USING LANDSAT MULTISPECTRAL IMAGES IN ANALYSING FOREST VEGETATION

Size: px
Start display at page:

Download "USING LANDSAT MULTISPECTRAL IMAGES IN ANALYSING FOREST VEGETATION"

Transcription

1 Technical Sciences 243 USING LANDSAT MULTISPECTRAL IMAGES IN ANALYSING FOREST VEGETATION Teodor TODERA Traian CR CEA Alina NEGOESCU Faculty of Geography of Tourism, Sibiu, Romania ABSTRACT The article contains certain aspects regarding the use of multispectral images in analyzing the forest vegetation from Gura Râului area, Sibiu County. The paper presents the basic principles of processing multispectral images, how to conduct analysis of vegetation types and some aspects related to multispectral image georeferencing. In the case study, we have presented a quantitative analysis of the forest vegetation in the studied area by the method of thematic classification of informational content of multispectral images. The case study also includes a qualitative analysis of forest vegetation. In order to carry out the qualitative analysis we have used NDVI, RVI and PVI spectral Difference Vegetation Indices, on the basis of which we have highlighted the quality levels of the analyzed vegetation. Based on the results of thematic classification we have carried out an analysis of multispectral images from 2000 and 2007, obtaining conclusive results regarding the forest area studied. We have also described the process of qualitative classification of informational content of multispectral images based on Difference Vegetation Indices. KEYWORDS: multispectral image, georeferencing, thematic classification, qualitative classification 1. Introduction The article contains certain aspects concerning the use of LANDSAT multispectral satellite images in analyzing forest areas and identifying species of forest vegetation and also the variations over time of areas occupied by them, as well as the qualitative and quantitative analysis of forest vegetation.

2 244 Technical Sciences Since multispectral satellite images are obtained based on the spectral reflectance receipt of forest vegetation, in many regions of the electromagnetic spectrum (in several spectral bands), they can be used for the automatic identification of categories and quality of vegetation in the analyzed area. It is known that the spectral reflectance is the ratio between the radiation flux reflected by the surface of the investigated object (researched forest area) and the radiation flux incident on the surface of the investigated object, ratio that can take values between 0 and 1. The spectral reflectance of forest vegetation coverage varies depending on the type of vegetation analyzed (depending on the species of trees that compose the analyzed forest area) and makes it possible to identify areas covered with forest vegetation of different species [1]. The methods used for identifying classes of forest vegetation and for quantitative and qualitative analysis of this category of vegetation are those based on thematic classification, which aims at developing themed images where each pixel is assigned (based on spectral response) to a particular class of objects [2], [3]. Researching forest vegetation using multispectral satellite images requires several spectral channels in which the investigated area is recorded. 2. Basic Principles Multispectral image recordings (LANDSAT, SPOT, etc.) is characterized by a series of advantages, such as: include large surfaces of land making it possible to study the overall features of the recorded territory; allow imaging for hard to reach areas, inaccessible or hostile to man; can be obtained (depending on sensor) at any time of year or day; can reveal novel features of objects or phenomena being studied; allow notification of rapidly evolving phenomena in time; can be digitally recorded and automatically interpreted with a specialized software obtaining real-time images required on the researched land. Analysis of forest vegetation based on multispectral satellite imaging is an ultramodern, efficient and accurate method of processing content information of these images, which allows complex and detailed qualitative and quantitative analyses regarding classification of species [4], [5], [6]. Generally, in order to carry out quantitative analysis of forest vegetation we use supervised (operator assisted) and unsupervised (unassisted by operator) classification that allows a thematic classification of forest area by species of trees (fir, beech, oak, etc.). However, an analysis is performed to increase or decrease forest areas in time. For qualitative analysis of forest vegetation we use the Normalized Difference Vegetation Indices, mathematically determined by arithmetic operation between certain spectral bands on which we can identify (extracts), from the content of multispectral images, qualitative elements of vegetation surface, by comparing and highlighting the spectral signature of these elements in the near infrared spectral region (NIR) and red spectral region (R), areas where the behavior of these elements is different [7], [8]. The case study, presented in this article, includes Gura Râului land area, located in the trapeze L D, Sibiu County. For the multispectral analysis of the forest vegetation in the researched area we used Landsat multispectral images recorded in the years 2000 and 2007, in the seven standard spectral bands, with 1 G preliminary processing level (radiometrically and geometrically corrected). For the processing of multispectral images we used LEOWorks software to classify and identify forest categories and IDRISI software (Software created by Clark University, USA) for qualitative analysis operations on vegetation based on vegetation indices.

3 Technical Sciences Analysis of Forest Vegetation Types Analysis of forest vegetation types can be made through thematic classification of informational content of multispectral satellite images with the help of specialized software. The process of analysis of vegetation types involves performing georeferencing the multispectral images used and then caring out the quantitative thematic analysis of the content of georeferenced images by a supervised and an unsupervised classification of images from the red and near infrared spectral bands of the electromagnetic spectrum Georeferencing Multispectral Images First operation that needs to be performed in processing multispectral images is georeferencing these images, process by which the multispectral image is brought to the map scale at which the analysis is done [9]. According to the software used to perform georeferencing we can select either relations of polynomial transformation, relations of Helmert transformation or relations of affine transformation. In the case of multispectral Landsat images we have selected and used the relations of polynomial transformation [10], [11], [12]. First we have selected the cartographic projection used in georeferencing (Figure no. 1. a) and we have introduced its parameters (it has been chosen the stereographic projection of the year 1970), then we have performed image georeferencing based on 4 reference points for each image (Figure no. 1. b) with topographically determined coordinates in the geodetic system of coordinates of the selected cartographic projection. Figure no. 1. a. Image georeferencing choosing the cartographic projection

