direction the sides are not providing a scattering (reflective) surface and most of the radar radiation is reflected away from the radar by the relatively smooth road surface. Pishan, China This radar image is centered near the small town of Pishan in northwest China, about 280 km (174 miles) southeast of the city of Kashgar along the ancient Silk Route in the Taklamakan desert of the Xinjiang Province. Geologists are using this radar image as a map to study past climate changes and tectonics of the area. The irregular lavender branching patterns in the center of the image are the remains of ancient alluvial fans, gravel deposits that have accumulated at the base of the mountains during times of wetter climate. The subtle striped pattern cutting across the ancient fans are caused by thrusting of the Kun Lun Mountains north. This motion is caused by the continuing plate-tectonic collision of India with Asia. Modern fans show up as large lavender triangles above the ancient fan deposits. Yellow areas on the modern fans are vegetated oases. The gridded pattern results from the alignment of poplar trees that have been planted as wind breaks. The reservoir at the top of the image is part of a sophisticated irrigation system that supplies water to the oases. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour in April This image is centered at 37.4 degrees north latitude, 78.3 degrees east longitude and shows an area approximately 50 km by 100 km (31 miles by 62 miles). Figure 4: Pishan, China. From top to bottom: Color; L-band HH (red); L-band HV (green); C-band HV (blue).

5 5 Examine the image in detail: 1. Download the image file Pishan_China_ _p46177.tif from the course web site. 2. Load the image into ENVI, display and link the images as with the NY City image. 3. Locate the area in Google Earth by typing in the coordinates (as above). 4. Roughness scale: The area highlighted by the zoom box in Figure 4 demonstrates the dependence the radar return on the roughness scale relative to the wavelength. In C-Band, there is little differentiation between the poplar groves and the alluvial Figure 5: Google Earth image of the Pishan scene. fan both are roughly equally rough. As seen in Figure 6, there are clear differences in the structural detail, but the overall tone of the two areas is the same in C-band. Figure 6: Poplar groves and alluvial fan. 5. Polarization: There is clearly contrast between the L-band images as well. The like polarization images (Figure 6) shows significant structural detail in the grids of the poplar grove. The pattern is difficult to see in the cross-polarization L-band image, for which the return is dominated by depolarization due to multiple scattering, and effect which appears to blur the geometric details.

6 6 Illumination direction and layover: Move to the section of the image outlined in the false color image comprised of the three radar bands (Figure 7). A color image of Figure 7: Color image to locate the mountain scene. the highlighted area from Goo Google Earth (enhanced) is shown in Figure 8. The natural illumination from sunlight is from the south (bottom of the image in Figure 8. Thus, the outlined area is a valley with the brighter northern hillside tilted toward the south. Contrast this with the radar images in Figure 9 where the northern hillside is dark and elongated (tilted away from the radar look direction) and the southern hillside is bright and foreshortened (tilted toward the radar look direction). The south-tilted slope shows evidence of pseudo-shadowing and, in a few areas, radar shadow. Figure 8: Color image from Google Earth of the mountain scene. Figure 9: Pishan mountains

7 7 6. Range, wavelength and polarization: The L-band HH image in Figure 9 is the sharpest image of the set. This may be in part due to the wavelength, but is probably more a factor of the likepolarization. The greater part of the energy is returned after one scattering event leading to a stronger signal in the like-polarization image. Both of the cross-polarization images show fading toward the bottom. This is the portion of the image that is farthest from the radar and the signal is already relatively low. That coupled with the lossy nature of multiple scattering leads to an overall loss of contrast. 7. Overlay: I could not find an unambiguous example of overlay in this image. Perhaps you can find one. Stockholm, Sweden The flat, glaciated region that surrounds the city of Stockholm, Sweden is shown on this radar image. The southern portion of this capital city is the bright area in the upper right of the image. Dark areas on the image are the fjords, lakes and rivers that crisscross the region, forming thousands of islands that comprise the Stockholm archipelago. Green areas on the image are vegetation, blue areas have been partially cleared and white areas are urban and other settlements. The area shown is 27 by 40 kilometers (16 by 25 miles) centered at 59.2 degrees north latitude, 17.9 degrees east longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on October 2, Examine the image in detail: 1. Download the image file Stockholm_ _p49516.tif from the course web site. Figure 10. Stockholm Sweden 2. Load the image into ENVI, display and link the images as with the previous examples. 3. Locate the area in Google Earth by typing in the coordinates 59.2N, 17.9E. You will find a somewhat better correspondence of land use patterns if you display the 9/5/2005 image from the historical image set (click on the clock in the icon string at the top of the Google Earth window and use the slider to examine the different images). 4. Display the area outlined in the red box in Figure Corner reflection: The look direction in this case is from the bottom of the image. Compare the northern shores of the fjords with the southern shores. The northern (east-west trending) shores are generally brighter than the southern shores because the combination of the water, steep shoreline and the orientation form a corner reflector for the radar. The same phenomenon often occurs at the border of the cleared fields and forest.

