U among relatives in inbred populations for the special case of no dominance or

Size: px
Start display at page:

Download "U among relatives in inbred populations for the special case of no dominance or"

Transcription

1 PARENT-OFFSPRING AND FULL SIB CORRELATIONS UNDER A PARENT-OFFSPRING MATING SYSTEM THEODORE W. HORNER Statistical Laboratory, Iowa State College, Ames, Iowa Received February 25, 1956 SING the method of path coefficients, WRIGHT (1921) derived correlations U among relatives in inbred populations for the special case of no dominance or epistasis. FISHER (1947) described the use of generation matrix methodology in the theory of inbreeding, some of this methodology being due to earlier writers. FISHER S concern was with mating types, where the matings AA X AA and aa X aa, for instance, are of the same type. More recently, KEMPTHORNE (1955) pointed out two distinct types of problems involving correlations between relatives in inbred populations. Assume that a random mating population is inbred according to a regular system of inbreeding. In generation n we have the population where F, is the coefficient of inbreeding attained at generation n. The first problem is represented by the following: (1) what is the correlation between full sibs in generation n and (2) what is the correlation between an individual of that generation and his offspring in generation n + l? For the second problem, suppose that the above population is in equilibrium, then what is the correlation between relatives in this population? This same paper dealt with the first problem, using generation matrix methodology and assuming two alleles per locus, for a full sib inbreeding system. Kinds of matings were employed rather than types; i.e., AA X AA isa different kind of mating from aa X aa. The objective in the present paper was to obtain parent-offspring and full sib correlations in the nth generation under a parent-offspring mating system. This necessitates obtaining the frequencies of the various kinds of matings in the nth generation as a function of the frequencies in the zero generation. PARENT-OFFSPRING MATING SYSTEM The offspring of a mating is always mated to the younger parent. Considering a single locus with two alleles per locus there are nine kinds of matings, which are shown in table 1. These are arbitrarily numbered from one to nine. Mating kind frequencies will be indicated as fi, fi,..., f9 with superscripts in parenthesis indicating the appropriate generation. Thusfi3 is the frequency of the first kind of mating in the third generation. 1 Journal Paper No. J-2976 of the Iowa Agricultural Experiment Station, Ames, Iowa. Project number 1285.

2 PARENT-OFFSPRING AND FULL SIB CORRELATIONS 461 Younger parent Kind of mating Older parent Y Z AA X AA AA X Aa rla X aa ila X AA Aa X Aa Aa X aa aa X AA aa X Aa aa X aa - 3esignation requency n generation zero.il(o) fico) fy jio) jp j? ho) fio) f? TABLE 1 Kinds of matings Proportions of kinds of mating> resulting from mating of a given kind 2 - f Kind of mating KIND OF MATING FREQUENCIES IN THE Fn GENERATIOX The kind of mating frequencies in the first generation are linear functions of the kind of mating frequencies in the zero generation. These linear functions are obtained in the following manner.2 Mating kind one leads to mating kind one. The offspring from mating kind two (AA X Aa) are $AA and 4Aa. These are mated to the younger parent which in this case is AA; and which becomes the older parent in reference to the new generation. Hence a mating of kind two leads to matings of which one half are of kind one and one half are of kind four. In the right half of table 1 are shown the proportions of the various kinds of matings which result from the kind of mating indicated in the left hand column. The frequency of mating i in the first generation can be obtained from table 1 as the sum of products of corresponding elements in the frequency in generation zero column and the ith kind of mating column to the right. If we let (f(n)) = (,fl L)fi(n).. fin ) be a column matrix, then kind of mating frequencies in the first generation relate to those in the zero generation by the equationf = Af O) where A is a 9 x 9 matrix. Using generation matrix methodology, it can be shown that f( ) = C-lAnCf(O) where A is a diagonal matrix whose elements along the diagonal are the latent roots of the A matrix. In the present case these roots are 1, 1,,,, - 3, 4, E and E where E = i(1 +l/s) and E = i(l - ds). The C matrix is any matrix satisfying the equation C AP = A. Assuming that the genotypic array in the zero generation is p2(aa) 4-2pq(Aa) and q2(aa), the f matrix is * A more detailed derivation is available from the author in mimeographed form.