4 246 Technical Sciences Figure no. 1.b Image georeferencing introducing reference point coordinates 3.2. Identification of Vegetation Type Through Supervised Classification In supervised classification (operator assisted) the forest vegetation classes that are searched in the informational content of images are known in advance on certain restricted areas in the image (named test areas or sites). In other words, the user identifies (by polygon selection) several known areas on image that are characteristic to each class of established details. Through image analysis each pixel in the image is classified in one of these classes [13], [14]. For the supervised classification, in this study we used Landsat images from the years 2000 and 2007, band 3 specific to red (R) visible spectrum and band 4 specific to near infrared (NIR) spectrum. Supervised classification of digital images requires the following operations: feature selection, which involves selecting the useful information (of the vegetation area) used to classify the image content; selection of classification type, consisting in decomposing the space of features in disjoint subspaces so that any pixel to belong to one of the classes. There are three classification types: geometric classification based on measuring the distance between unknown pixel and a median vector, parallelepiped classification based on the probability that a pixel belongs to a certain class. Following the supervised classification we have identified and extracted 3 types of predominant classes (spruce, beech and hornbeam, oak). We noticed that out of the total area with forest vegetation 18.79% is occupied by spruce, 10.92% by beech and hornbeam and 14.25% by oak (Figure no. 2). Figure no. 2 Results of supervised classification (obtained from LANDSAT multispectral images in 2007, band 3 red and band 4 near infrared)

5 Technical Sciences Identification of Vegetation Type Through Unsupervised Classification Unsupervised classification (unassisted by operator) of multispectral images involves the creation of groups of pixels that represent geographic features, without knowing a priori what is being classified. Practically, pixels are organized into class clusters and then are grouped into clusters [15]. The result of the unsupervised classification, from images in band 3 specific to visible red (R) spectrum and band 4 particular to near red (NIR) spectrum, is a thematic image organized in classes of forest areas (Figure no. 3). Figure no. 3 Result of unsupervised classification (LANDSAT multispectral images from the year 2007, band 3 red and band 4 near infrared) Following the unsupervised classification (unassisted by operator) of images we have identified 5 types of predominant classes (fir, beech, oak, beech and oak, shrubs). We have found that out of the total area with forest vegetation of the image 25.86% is occupied by fir, 7.25% by beech, 14.75% by oak, 5.96% by beech and oak and 13.96% by shrubs. 4. Evolution of Forest Areas The evolution of the forest areas in the case study conducted was highlighted through the comparative analysis of the results of multispectral image processing from the years 2000 and 2007, [16]. For this purpose we have made the difference between the results of the unsupervised classification from the years 2007 and 2000, of the spectral bands 3 (R) and 4 (NIR) from the two years [17]. Following this temporal analysis of multispectral images, small changes were highlighted in the expansion or reduction of forest areas in the studied area during the period These changes in percentages are: 1.07 % expansion of area covered with fir;

6 248 Technical Sciences 1.62 % reduction of areas covered with beech; 1.91 % expansion of area covered with oak; 0.31 % reduction of areas covered with beech and oak; 1.16 % reduction of areas covered with shrubs. The most significant changes occurred in the non-forest vegetation, thus: % expansion of area covered with grasslands; 3.47 % reduction of areas covered with crops; 6.45 % reduction of areas covered with meadows. 5. Qualitative Analysis of Forest vegetation For the qualitative analysis of forest vegetation we used NDVI, RVI and PVI Differentiation Indices, applied in processing images from the red (R) spectral band and near red (NIR) spectral band [18], [19] Qualitative Analysis of Forest Vegetation Using NDVI NDVI (Normalized Difference Vegetation Index) used in the qualitative analysis of forest vegetation is a normalized spectral index of vegetation that can separate vegetation from the soil not covered by vegetation (Fig. 4). Figure no. 4 Vegetation classification based on NDVI Following the information classification from the multispectral images, six quality levels of vegetation resulted: healthy, moderated (medium density), rare (lack of water), reduced (dry or affected by diseases), without vegetation (plowing, etc.) and aquatic surfaces Qualitative Analysis of Forest Vegetation Using PVI PVI (Perpendicular Vegetation Index) is an index based on the distance at which the image pixels are located from the soil line (the soil line is a description of the spectral signature of soil, in red and

7 Technical Sciences 249 infrared, within the rectangular system of coordinates) obtained by linear regression between near infrared (NIR) band and red (R) band of an area known as being without vegetation. The pixels located close to the soil line are considered as being soil, and those located at distance from the soil line are considered vegetation [20], [21]. The result of vegetation classification based on such an index is presented in figure no. 5. Figure no. 5 Vegetation classification based on PVI 6. Conclusions Performing a quality spectral analysis of the informational content of multispectral images requires knowledge of their features and resolution. In this respect, the images contrast is the characteristic that influences the identification of topographic details of the recorded Earth s surface, and the image resolution is the one that can influence the accuracy of planimetric determination of areas. Accuracy of georeferencing images depends on the accuracy of determining the reference points and identifying them on the image. The coordinates of these reference points can be extracted from large scale maps or topographical plans. It is recommended that these reference points to be determined in the field by topographic methods with modern equipment. The choice of the method of classification for the quantitative analysis of multispectral images should be done according to categories of vegetation that are intended to be identified. The choice of differentiation vegetation indices should be