8 8 6. Transmission line: Examine the area highlighted by the zoom box in Figure 11. The linear feature is very bright in the L-band HH image and the line extends east and west from that point, though not as consistently. The feature is not apparent in either of the cross-polarization images. This is a transmission line: a set of wires on towers. It is likely that the spacing and orientation of the wires at the outlined location are nearly ideal to serve as a reflector or antenna for the L-band radiation when looking in the like-polarization mode. With cross-polarization, the amplification effect is lost. The right of way for the transmission line is apparent in the Google Earth image and if you look carefully you will be able to locate at some of the towers. The transmission lines themselves are not discernible in the Google Earth image. Figure 11: West of Stockholm 7. Volume scattering: An agricultural field (white arrow in Figure 11) is quite dark in the L-band HH image, and is surrounded by forest which provides a bright return. The field probably has a relatively uniform canopy capable of reflecting the majority of radiation away from the radar in a single reflection whereas the forest canopy provides a much brighter return. In the crosspolarization mode, the field and forest are nearly indistinguishable. It is curious that this occurs in both L-band and C-band, and only at this location. It may be an unusual crop.

ACTIVE SENSORS RADAR

ACTIVE SENSORS RADAR ACTIVE SENSORS RADAR RADAR LiDAR: Light Detection And Ranging RADAR: RAdio Detection And Ranging SONAR: SOund Navigation And Ranging Used to image the ocean floor (produce bathymetic maps) and detect objects

More information

Exploring the Earth with Remote Sensing: Tucson

Exploring the Earth with Remote Sensing: Tucson Exploring the Earth with Remote Sensing: Tucson Project ASTRO Chile March 2006 1. Introduction In this laboratory you will explore Tucson and its surroundings with remote sensing. Remote sensing is the

More information

Imaging radar Imaging radars provide map-like coverage to one or both sides of the aircraft.

Imaging radar Imaging radars provide map-like coverage to one or both sides of the aircraft. CEE 6100 / CSS 6600 Remote Sensing Fundamentals 1 Imaging radar Imaging radars provide map-like coverage to one or both sides of the aircraft. Acronyms: RAR real aperture radar ("brute force", "incoherent")

More information

Module 4, Investigation 2: Log 1 What features do archaeologists look for on an image?

Module 4, Investigation 2: Log 1 What features do archaeologists look for on an image? What are the seven elements used by geoarchaeologists to analyze and interpret remotely sensed images? Geoarchaeologists face several issues when using remotely sensed images. They must determine the location

More information

ANALYSIS OF SRTM HEIGHT MODELS

ANALYSIS OF SRTM HEIGHT MODELS ANALYSIS OF SRTM HEIGHT MODELS Sefercik, U. *, Jacobsen, K.** * Karaelmas University, Zonguldak, Turkey, ugsefercik@hotmail.com **Institute of Photogrammetry and GeoInformation, University of Hannover,

More information

Radar Imaging Wavelengths

Radar Imaging Wavelengths A Basic Introduction to Radar Remote Sensing ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland, Oregon 3 November 2015 Radar Imaging

More information

Interpreting Digital RADAR Images

Interpreting Digital RADAR Images R A D A R Introduction to Interpreting Digital Radar Images I N T E R P R E T Interpreting Digital RADAR Images with TNTmips page 1 Before Getting Started Airborne and satellite radar systems are versatile

More information

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2)

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2) Remote Sensing Ch. 3 Microwaves (Part 1 of 2) 3.1 Introduction 3.2 Radar Basics 3.3 Viewing Geometry and Spatial Resolution 3.4 Radar Image Distortions 3.1 Introduction Microwave (1cm to 1m in wavelength)

More information

RADAR (RAdio Detection And Ranging)

RADAR (RAdio Detection And Ranging) RADAR (RAdio Detection And Ranging) CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE Real

More information

Microwave remote sensing. Rudi Gens Alaska Satellite Facility Remote Sensing Support Center

Microwave remote sensing. Rudi Gens Alaska Satellite Facility Remote Sensing Support Center Microwave remote sensing Alaska Satellite Facility Remote Sensing Support Center 1 Remote Sensing Fundamental The entire range of EM radiation constitute the EM Spectrum SAR sensors sense electromagnetic

More information

Interpreting land surface features. SWAC module 3

Interpreting land surface features. SWAC module 3 Interpreting land surface features SWAC module 3 Interpreting land surface features SWAC module 3 Different kinds of image Panchromatic image True-color image False-color image EMR : NASA Echo the bat

More information

Review. Guoqing Sun Department of Geography, University of Maryland ABrief

Review. Guoqing Sun Department of Geography, University of Maryland ABrief Review Guoqing Sun Department of Geography, University of Maryland gsun@glue.umd.edu ABrief Introduction Scattering Mechanisms and Radar Image Characteristics Data Availability Example of Applications

More information

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing GMAT 9600 Principles of Remote Sensing Week 4 Radar Background & Surface Interactions Acknowledgment Mike Chang Natural Resources Canada Process of Atmospheric Radiation Dr. Linlin Ge and Prof Bruce Forster

More information

Overview. Introduction. Elements of Image Interpretation. LA502 Special Studies Remote Sensing

Overview. Introduction. Elements of Image Interpretation. LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Elements of Image Interpretation Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview Introduction

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

Radar Imagery for Forest Cover Mapping

Radar Imagery for Forest Cover Mapping Purdue University Purdue e-pubs LARS Symposia Laboratory for Applications of Remote Sensing 1-1-1981 Radar magery for Forest Cover Mapping D. J. Knowlton R. M. Hoffer Follow this and additional works at:

More information

10 Radar Imaging Radar Imaging

10 Radar Imaging Radar Imaging 10 Radar Imaging Active sensors provide their own source of energy to illuminate the target. Active sensors are generally divided into two distinct categories: imaging and non-imaging. The most common

More information

Enhancement of Multispectral Images and Vegetation Indices

Enhancement of Multispectral Images and Vegetation Indices Enhancement of Multispectral Images and Vegetation Indices ERDAS Imagine 2016 Description: We will use ERDAS Imagine with multispectral images to learn how an image can be enhanced for better interpretation.

More information

Exercise 4-1 Image Exploration

Exercise 4-1 Image Exploration Exercise 4-1 Image Exploration With this exercise, we begin an extensive exploration of remotely sensed imagery and image processing techniques. Because remotely sensed imagery is a common source of data

More information

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7670 05921 Email: mdisney@ucl.geog.ac.uk www.geog.ucl.ac.uk/~mdisney

More information

How to Vignette. Introduction. Written by Jonathan Sachs Copyright Digital Light & Color

How to Vignette. Introduction. Written by Jonathan Sachs Copyright Digital Light & Color Written by Jonathan Sachs Copyright 1999-2000 Digital Light & Color Introduction This document explains several methods for creating vignettes with Picture Window. To vignette means to create a soft-edged

More information

How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser

How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser Including Introduction to Remote Sensing Concepts Based on: igett Remote Sensing Concept Modules and GeoTech

More information

Chapter 3: Assorted notions: navigational plots, and the measurement of areas and non-linear distances

Chapter 3: Assorted notions: navigational plots, and the measurement of areas and non-linear distances : navigational plots, and the measurement of areas and non-linear distances Introduction Before we leave the basic elements of maps to explore other topics it will be useful to consider briefly two further

More information

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM Yunling Lou, Yunjin Kim, and Jakob van Zyl Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, MS 300-243 Pasadena,

More information

Viewing Landsat TM images with Adobe Photoshop

Viewing Landsat TM images with Adobe Photoshop Viewing Landsat TM images with Adobe Photoshop Reformatting images into GeoTIFF format Of the several formats in which Landsat TM data are available, only a few formats (primarily TIFF or GeoTIFF) can

More information

Introduction Getting Started

Introduction Getting Started Introduction Getting Started 1. If you haven t done it already, download Google Earth TM 5.0 from earth.google.com and install it on your computer. 2. If you haven t done it already, download the Essentials_3E_Geotours.kmz

More information

Introduction Active microwave Radar

Introduction Active microwave Radar RADAR Imaging Introduction 2 Introduction Active microwave Radar Passive remote sensing systems record electromagnetic energy that was reflected or emitted from the surface of the Earth. There are also

More information

DEMS BASED ON SPACE IMAGES VERSUS SRTM HEIGHT MODELS. Karsten Jacobsen. University of Hannover, Germany

DEMS BASED ON SPACE IMAGES VERSUS SRTM HEIGHT MODELS. Karsten Jacobsen. University of Hannover, Germany DEMS BASED ON SPACE IMAGES VERSUS SRTM HEIGHT MODELS Karsten Jacobsen University of Hannover, Germany jacobsen@ipi.uni-hannover.de Key words: DEM, space images, SRTM InSAR, quality assessment ABSTRACT

More information

PlanIt! for Photographers ALL-IN-ONE PLANNING APP FOR LANDSCAPE PHOTOGRAPHERS QUICK USER GUIDES

PlanIt! for Photographers ALL-IN-ONE PLANNING APP FOR LANDSCAPE PHOTOGRAPHERS QUICK USER GUIDES PlanIt! for Photographers ALL-IN-ONE PLANNING APP FOR LANDSCAPE PHOTOGRAPHERS QUICK USER GUIDES User Interface Overview Title Bar Ephemeris Pager Page Indicator Info Window Scene Pin Map with Info Overlay

More information

Introduction to Radar

Introduction to Radar National Aeronautics and Space Administration ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov @NASAARSET Introduction to Radar Jul. 16, 2016 www.nasa.gov Objective The objective of this

More information

Smithsonian. Reflections National Earth: AirExploring and Space Planet Earth Museu from Space program is made possible by support from Honda.