8 250 Technical Sciences made based on the type of vegetation to which they are sensitive and the quality of the multispectral images used. An appropriate choice of these spectral indices will lead to conclusive results, which will result in a sensitive highlighting of the differentiation of the quality levels of analyzed vegetation. REFERENCES 1. Teodor Todera and Vasile Dragomir, Teledetec ie i fotointerpretare, (Sibiu: Lucian Blaga University Publishing House, 2002). 2. Constantin Vertan, Prelucrarea i analiza imaginilor (Bucharest: Universitatea din Bucure ti Publishing House, 1999). 3. Aurel Vlaicu, Prelucrarea digital a imaginilor, (Cluj-Napoca: Albastr Publishing House, 1997). 4. Valentin Donis, Procesarea numeric a imaginilor, (Ia i: Azimuth Publishing House, 2004). 5. John R. Jensen, Introductory Digital Image Processing, (New Jersey: Prentice Hall, 2005). 6. Thomas M. Lillesand, Ralph W. Kiefer and Jonathan W. Chipman, Remote Sensing and Image Interpretation, (New York: John Wiley, 2004). 7. John R. Jensen, cit. ed. 8. Thomas M. Lillesand, Ralph W. Kiefer and Jonathan W. Chipman, cit. ed. 9. Teodor Todera, Vasile Dragomir, cit. ed. 10. Alexandru Badea, Teledetec ie, (Bucharest: USAMV Publishing House, 2011). 11. Andrei Mihai Bogdan, Teledetec ie. Introducere în procesarea digital a imaginilor, (Bucharest: Universitatea din Bucure ti Publishing House, 2007). 12. Valentin Donis, cit. ed. 13. John R. Jensen cit. ed. 14. Thomas M. Lillesand, Ralph W. Kiefer and Jonathan W. Chipman, cit. ed. 15. Ibidem. 16. Valentin Donis, cit. ed. 17. Ibidem. 18. Ibidem. 19. John R. Jensen, cit. ed. 20. Ibidem. 21. Thomas M. Lillesand, Ralph W. Kiefer and Jonathan W. Chipman, cit. ed.

Digital Image Processing

Digital Image Processing Digital Image Processing 1 Patrick Olomoshola, 2 Taiwo Samuel Afolayan 1,2 Surveying & Geoinformatic Department, Faculty of Environmental Sciences, Rufus Giwa Polytechnic, Owo. Nigeria Abstract: This paper

More information

GE 113 REMOTE SENSING

GE 113 REMOTE SENSING GE 113 REMOTE SENSING Topic 8. Image Classification and Accuracy Assessment Lecturer: Engr. Jojene R. Santillan jrsantillan@carsu.edu.ph Division of Geodetic Engineering College of Engineering and Information

More information

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching.

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching. Remote Sensing Objectives This unit will briefly explain display of remote sensing image, geometric correction, spatial enhancement, spectral enhancement and classification of remote sensing image. At

More information

An Introduction to Remote Sensing & GIS. Introduction

An Introduction to Remote Sensing & GIS. Introduction An Introduction to Remote Sensing & GIS Introduction Remote sensing is the measurement of object properties on Earth s surface using data acquired from aircraft and satellites. It attempts to measure something

More information

Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana. Geob 373 Remote Sensing. Dr Andreas Varhola, Kathry De Rego

Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana. Geob 373 Remote Sensing. Dr Andreas Varhola, Kathry De Rego 1 Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana Geob 373 Remote Sensing Dr Andreas Varhola, Kathry De Rego Zhu an Lim (14292149) L2B 17 Apr 2016 2 Abstract Montana

More information

The techniques with ERDAS IMAGINE include:

The techniques with ERDAS IMAGINE include: The techniques with ERDAS IMAGINE include: 1. Data correction - radiometric and geometric correction 2. Radiometric enhancement - enhancing images based on the values of individual pixels 3. Spatial enhancement

More information

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur.

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur. Basics of Remote Sensing Some literature references Franklin, SE 2001 Remote Sensing for Sustainable Forest Management Lewis Publishers 407p Lillesand, Kiefer 2000 Remote Sensing and Image Interpretation

More information

Satellite image classification

Satellite image classification Satellite image classification EG2234 Earth Observation Image Classification Exercise 29 November & 6 December 2007 Introduction to the practical This practical, which runs over two weeks, is concerned

More information

Monitoring agricultural plantations with remote sensing imagery

Monitoring agricultural plantations with remote sensing imagery MPRA Munich Personal RePEc Archive Monitoring agricultural plantations with remote sensing imagery Camelia Slave and Anca Rotman University of Agronomic Sciences and Veterinary Medicine - Bucharest Romania,

More information

Introduction to Remote Sensing Part 1

Introduction to Remote Sensing Part 1 Introduction to Remote Sensing Part 1 A Primer on Electromagnetic Radiation Digital, Multi-Spectral Imagery The 4 Resolutions Displaying Images Corrections and Enhancements Passive vs. Active Sensors Radar

More information

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG An Introduction to Geomatics خاص بطلبة مساق مقدمة في علم الجيوماتكس Prepared by: Dr. Maher A. El-Hallaq Associate Professor of Surveying IUG 1 Airborne Imagery Dr. Maher A. El-Hallaq Associate Professor

More information

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Paul R. Baumann, Professor Emeritus State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT 2008 Paul R. Baumann Introduction Remote

More information

GIS Data Collection. Remote Sensing

GIS Data Collection. Remote Sensing GIS Data Collection Remote Sensing Data Collection Remote sensing Introduction Concepts Spectral signatures Resolutions: spectral, spatial, temporal Digital image processing (classification) Other systems

More information

REMOTE SENSING INTERPRETATION

REMOTE SENSING INTERPRETATION REMOTE SENSING INTERPRETATION Jan Clevers Centre for Geo-Information - WU Remote Sensing --> RS Sensor at a distance EARTH OBSERVATION EM energy Earth RS is a tool; one of the sources of information! 1

More information

Application of GIS to Fast Track Planning and Monitoring of Development Agenda

Application of GIS to Fast Track Planning and Monitoring of Development Agenda Application of GIS to Fast Track Planning and Monitoring of Development Agenda Radiometric, Atmospheric & Geometric Preprocessing of Optical Remote Sensing 13 17 June 2018 Outline 1. Why pre-process remotely

More information

Remote sensing in archaeology from optical to lidar. Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts

Remote sensing in archaeology from optical to lidar. Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts Remote sensing in archaeology from optical to lidar Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts Introduction Optical remote sensing Systems Search for

More information

Keywords: Agriculture, Olive Trees, Supervised Classification, Landsat TM, QuickBird, Remote Sensing.