Smithsonian. Reflections National Earth: AirExploring and Space Planet Earth Museu from Space program is made possible by support from Honda. Smithsonian Reflections National Earth: AirExploring and Space Planet Earth Museu from Space program is made possible by support from Honda. Reflections on Earth: Exploring Planet Earth from Space Reflections

More information

NEXTMAP. P-Band. Airborne Radar Imaging Technology. Key Benefits & Features INTERMAP.COM. Answers Now

NEXTMAP. P-Band. Airborne Radar Imaging Technology. Key Benefits & Features INTERMAP.COM. Answers Now INTERMAP.COM Answers Now NEXTMAP P-Band Airborne Radar Imaging Technology Intermap is proud to announce the latest advancement of their Synthetic Aperture Radar (SAR) imaging technology. Leveraging over

More information

Land Use Change Explanation Guide

Land Use Change Explanation Guide Land Use Change Explanation Guide Las Vegas area Las Vegas September 13, 1972 Landsat 1 MSS bands 4, 2, 1 Las Vegas - September 10, 1992 Landsat 5 MSS bands 4, 2, 1 The false-color composite images (TM

More information

Lecture Series SGL 308: Introduction to Geological Mapping Lecture 8 LECTURE 8 REMOTE SENSING METHODS: THE USE AND INTERPRETATION OF SATELLITE IMAGES

Lecture Series SGL 308: Introduction to Geological Mapping Lecture 8 LECTURE 8 REMOTE SENSING METHODS: THE USE AND INTERPRETATION OF SATELLITE IMAGES LECTURE 8 REMOTE SENSING METHODS: THE USE AND INTERPRETATION OF SATELLITE IMAGES LECTURE OUTLINE Page 8.0 Introduction 114 8.1 Objectives 115 115 8.2 Remote Sensing: Method of Operation 8.3 Importance

More information

PROCEEDINGS - AAG MIDDLE STATES DIVISION - VOL. 21, 1988

PROCEEDINGS - AAG MIDDLE STATES DIVISION - VOL. 21, 1988 PROCEEDINGS - AAG MIDDLE STATES DIVISION - VOL. 21, 1988 SPOTTING ONEONTA: A COMPARISON OF SPOT 1 AND landsat 1 IN DETECTING LAND COVER PATTERNS IN A SMALL URBAN AREA Paul R. Baumann Department of Geography

More information

EE 529 Remote Sensing Techniques. Introduction

EE 529 Remote Sensing Techniques. Introduction EE 529 Remote Sensing Techniques Introduction Course Contents Radar Imaging Sensors Imaging Sensors Imaging Algorithms Imaging Algorithms Course Contents (Cont( Cont d) Simulated Raw Data y r Processing

More information

First Exam: New Date. 7 Geographers Tools: Gathering Information. Photographs and Imagery REMOTE SENSING 2/23/2018. Friday, March 2, 2018.

First Exam: New Date. 7 Geographers Tools: Gathering Information. Photographs and Imagery REMOTE SENSING 2/23/2018. Friday, March 2, 2018. First Exam: New Date Friday, March 2, 2018. Combination of multiple choice questions and map interpretation. Bring a #2 pencil with eraser. Based on class lectures supplementing chapter 1. Review lecture

More information

Importing and processing gel images

Importing and processing gel images BioNumerics Tutorial: Importing and processing gel images 1 Aim Comprehensive tools for the processing of electrophoresis fingerprints, both from slab gels and capillary sequencers are incorporated into

More information

The Unsharp Mask. A region in which there are pixels of one color on one side and another color on another side is an edge.

The Unsharp Mask. A region in which there are pixels of one color on one side and another color on another side is an edge. GIMP More Improvements The Unsharp Mask Unless you have a really expensive digital camera (thousands of dollars) or have your camera set to sharpen the image automatically, you will find that images from

More information

1. Theory of remote sensing and spectrum

1. Theory of remote sensing and spectrum 1. Theory of remote sensing and spectrum 7 August 2014 ONUMA Takumi Outline of Presentation Electromagnetic wave and wavelength Sensor type Spectrum Spatial resolution Spectral resolution Mineral mapping

More information

Monitoring the Earth Surface from space

Monitoring the Earth Surface from space Monitoring the Earth Surface from space Picture of the surface from optical Imagery, i.e. obtained by telescopes or cameras operating in visual bandwith. Shape of the surface from radar imagery Surface

More information

Using the Advanced Sharpen Transformation

Using the Advanced Sharpen Transformation Using the Advanced Sharpen Transformation Written by Jonathan Sachs Revised 10 Aug 2014 Copyright 2002-2014 Digital Light & Color Introduction Picture Window Pro s Advanced Sharpen transformation is a

More information

Geography 372 Introduction to Cartography Lab 2 Point, Line, and Area Symbols

Geography 372 Introduction to Cartography Lab 2 Point, Line, and Area Symbols Geography 372 Introduction to Cartography Lab 2 Point, Line, and Area Symbols In this lab you will practice using point, line, and area symbols to represent geographic features on a map of Canada, and

More information

1. The topographic map below shows a depression contour line on Earth's surface.

1. The topographic map below shows a depression contour line on Earth's surface. 1. The topographic map below shows a depression contour line on Earth's surface. Points A, B, C, and D represent surface locations. Contour line elevations are in feet. Which profile best shows the topography

More information

COPYRIGHTED MATERIAL. Contours and Form DEFINITION

COPYRIGHTED MATERIAL. Contours and Form DEFINITION 1 DEFINITION A clear understanding of what a contour represents is fundamental to the grading process. Technically defined, a contour is an imaginary line that connects all points of equal elevation above

More information

Produced by Mr B Ward (Head of Geography PGHS)

Produced by Mr B Ward (Head of Geography PGHS) Getting to Know Google Earth The following diagram describes some of the features available in the main window of Google Earth. 9. Sun - Click this to display sunlight across the landscape. 1. Search panel

More information

How to combine images in Photoshop

How to combine images in Photoshop How to combine images in Photoshop In Photoshop, you can use multiple layers to combine images, but there are two other ways to create a single image from mulitple images. Create a panoramic image with

More information

EEB 4260 Ornithology. Lecture Notes: Migration

EEB 4260 Ornithology. Lecture Notes: Migration EEB 4260 Ornithology Lecture Notes: Migration Class Business Reading for this lecture Required. Gill: Chapter 10 (pgs. 273-295) Optional. Proctor and Lynch: pages 266-273 1. Introduction A) EARLY IDEAS

More information

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Paul R. Baumann, Professor Emeritus State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT 2008 Paul R. Baumann Introduction Remote

More information

Introduction to RADAR Remote Sensing for Vegetation Mapping and Monitoring. Wayne Walker, Ph.D.

Introduction to RADAR Remote Sensing for Vegetation Mapping and Monitoring. Wayne Walker, Ph.D. Introduction to RADAR Remote Sensing for Vegetation Mapping and Monitoring Wayne Walker, Ph.D. Outline What is RADAR (and what does it measure)? RADAR as an active sensor Applications of RADAR to vegetation

More information

Forest Resources Assessment using Synthe c Aperture Radar

Forest Resources Assessment using Synthe c Aperture Radar Forest Resources Assessment using Synthe c Aperture Radar Project Background F RA-SAR 2010 was initiated to support the Forest Resources Assessment (FRA) of the United Nations Food and Agriculture Organization

More information

In late April of 1986 a nuclear accident damaged a reactor at the Chernobyl nuclear

In late April of 1986 a nuclear accident damaged a reactor at the Chernobyl nuclear CHERNOBYL NUCLEAR POWER PLANT ACCIDENT Long Term Effects on Land Use Patterns Project Introduction: In late April of 1986 a nuclear accident damaged a reactor at the Chernobyl nuclear power plant in Ukraine.

More information

You will need a #6 or #7 round hair brush, a #1 or #2 round hair brush, a fan brush, a se o watercolors, some scrap paper, and some watercolor paper.

You will need a #6 or #7 round hair brush, a #1 or #2 round hair brush, a fan brush, a se o watercolors, some scrap paper, and some watercolor paper. Here is a great project to start learning to paint color landscapes. Once you learn the techniques you can start copying nature and masterworks and that is the last step toward becoming talented in art.scroll

More information

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications )

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Why is this important What are the major approaches Examples of digital image enhancement Follow up exercises

More information

Detection of a Point Target Movement with SAR Interferometry

Detection of a Point Target Movement with SAR Interferometry Journal of the Korean Society of Remote Sensing, Vol.16, No.4, 2000, pp.355~365 Detection of a Point Target Movement with SAR Interferometry Jung-Hee Jun* and Min-Ho Ka** Agency for Defence Development*,

More information

Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018

Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018 GEOL 1460/2461 Ramsey Introduction to Remote Sensing Fall, 2018 Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018 I. Reminder: Upcoming Dates lab #2 reports due by the start of next