Keywords: Agriculture, Olive Trees, Supervised Classification, Landsat TM, QuickBird, Remote Sensing. Classification of agricultural fields by using Landsat TM and QuickBird sensors. The case study of olive trees in Lesvos island. Christos Vasilakos, University of the Aegean, Department of Environmental

More information

DIFFERENTIAL APPROACH FOR MAP REVISION FROM NEW MULTI-RESOLUTION SATELLITE IMAGERY AND EXISTING TOPOGRAPHIC DATA

DIFFERENTIAL APPROACH FOR MAP REVISION FROM NEW MULTI-RESOLUTION SATELLITE IMAGERY AND EXISTING TOPOGRAPHIC DATA DIFFERENTIAL APPROACH FOR MAP REVISION FROM NEW MULTI-RESOLUTION SATELLITE IMAGERY AND EXISTING TOPOGRAPHIC DATA Costas ARMENAKIS Centre for Topographic Information - Geomatics Canada 615 Booth Str., Ottawa,

More information

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010 APCAS/10/21 April 2010 Agenda Item 8 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION Siem Reap, Cambodia, 26-30 April 2010 The Use of Remote Sensing for Area Estimation by Robert

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Spatial, spectral, temporal resolutions Image display alternatives Vegetation Indices Image classifications Image change detections Accuracy assessment Satellites & Air-Photos

More information

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec )

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Level: Grades 9 to 12 Windows version With Teacher Notes Earth Observation

More information

USAGE OF SPECTRAL INDICES IN MONITORING OF GREEN IN THE SELECTED PARTS OF THE PARDUBICE REGION (THE CZECH REPUBLIC)

USAGE OF SPECTRAL INDICES IN MONITORING OF GREEN IN THE SELECTED PARTS OF THE PARDUBICE REGION (THE CZECH REPUBLIC) USAGE OF SPECTRAL INDICES IN MONITORING OF GREEN IN THE SELECTED PARTS OF THE PARDUBICE REGION (THE CZECH REPUBLIC) Pavel Sedlák, Jitka Komárková, Magdaléna Langerová, Ivana Čermáková Affiliations: Include

More information

Spatial Analyst is an extension in ArcGIS specially designed for working with raster data.

Spatial Analyst is an extension in ArcGIS specially designed for working with raster data. Spatial Analyst is an extension in ArcGIS specially designed for working with raster data. 1 Do you remember the difference between vector and raster data in GIS? 2 In Lesson 2 you learned about the difference

More information

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing Introduction to Remote Sensing Definition of Remote Sensing Remote sensing refers to the activities of recording/observing/perceiving(sensing)objects or events at far away (remote) places. In remote sensing,

More information

Remote Sensing. Odyssey 7 Jun 2012 Benjamin Post

Remote Sensing. Odyssey 7 Jun 2012 Benjamin Post Remote Sensing Odyssey 7 Jun 2012 Benjamin Post Definitions Applications Physics Image Processing Classifiers Ancillary Data Data Sources Related Concepts Outline Big Picture Definitions Remote Sensing

More information

University of Wisconsin-Madison, Nelson Institute for Environmental Studies September 2, 2014

University of Wisconsin-Madison, Nelson Institute for Environmental Studies September 2, 2014 University of Wisconsin-Madison, Nelson Institute for Environmental Studies September 2, 2014 The Earth from Above Introduction to Environmental Remote Sensing Lectures: Tuesday, Thursday 2:30-3:45 pm,

More information

Lecture 13: Remotely Sensed Geospatial Data

Lecture 13: Remotely Sensed Geospatial Data Lecture 13: Remotely Sensed Geospatial Data A. The Electromagnetic Spectrum: The electromagnetic spectrum (Figure 1) indicates the different forms of radiation (or simply stated light) emitted by nature.

More information

A (very) brief introduction to Remote Sensing: From satellites to maps!

A (very) brief introduction to Remote Sensing: From satellites to maps! Spatial Data Analysis and Modeling for Agricultural Development, with R - Workshop A (very) brief introduction to Remote Sensing: From satellites to maps! Earthlights DMSP 1994-1995 https://wikimedia.org/

More information

Remote Sensing And Gis Application in Image Classification And Identification Analysis.

Remote Sensing And Gis Application in Image Classification And Identification Analysis. Quest Journals Journal of Research in Environmental and Earth Science Volume 3~ Issue 5 (2017) pp: 55-66 ISSN(Online) : 2348-2532 www.questjournals.org Research Paper Remote Sensing And Gis Application

More information

CanImage. (Landsat 7 Orthoimages at the 1: Scale) Standards and Specifications Edition 1.0

CanImage. (Landsat 7 Orthoimages at the 1: Scale) Standards and Specifications Edition 1.0 CanImage (Landsat 7 Orthoimages at the 1:50 000 Scale) Standards and Specifications Edition 1.0 Centre for Topographic Information Customer Support Group 2144 King Street West, Suite 010 Sherbrooke, QC

More information

SEMI-SUPERVISED CLASSIFICATION OF LAND COVER BASED ON SPECTRAL REFLECTANCE DATA EXTRACTED FROM LISS IV IMAGE

SEMI-SUPERVISED CLASSIFICATION OF LAND COVER BASED ON SPECTRAL REFLECTANCE DATA EXTRACTED FROM LISS IV IMAGE SEMI-SUPERVISED CLASSIFICATION OF LAND COVER BASED ON SPECTRAL REFLECTANCE DATA EXTRACTED FROM LISS IV IMAGE B. RayChaudhuri a *, A. Sarkar b, S. Bhattacharyya (nee Bhaumik) c a Department of Physics,

More information

CHAPTER 7: Multispectral Remote Sensing

CHAPTER 7: Multispectral Remote Sensing CHAPTER 7: Multispectral Remote Sensing REFERENCE: Remote Sensing of the Environment John R. Jensen (2007) Second Edition Pearson Prentice Hall Overview of How Digital Remotely Sensed Data are Transformed

More information

GeoBase Raw Imagery Data Product Specifications. Edition

GeoBase Raw Imagery Data Product Specifications. Edition GeoBase Raw Imagery 2005-2010 Data Product Specifications Edition 1.0 2009-10-01 Government of Canada Natural Resources Canada Centre for Topographic Information 2144 King Street West, suite 010 Sherbrooke,