More information

Photoshop Elements 3 More Improvements

Photoshop Elements 3 More Improvements Photoshop Elements 3 More Improvements White Balance Most light sources are not 100% white, but have different colors. Colors are classified in terms of temperature red is cooler and blue is hotter. (Black-body

More information

Introduction to Aerial Photographs and Topographic maps (Chapter 3)

Introduction to Aerial Photographs and Topographic maps (Chapter 3) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Introduction to Aerial Photographs and Topographic maps (Chapter 3) For this assignment you will require: a calculator and metric ruler. Objectives:

More information

OPTICAL RS IMAGE INTERPRETATION

OPTICAL RS IMAGE INTERPRETATION 1 OPTICAL RS IMAGE INTERPRETATION Lecture 8 Visible Middle Infrared Image Bands 2 Data Processing Information data in a useable form Interpretation Visual AI (Machine learning) Recognition, Classification,

More information

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec )

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Level: Grades 9 to 12 Macintosh version Earth Observation Day Tutorial

More information

First Exam. Geographers Tools: Gathering Information. Photographs and Imagery. SPIN 2 Image of Downtown Atlanta, GA 1995 REMOTE SENSING 9/19/2016

First Exam. Geographers Tools: Gathering Information. Photographs and Imagery. SPIN 2 Image of Downtown Atlanta, GA 1995 REMOTE SENSING 9/19/2016 First Exam Geographers Tools: Gathering Information Prof. Anthony Grande Hunter College Geography Lecture design, content and presentation AFG 0616. Individual images and illustrations may be subject to

More information

NON UNIFORM BACKGROUND REMOVAL FOR PARTICLE ANALYSIS BASED ON MORPHOLOGICAL STRUCTURING ELEMENT:

NON UNIFORM BACKGROUND REMOVAL FOR PARTICLE ANALYSIS BASED ON MORPHOLOGICAL STRUCTURING ELEMENT: IJCE January-June 2012, Volume 4, Number 1 pp. 59 67 NON UNIFORM BACKGROUND REMOVAL FOR PARTICLE ANALYSIS BASED ON MORPHOLOGICAL STRUCTURING ELEMENT: A COMPARATIVE STUDY Prabhdeep Singh1 & A. K. Garg2

More information

Leica DMi8A Quick Guide

Leica DMi8A Quick Guide Leica DMi8A Quick Guide 1 Optical Microscope Quick Start Guide The following instructions are provided as a Quick Start Guide for powering up, running measurements, and shutting down Leica s DMi8A Inverted

More information

Iterative least-square inversion for amplitude balancing a

Iterative least-square inversion for amplitude balancing a Iterative least-square inversion for amplitude balancing a a Published in SEP report, 89, 167-178 (1995) Arnaud Berlioux and William S. Harlan 1 ABSTRACT Variations in source strength and receiver amplitude

More information

THE NATURE OF GROUND CLUTTER AFFECTING RADAR PERFORMANCE MOHAMMED J. AL SUMIADAEE

THE NATURE OF GROUND CLUTTER AFFECTING RADAR PERFORMANCE MOHAMMED J. AL SUMIADAEE International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN(P): 2249-684X; ISSN(E): 2249-7951 Vol. 6, Issue 2, Apr 2016, 7-14 TJPRC Pvt. Ltd.

More information

First Exam: Thurs., Sept 28

First Exam: Thurs., Sept 28 8 Geographers Tools: Gathering Information Prof. Anthony Grande Hunter College Geography Lecture design, content and presentation AFG 0917. Individual images and illustrations may be subject to prior copyright.

More information

The Basics. HECRAS Basis Input. Geometry Data - the basics. Geometry Data. Flow Data. Perform Hydraulic Computations. Viewing the Output

The Basics. HECRAS Basis Input. Geometry Data - the basics. Geometry Data. Flow Data. Perform Hydraulic Computations. Viewing the Output The Basics HECRAS Basis Input Geometry Data. Flow Data. Perform Hydraulic Computations by G. Parodi WRS ITC The Netherlands Viewing the Output ITC Faculty of Geo-Information Science and Earth Observation

More information

DEM GENERATION WITH WORLDVIEW-2 IMAGES

DEM GENERATION WITH WORLDVIEW-2 IMAGES DEM GENERATION WITH WORLDVIEW-2 IMAGES G. Büyüksalih a, I. Baz a, M. Alkan b, K. Jacobsen c a BIMTAS, Istanbul, Turkey - (gbuyuksalih, ibaz-imp)@yahoo.com b Zonguldak Karaelmas University, Zonguldak, Turkey

More information

Radio Mobile. Training materials for wireless trainers

Radio Mobile. Training materials for wireless trainers Radio Mobile Training materials for wireless trainers This 60 minute talk gives an introduction on Radio Mobile, a free software for Windows that provide a detailed simulation tool for wireless networks

More information

Land use in my neighborhood Part I.

Land use in my neighborhood Part I. Land use in my neighborhood Part I. We are beginning a 2-part project looking at forests and land use in your home neighborhood. The goal is to measure trends in forest development in modern Ohio. You

More information

Lab 3: Image Enhancements I 65 pts Due > Canvas by 10pm

Lab 3: Image Enhancements I 65 pts Due > Canvas by 10pm Geo 448/548 Spring 2016 Lab 3: Image Enhancements I 65 pts Due > Canvas by 3/11 @ 10pm For this lab, you will learn different ways to calculate spectral vegetation indices (SVIs). These are one category

More information

Painting Special Effects on Photographs

Painting Special Effects on Photographs TUTORIAL 7 Painting Special Effects on Photographs In this tutorial you will learn how to transform a photo into a striking color composition with paintbrushes, masks, blending modes, color, and paper

More information

Synthetic Aperture Radar

Synthetic Aperture Radar Synthetic Aperture Radar Picture 1: Radar silhouette of a ship, produced with the ISAR-Processor of the Ocean Master A Synthetic Aperture Radar (SAR), or SAR, is a coherent mostly airborne or spaceborne

More information

Essential Post Processing

Essential Post Processing Essential Post Processing By Ian Cran Preamble Getting to grips with Photoshop and Lightroom could be described in three stages. One is always learning and going through stages but there are three main

More information

Lab #8: Topographic Map Lab

Lab #8: Topographic Map Lab NAME: LAB TIME: TA NAME: Lab #8: Topographic Map Lab Topography is the shape of the land. Topographic maps are used to aid in the visualization of the shape of the land. Topographic maps include the accurate

More information

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec )

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Level: Grades 9 to 12 Windows version With Teacher Notes Earth Observation

More information

Accuracy assessment of a digital height model derived from airborne synthetic aperture radar measurements

Accuracy assessment of a digital height model derived from airborne synthetic aperture radar measurements Kleusberg, Klaedtke 139 Accuracy assessment of a digital height model derived from airborne synthetic aperture radar measurements ALFRED KLEUS BERG and HANS-GEORG KLAEDTKE, S tuttgart ABSTRACT A digital

More information

Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications

Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications Introduction to Remote Sensing Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications Remote Sensing Defined Remote Sensing is: The art and science of

More information

Luminosity Masks Program Notes Gateway Camera Club January 2017

Luminosity Masks Program Notes Gateway Camera Club January 2017 Luminosity Masks Program Notes Gateway Camera Club January 2017 What are Luminosity Masks : Luminosity Masks are a way of making advanced selections in Photoshop Selections are based on Luminosity - how

More information

SAR Remote Sensing (Microwave Remote Sensing)

SAR Remote Sensing (Microwave Remote Sensing) iirs SAR Remote Sensing (Microwave Remote Sensing) Synthetic Aperture Radar Shashi Kumar shashi@iirs.gov.in Electromagnetic Radiation Electromagnetic radiation consists of an electrical field(e) which

More information

Water Body Extraction Research Based on S Band SAR Satellite of HJ-1-C

Water Body Extraction Research Based on S Band SAR Satellite of HJ-1-C Cloud Publications International Journal of Advanced Remote Sensing and GIS 2016, Volume 5, Issue 2, pp. 1514-1523 ISSN 2320-0243, Crossref: 10.23953/cloud.ijarsg.43 Research Article Open Access Water

More information

Dartmouth College SuperDARN Radars

Dartmouth College SuperDARN Radars Dartmouth College SuperDARN Radars Under the guidance of Thayer School professor Simon Shepherd, a pair of backscatter radars were constructed in the desert of central Oregon over the Summer and Fall of

More information

Towards a Polarimetric SAR Processor for Airborne Sensor

Towards a Polarimetric SAR Processor for Airborne Sensor PIERS ONLINE, VOL. 6, NO. 5, 2010 465 Towards a Polarimetric SAR Processor for Airborne Sensor H. M. J. Cantalloube 1, B. Fromentin-Denoziere 1, and C. E. Nahum 2 1 ONERA (Office National d Études et Recherches

More information

Introduction to Imaging Radar INF-GEO 4310

Introduction to Imaging Radar INF-GEO 4310 Introduction to Imaging Radar INF-GEO 4310 22.9.2011 Literature Contact: yoann.paichard@ffi.no Suggested readings: Fundamentals of Radar Signal Processing, M.A. Richards, McGraw-Hill, 2005 High Resolution

More information

Introduction to Aerial Photographs and Topographic maps (Chapter 7, 9 th edition) or (chapter 3, 8 th edition)