More information

USING MULTISPECTRAL SATELLITE IMAGES FOR UP-DATING VECTOR DATA IN A GEODATABASE

USING MULTISPECTRAL SATELLITE IMAGES FOR UP-DATING VECTOR DATA IN A GEODATABASE JOURNAL OF APPLIED ENGINEERING SCIENCES VOL. 1(14), issue 4_2011 ISSN 2247-3769 ISSN-L 2247-3769 (Print) / e-issn:2284-7197 USING MULTISPECTRAL SATELLITE IMAGES FOR VAIS Manuel Bucharest University, e-mail:

More information

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns)

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns) Spectral Signatures % REFLECTANCE VISIBLE NEAR INFRARED Vegetation Soil Water.5. WAVELENGTH (microns). Spectral Reflectance of Urban Materials 5 Parking Lot 5 (5=5%) Reflectance 5 5 5 5 5 Wavelength (nm)

More information

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS REMOTE SENSING Topic 10 Fundamentals of Digital Multispectral Remote Sensing Chapter 5: Lillesand and Keifer Chapter 6: Avery and Berlin MULTISPECTRAL SCANNERS Record EMR in a number of discrete portions

More information

Separation of crop and vegetation based on Digital Image Processing

Separation of crop and vegetation based on Digital Image Processing Separation of crop and vegetation based on Digital Image Processing Mayank Singh Sakla 1, Palak Jain 2 1 M.TECH GEOMATICS student, CEPT UNIVERSITY 2 M.TECH GEOMATICS student, CEPT UNIVERSITY Word Limit

More information

Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications

Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications Introduction to Remote Sensing Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications Remote Sensing Defined Remote Sensing is: The art and science of

More information

Image interpretation I and II

Image interpretation I and II Image interpretation I and II Looking at satellite image, identifying different objects, according to scale and associated information and to communicate this information to others is what we call as IMAGE

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Dr. Mathias (Mat) Disney UCL Geography Office: 301, 3rd Floor, Chandler House Tel: 7670 4290 Email: mdisney@ucl.geog.ac.uk www.geog.ucl.ac.uk/~mdisney 1 Course outline Format

More information

San Diego State University Department of Geography, San Diego, CA. USA b. University of California, Department of Geography, Santa Barbara, CA.

San Diego State University Department of Geography, San Diego, CA. USA b. University of California, Department of Geography, Santa Barbara, CA. 1 Plurimondi, VII, No 14: 1-9 Land Cover/Land Use Change analysis using multispatial resolution data and object-based image analysis Sory Toure a Douglas Stow a Lloyd Coulter a Avery Sandborn c David Lopez-Carr

More information

Supervised Land Cover Classification An introduction to digital image classification using the Multispectral Image Data Analysis System (MultiSpec )

Supervised Land Cover Classification An introduction to digital image classification using the Multispectral Image Data Analysis System (MultiSpec ) Supervised Land Cover Classification An introduction to digital image classification using the Multispectral Image Data Analysis System (MultiSpec ) Level: Grades 9 to 12 Windows version With Teacher Notes

More information

CLASSIFICATION OF VEGETATION AREA FROM SATELLITE IMAGES USING IMAGE PROCESSING TECHNIQUES ABSTRACT

CLASSIFICATION OF VEGETATION AREA FROM SATELLITE IMAGES USING IMAGE PROCESSING TECHNIQUES ABSTRACT CLASSIFICATION OF VEGETATION AREA FROM SATELLITE IMAGES USING IMAGE PROCESSING TECHNIQUES Arpita Pandya Research Scholar, Computer Science, Rai University, Ahmedabad Dr. Priya R. Swaminarayan Professor

More information

DETECTION, CONFIRMATION AND VALIDATION OF CHANGES ON SATELLITE IMAGE SERIES. APLICATION TO LANDSAT 7

DETECTION, CONFIRMATION AND VALIDATION OF CHANGES ON SATELLITE IMAGE SERIES. APLICATION TO LANDSAT 7 DETECTION, CONFIRMATION AND VALIDATION OF CHANGES ON SATELLITE IMAGE SERIES. APLICATION TO LANDSAT 7 Lucas Martínez, Mar Joaniquet, Vicenç Palà and Roman Arbiol Remote Sensing Department. Institut Cartografic

More information

Assessment of Spatiotemporal Changes in Vegetation Cover using NDVI in The Dangs District, Gujarat

Assessment of Spatiotemporal Changes in Vegetation Cover using NDVI in The Dangs District, Gujarat Assessment of Spatiotemporal Changes in Vegetation Cover using NDVI in The Dangs District, Gujarat Using SAGA GIS and Quantum GIS Tutorial ID: IGET_CT_003 This tutorial has been developed by BVIEER as

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications Remote Sensing Defined Remote Sensing is: The art and science of

More information

GE 113 REMOTE SENSING

GE 113 REMOTE SENSING GE 113 REMOTE SENSING Topic 5. Introduction to Digital Image Interpretation and Analysis Lecturer: Engr. Jojene R. Santillan jrsantillan@carsu.edu.ph Division of Geodetic Engineering College of Engineering

More information

Outline for today. Geography 411/611 Remote sensing: Principles and Applications. Remote sensing: RS for biogeochemical cycles

Outline for today. Geography 411/611 Remote sensing: Principles and Applications. Remote sensing: RS for biogeochemical cycles Geography 411/611 Remote sensing: Principles and Applications Thomas Albright, Associate Professor Laboratory for Conservation Biogeography, Department of Geography & Program in Ecology, Evolution, & Conservation

More information

EVALUATION OF THE EXTENSION AND DEGRADATION OF MANGROVE AREAS IN SERGIPE STATE WITH REMOTE SENSING DATA

EVALUATION OF THE EXTENSION AND DEGRADATION OF MANGROVE AREAS IN SERGIPE STATE WITH REMOTE SENSING DATA EVALUATION OF THE EXTENSION AND DEGRADATION OF MANGROVE ABSTRACT AREAS IN SERGIPE STATE WITH REMOTE SENSING DATA Myrian M. Abdon Ernesto G.M.Vieira Carmem R.S. Espindola Alberto W. Setzer Instituto de