Introduction to Aerial Photographs and Topographic maps (Chapter 7, 9 th edition) or (chapter 3, 8 th edition) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Introduction to Aerial Photographs and Topographic maps (Chapter 7, 9 th edition) or (chapter 3, 8 th edition) For this assignment you will require:

More information

Lego Nxt in Physical Etoys

Lego Nxt in Physical Etoys Lego Nxt in Physical Etoys Physical Etoys is a software Project which let us control, in real time, Lego Mindstorms Nxt s Robots using a Bluetooth connection. SqueakNxt is a module of the Physical Etoys

More information

Drawing Goats. Proceedings of the 28th Annual Goat Field Day, Langston University, April 27, 2013

Drawing Goats. Proceedings of the 28th Annual Goat Field Day, Langston University, April 27, 2013 Drawing Goats Mr. Kenneth Williams Science Illustrator Science Graphics and Design Drawing goats or any other subject depends on accurate observation and correct proportional placement of shapes and lines.

More information

GlassSpection User Guide

GlassSpection User Guide i GlassSpection User Guide GlassSpection User Guide v1.1a January2011 ii Support: Support for GlassSpection is available from Pyramid Imaging. Send any questions or test images you want us to evaluate

More information

Markville Secondary School Geography Department

Markville Secondary School Geography Department Markville Secondary School Geography Department CGC1D1 Geography of Canada PERFORMANCE TASK - UNIT 1 AND 2 DUE DATE: SEPTEMBER 2011 Parent Signature: CONTOUR MAP AND MODEL The performance task for Geography

More information

Remote Sensing Part 3 Examples & Applications

Remote Sensing Part 3 Examples & Applications Remote Sensing Part 3 Examples & Applications Review: Spectral Signatures Review: Spectral Resolution Review: Computer Display of Remote Sensing Images Individual bands of satellite data are mapped to

More information

Using Multi-spectral Imagery in MapInfo Pro Advanced

Using Multi-spectral Imagery in MapInfo Pro Advanced Using Multi-spectral Imagery in MapInfo Pro Advanced MapInfo Pro Advanced Tom Probert, Global Product Manager MapInfo Pro Advanced: Intuitive interface for using multi-spectral / hyper-spectral imagery

More information

Remote Sensing 4113 Lab 08: Filtering and Principal Components Mar. 28, 2018

Remote Sensing 4113 Lab 08: Filtering and Principal Components Mar. 28, 2018 Remote Sensing 4113 Lab 08: Filtering and Principal Components Mar. 28, 2018 In this lab we will explore Filtering and Principal Components analysis. We will again use the Aster data of the Como Bluffs

More information

SAR Remote Sensing. Introduction into SAR. Data characteristics, challenges, and applications.

SAR Remote Sensing. Introduction into SAR. Data characteristics, challenges, and applications. SAR Remote Sensing Introduction into SAR. Data characteristics, challenges, and applications. PD Dr. habil. Christian Thiel, Friedrich-Schiller-University Jena DLR-HR Jena & Friedrich-Schiller-University

More information

GIMP More Improvements

GIMP More Improvements GIMP More Improvements The Unsharp Mask Unless you have a really expensive digital camera (thousands of dollars) or have your camera set to sharpen the image automatically, you will find that images from

More information

Chapter 8. Using the GLM

Chapter 8. Using the GLM Chapter 8 Using the GLM This chapter presents the type of change products that can be derived from a GLM enhanced change detection procedure. One advantage to GLMs is that they model the probability of

More information

Lesson Plan 1 Introduction to Google Earth for Middle and High School. A Google Earth Introduction to Remote Sensing

Lesson Plan 1 Introduction to Google Earth for Middle and High School. A Google Earth Introduction to Remote Sensing A Google Earth Introduction to Remote Sensing Image an image is a representation of reality. It can be a sketch, a painting, a photograph, or some other graphic representation such as satellite data. Satellites

More information

7 Geographers Tools: Gathering Information

7 Geographers Tools: Gathering Information FIRST EXAM TODAY ExCr ATLAS EXERCISE for EXAM I is DUE. Bubble in your vtues., Feb. 26, 2019. Pass Scantrons forward. name on the back. Combination of multiple choice questions and map interpretation.

More information

MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES

MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES 1. Introduction Digital image processing involves manipulation and interpretation of the digital images so

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing 1 Outline Remote Sensing Defined Electromagnetic Energy (EMR) Resolution Interpretation 2 Remote Sensing Defined Remote Sensing is: The art and science of obtaining information

More information

School of Rural and Surveying Engineering National Technical University of Athens

School of Rural and Surveying Engineering National Technical University of Athens Laboratory of Photogrammetry National Technical University of Athens Combined use of spaceborne optical and SAR data Incompatible data sources or a useful procedure? Charalabos Ioannidis, Dimitra Vassilaki

More information