More information

Remote Sensing for Rangeland Applications

Remote Sensing for Rangeland Applications Remote Sensing for Rangeland Applications Jay Angerer Ecological Training June 16, 2012 Remote Sensing The term "remote sensing," first used in the United States in the 1950s by Ms. Evelyn Pruitt of the

More information

Seasonal Progression of the Normalized Difference Vegetation Index (NDVI)

Seasonal Progression of the Normalized Difference Vegetation Index (NDVI) Seasonal Progression of the Normalized Difference Vegetation Index (NDVI) For this exercise you will be using a series of six SPOT 4 images to look at the phenological cycle of a crop. The images are SPOT

More information

INTRODUCTION TO REMOTE SENSING AND ITS APPLICATIONS

INTRODUCTION TO REMOTE SENSING AND ITS APPLICATIONS INTRODUCTION TO REMOTE SENSING AND ITS APPLICATIONS Prof. Dr. Abudeif A. Bakheit Geology Department. Faculty of Science Assiut University This representation was prepared from different power point representations

More information

Final Examination Introduction to Remote Sensing. Time: 1.5 hrs Max. Marks: 50. Section-I (50 x 1 = 50 Marks)

Final Examination Introduction to Remote Sensing. Time: 1.5 hrs Max. Marks: 50. Section-I (50 x 1 = 50 Marks) Final Examination Introduction to Remote Sensing Time: 1.5 hrs Max. Marks: 50 Note: Attempt all questions. Section-I (50 x 1 = 50 Marks) 1... is the technology of acquiring information about the Earth's

More information

LAND USE MAP PRODUCTION BY FUSION OF MULTISPECTRAL CLASSIFICATION OF LANDSAT IMAGES AND TEXTURE ANALYSIS OF HIGH RESOLUTION IMAGES

LAND USE MAP PRODUCTION BY FUSION OF MULTISPECTRAL CLASSIFICATION OF LANDSAT IMAGES AND TEXTURE ANALYSIS OF HIGH RESOLUTION IMAGES LAND USE MAP PRODUCTION BY FUSION OF MULTISPECTRAL CLASSIFICATION OF LANDSAT IMAGES AND TEXTURE ANALYSIS OF HIGH RESOLUTION IMAGES Xavier OTAZU, Roman ARBIOL Institut Cartogràfic de Catalunya, Spain xotazu@icc.es,

More information

University of Technology Building & Construction Department / Remote Sensing & GIS lecture

University of Technology Building & Construction Department / Remote Sensing & GIS lecture 8. Image Enhancement 8.1 Image Reduction and Magnification. 8.2 Transects (Spatial Profile) 8.3 Spectral Profile 8.4 Contrast Enhancement 8.4.1 Linear Contrast Enhancement 8.4.2 Non-Linear Contrast Enhancement

More information

Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications 2

Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications 2 Introduction to Remote Sensing 1 Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications 2 Remote Sensing Defined Remote Sensing is: The art and science

More information

Malaria Vector in Northeastern Venezuela. Sarah Anne Guagliardo MPH candidate, 2010 Yale University School of Epidemiology and Public Health

Malaria Vector in Northeastern Venezuela. Sarah Anne Guagliardo MPH candidate, 2010 Yale University School of Epidemiology and Public Health Vegetation associated with the An. Aquasalis Malaria Vector in Northeastern Venezuela Sarah Anne Guagliardo g MPH candidate, 2010 Yale University School of Epidemiology and Public Health Outline Problem

More information

Important Missions. weather forecasting and monitoring communication navigation military earth resource observation LANDSAT SEASAT SPOT IRS

Important Missions. weather forecasting and monitoring communication navigation military earth resource observation LANDSAT SEASAT SPOT IRS Fundamentals of Remote Sensing Pranjit Kr. Sarma, Ph.D. Assistant Professor Department of Geography Mangaldai College Email: prangis@gmail.com Ph. No +91 94357 04398 Remote Sensing Remote sensing is defined

More information

Image interpretation and analysis

Image interpretation and analysis Image interpretation and analysis Grundlagen Fernerkundung, Geo 123.1, FS 2014 Lecture 7a Rogier de Jong Michael Schaepman Why are snow, foam, and clouds white? Why are snow, foam, and clouds white? Today

More information

Raster is faster but vector is corrector

Raster is faster but vector is corrector Account not required Raster is faster but vector is corrector The old GIS adage raster is faster but vector is corrector comes from the two different fundamental GIS models: vector and raster. Each of

More information

University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI

University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI Introduction and Objectives The present study is a correlation

More information

Chapter 3 Interpreting Images

Chapter 3 Interpreting Images Chapter 3 Interpreting Images 3.1 Introduction With few exceptions the reason we record images of the earth in various wavebands is so that we can build up a picture of features on the surface. Sometimes

More information

Modelli tematici 3 D dell uso del suolo a partire da DTM e immagini telerilevate ad alta risoluzione WorldView 2

Modelli tematici 3 D dell uso del suolo a partire da DTM e immagini telerilevate ad alta risoluzione WorldView 2 University of Naples Parthenope Department of Applied Sciences Modelli tematici 3 D dell uso del suolo a partire da DTM e immagini telerilevate ad alta risoluzione WorldView 2 3 D thematic models of land

More information

Hyperspectral Imagery: A New Tool For Wetlands Monitoring/Analyses

Hyperspectral Imagery: A New Tool For Wetlands Monitoring/Analyses WRP Technical Note WG-SW-2.3 ~- Hyperspectral Imagery: A New Tool For Wetlands Monitoring/Analyses PURPOSE: This technical note demribea the spectral and spatial characteristics of hyperspectral data and

More information

GGS 412 Air Photography Interpretation

GGS 412 Air Photography Interpretation GGS 412 Air Photography Interpretation 15019-001 Syllabus Instructor: Dr. Ron Resmini Course description and objective: GGS 412, Air Photography Interpretation, will provide students with the concepts,

More information

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES H. Topan*, G. Büyüksalih*, K. Jacobsen ** * Karaelmas University Zonguldak, Turkey ** University of Hannover, Germany htopan@karaelmas.edu.tr,

More information

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes A condensed overview George McLeod Prepared by: With support from: NSF DUE-0903270 in partnership with: Geospatial Technician Education Through Virginia s Community Colleges (GTEVCC) The art and science

More information

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry Satellite Imagery and Remote Sensing DeeDee Whitaker SW Guilford High EES & Chemistry whitakd@gcsnc.com Outline What is remote sensing? How does remote sensing work? What role does the electromagnetic

More information

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition Module 3 Introduction to GIS Lecture 8 GIS data acquisition GIS workflow Data acquisition (geospatial data input) GPS Remote sensing (satellites, UAV s) LiDAR Digitized maps Attribute Data Management Data

More information

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing Mads Olander Rasmussen (mora@dhi-gras.com) 01. Introduction to Remote Sensing DHI What is remote sensing? the art, science, and technology

More information

DISTINGUISHING URBAN BUILT-UP AND BARE SOIL FEATURES FROM LANDSAT 8 OLI IMAGERY USING DIFFERENT DEVELOPED BAND INDICES

DISTINGUISHING URBAN BUILT-UP AND BARE SOIL FEATURES FROM LANDSAT 8 OLI IMAGERY USING DIFFERENT DEVELOPED BAND INDICES DISTINGUISHING URBAN BUILT-UP AND BARE SOIL FEATURES FROM LANDSAT 8 OLI IMAGERY USING DIFFERENT DEVELOPED BAND INDICES Mark Daryl C. Janiola (1), Jigg L. Pelayo (1), John Louis J. Gacad (1) (1) Central

More information

Plant Health Monitoring System Using Raspberry Pi

Plant Health Monitoring System Using Raspberry Pi Volume 119 No. 15 2018, 955-959 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ 1 Plant Health Monitoring System Using Raspberry Pi Jyotirmayee Dashᵃ *, Shubhangi

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Daniel McInerney Urban Institute Ireland, University College Dublin, Richview Campus, Clonskeagh Drive, Dublin 14. 16th June 2009 Presentation Outline 1 2 Spaceborne Sensors

More information

GE 113 REMOTE SENSING. Topic 7. Image Enhancement

GE 113 REMOTE SENSING. Topic 7. Image Enhancement GE 113 REMOTE SENSING Topic 7. Image Enhancement Lecturer: Engr. Jojene R. Santillan jrsantillan@carsu.edu.ph Division of Geodetic Engineering College of Engineering and Information Technology Caraga State

More information

Remote Sensing. in Agriculture. Dr. Baqer Ramadhan CRP 514 Geographic Information System. Adel M. Al-Rebh G Term Paper.

Remote Sensing. in Agriculture. Dr. Baqer Ramadhan CRP 514 Geographic Information System. Adel M. Al-Rebh G Term Paper. Remote Sensing in Agriculture Term Paper to Dr. Baqer Ramadhan CRP 514 Geographic Information System By Adel M. Al-Rebh G199325390 May 2012 Table of Contents 1.0 Introduction... 4 2.0 Objective... 4 3.0

More information

typical spectral signatures of photosynthetically active and non-photosynthetically active vegetation (Beeri et al., 2007)

typical spectral signatures of photosynthetically active and non-photosynthetically active vegetation (Beeri et al., 2007) typical spectral signatures of photosynthetically active and non-photosynthetically active vegetation (Beeri et al., 2007) Xie, Y. et al. J Plant Ecol 2008 1:9-23; doi:10.1093/jpe/rtm005 Copyright restrictions

More information

Introduction. Introduction. Introduction. Introduction. Introduction

Introduction. Introduction. Introduction. Introduction. Introduction Identifying habitat change and conservation threats with satellite imagery Extinction crisis Volker Radeloff Department of Forest Ecology and Management Extinction crisis Extinction crisis Conservationists

More information

Land cover change methods. Ned Horning

Land cover change methods. Ned Horning Land cover change methods Ned Horning Version: 1.0 Creation Date: 2004-01-01 Revision Date: 2004-01-01 License: This document is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.

More information

Interpreting land surface features. SWAC module 3

Interpreting land surface features. SWAC module 3 Interpreting land surface features SWAC module 3 Interpreting land surface features SWAC module 3 Different kinds of image Panchromatic image True-color image False-color image EMR : NASA Echo the bat

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing 1 Outline Remote Sensing Defined Electromagnetic Energy (EMR) Resolution Interpretation 2 Remote Sensing Defined Remote Sensing is: The art and science of obtaining information

More information

Environmental and Natural Resources Issues in Minnesota. A Remote Sensing Overview: Principles and Fundamentals. Outline. Challenges.

Environmental and Natural Resources Issues in Minnesota. A Remote Sensing Overview: Principles and Fundamentals. Outline. Challenges. A Remote Sensing Overview: Principles and Fundamentals Marvin Bauer Remote Sensing and Geospatial Analysis Laboratory College of Natural Resources University of Minnesota Remote Sensing for GIS Users Workshop,

More information

INTRODUCTORY REMOTE SENSING. Geob 373

INTRODUCTORY REMOTE SENSING. Geob 373 INTRODUCTORY REMOTE SENSING Geob 373 Landsat 7 15 m image highlighting the geology of Oman http://www.satimagingcorp.com/gallery-landsat.html ASTER 15 m SWIR image, Escondida Mine, Chile http://www.satimagingcorp.com/satellite-sensors/aster.html

More information

How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser

How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser Including Introduction to Remote Sensing Concepts Based on: igett Remote Sensing Concept Modules and GeoTech

More information

Exercise 4-1 Image Exploration

Exercise 4-1 Image Exploration Exercise 4-1 Image Exploration With this exercise, we begin an extensive exploration of remotely sensed imagery and image processing techniques. Because remotely sensed imagery is a common source of data

More information

Course overview; Remote sensing introduction; Basics of image processing & Color theory

Course overview; Remote sensing introduction; Basics of image processing & Color theory GEOL 1460 /2461 Ramsey Introduction to Remote Sensing Fall, 2018 Course overview; Remote sensing introduction; Basics of image processing & Color theory Week #1: 29 August 2018 I. Syllabus Review we will

More information

White Paper. Medium Resolution Images and Clutter From Landsat 7 Sources. Pierre Missud

White Paper. Medium Resolution Images and Clutter From Landsat 7 Sources. Pierre Missud White Paper Medium Resolution Images and Clutter From Landsat 7 Sources Pierre Missud Medium Resolution Images and Clutter From Landsat7 Sources Page 2 of 5 Introduction Space technologies have long been

More information

Application of Satellite Image Processing to Earth Resistivity Map

Application of Satellite Image Processing to Earth Resistivity Map Application of Satellite Image Processing to Earth Resistivity Map KWANCHAI NORSANGSRI and THANATCHAI KULWORAWANICHPONG Power System Research Unit School of Electrical Engineering Suranaree University

More information

MONITORING OF FOREST DAMAGE CAUSED BY GYPSY MOTH IN HUNGARY USING ENVISAT MERIS DATA ( )

MONITORING OF FOREST DAMAGE CAUSED BY GYPSY MOTH IN HUNGARY USING ENVISAT MERIS DATA ( ) MONITORING OF FOREST DAMAGE CAUSED BY GYPSY MOTH IN HUNGARY USING ENVISAT DATA (2005-2006) G. Nádor, I. László, Zs. Suba, G. Csornai Remote Sensing Centre, Institute of Geodesy Cartography and Remote Sensing

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Trainer Khaled Mashfiq 15 / Nov / 2017 Training Module A2 Session 1 Introduction to the Use of Geospatial Information Technology for Drought Risk Management Phnom Penh, Cambodia

More information

Image transformations

Image transformations Image transformations Digital Numbers may be composed of three elements: Atmospheric interference (e.g. haze) ATCOR Illumination (angle of reflection) - transforms Albedo (surface cover) Image transformations

More information

* Tokai University Research and Information Center

* Tokai University Research and Information Center Effects of tial Resolution to Accuracies for t HRV and Classification ta Haruhisa SH Kiyonari i KASA+, uji, and Toshibumi * Tokai University Research and nformation Center 2-28-4 Tomigaya, Shi, T 151,

More information

Data acquisition and integration 6.

Data acquisition and integration 6. University of West Hungary, Faculty of Geoinformatics Malgorzata Verőné Wojtaszek Data acquisition and integration 6. module DAI6 Remote Sensing SZÉKESFEHÉRVÁR 2010 The right to this intellectual property

More information

Forest mapping and monitoring in Russia using EO data: R&D activity overview

Forest mapping and monitoring in Russia using EO data: R&D activity overview Russian Academy of Sciences Space Research Institute (IKI) Forest mapping and monitoring in Russia using EO data: R&D activity overview Sergey Bartalev 11.09 13.09.2017, 3rd User Workshop of the GlobBiomass

More information

IMAGE ANALYSIS TOOLBOX AND ENHANCED SATELLITE IMAGERY INTEGRATED INTO THE MAPPLACE By Ward E. Kilby 1, Karl Kliparchuk 2 and Andrew McIntosh 2

IMAGE ANALYSIS TOOLBOX AND ENHANCED SATELLITE IMAGERY INTEGRATED INTO THE MAPPLACE By Ward E. Kilby 1, Karl Kliparchuk 2 and Andrew McIntosh 2 IMAGE ANALYSIS TOOLBOX AND ENHANCED SATELLITE IMAGERY INTEGRATED INTO THE MAPPLACE By Ward E. Kilby 1, Karl Kliparchuk 2 and Andrew McIntosh 2 KEYWORDS: MapPlace, Landsat, ASTER, Image Analysis, Structural

More information

Module 11 Digital image processing

Module 11 Digital image processing Introduction Geo-Information Science Practical Manual Module 11 Digital image processing 11. INTRODUCTION 11-1 START THE PROGRAM ERDAS IMAGINE 11-2 PART 1: DISPLAYING AN IMAGE DATA FILE 11-3 Display of

More information

BASICS OF REMOTE SENSING

BASICS OF REMOTE SENSING BASICS OF REMOTE SENSING 23: Basics of Remote Sensing Shibendu Shankar Ray Mahalanobis National Crop Forecast Centre, Department of Agriculture & Cooperation, Krishi Vistar Sadan, Pusa Campus, New Delhi

More information

Classification in Image processing: A Survey

Classification in Image processing: A Survey Classification in Image processing: A Survey Rashmi R V, Sheela Sridhar Department of computer science and Engineering, B.N.M.I.T, Bangalore-560070 Department of computer science and Engineering, B.N.M.I.T,

More information

Lecture 2. Electromagnetic radiation principles. Units, image resolutions.

Lecture 2. Electromagnetic radiation principles. Units, image resolutions. NRMT 2270, Photogrammetry/Remote Sensing Lecture 2 Electromagnetic radiation principles. Units, image resolutions. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

More information

Lesson 9: Multitemporal Analysis

Lesson 9: Multitemporal Analysis Lesson 9: Multitemporal Analysis Lesson Description Multitemporal change analyses require the identification of features and measurement of their change through time. In this lesson, we will examine vegetation

More information

Abstract Urbanization and human activities cause higher air temperature in urban areas than its

Abstract Urbanization and human activities cause higher air temperature in urban areas than its Observe Urban Heat Island in Lucas County Using Remote Sensing by Lu Zhao Table of Contents Abstract Introduction Image Processing Proprocessing Temperature Calculation Land Use/Cover Detection Results

More information