3 462 T. W. HORNER PARENT OFFSPRING COVARIANCE The values of the genotypes AA, Aa and aa will be represented as y, $(y - x) and. On this scale the degree of dominance is -x/y. The parent offspring covariance is COV(P,-I,,) = f?'(aa)(aa) + fi"'(aa)(aa) +. *. fi"'(aa)(aa) - pnpn-l where p, = (AA)(f!"' +fin) + f?') + (Aa)(fi"' +fp +fp) and + (aa)(fy +f? +fin') pn-1 = (AA)(f?' + fy' + f:"')+(aa)(fy +f:"' +f3+ (@a)(@ +e + fp') In the above formula genotypic values are to be inserted for genotypes. After such substitution, collection of terms in y2, xy and x2, and substitution of + - $Fn-I + F, 1955) and 3 + ~F,-I - F, for Sn+l, for S, (see KEMPTHORNE in terms of WRIGHT'S coefficient of inbreeding F. Thus we have Cov(Pn-l,OR) CO~(P,-~,,) = &($ + tfn-~+ 3Fn)y ) [($)" Fn-i + 3F,]xy + ipq(1 - F,-d [(l- 2Pl2 + 4pqFn1X2 n 21 The variance in the izth generation is U; = (AA)2(fin' +fin) +fin') + (Aa)*(fin' +fin' + fin') + (aa)2(f:n' + fin' + fp') - pl2n or U% = +Pq(1 + F,)Y - Pq(1-2P) (1 - F,)xy + +Pq[l - F, - 2Pq(l - F,)2]~2 The variance in the n - 1 generation, U;, can be obtained from U; by substitution

4 PARENT-OFFSPRING AND FULL SIB CORRELATIONS 463 of (n - 1) for n. The genotypic correlation of parents in the n - 1 generation with their offspring in the nth generation is COV(P,-.l,,) UY Uz FULL SIB COVARIANCE Each kind of mating in the nth generation gives rise to a progeny in the (n + 1) generation; the frequency of each progeny being the same as the frequency of each kind of mating in the nth generation. The covariance of full sibs in the (n + 1)th generation is the same as the variance among progeny means in the (n + 1) th generation. Thus Cov(Ful1 sibs in generation n + 1) 2 = (AA x AA)@ + (AA x Aa)$* + (aa x aa)$n - cl,+l where progeny means are to be inserted for the indicated matings. After simplifying the above equation and substitution of n - 1 for n we have Cov(Ful1 sib in generation n) = pq(+ + gon-1 - if-1 + Fn)yZ + pq(1-2p) [($In - (1- F,)IxY + P~[$PqO l + $(I - e) - Pq(1 - Fn)21~ The genotypic correlation among full sibs is Cov(Ful1 sib in generation n) 4 ADDITIVE GENETIC VARIANCE The additive genetic variance of the nth generation in the case of 2 alleles is the sum of squares attributable to regression of genotypic value upon the number of A genes of the genotype. The variance is (TA = [Cov (Genotypic Value, Number of A genes)] Variance of number of A genes In the nth generation the covariance of the numerator is

5 464 T. W. HORNER Hence In the random mating population (generation or 1) the additive genetic variance is a1 = $p(l - p) {y + (29-1)x)' PARENT OFFSPRING AND FULL SIB CORRELATIONS The relationship between these correlations and generation (n) are shown in graphs la (parent offspring) and lb (full sib) for selected degrees of dominance and X gene frequencies. Degree of dominance equals - - = a, say. Y In the case of no dominance these correlations, which in the first generation are one half, rise to one as n -+, with the parent offspring correlations being somewhat higher, particularly in the early generations, than the full sib correlations. When dominance is present these correlations are decreased as the frequency of the A allele increases, particularly in the early generations, which may have correlations considerably less than one half. This decrease is not as drastic for the full sib correlation as for the parent offspring correlation. When y =, degree of dominance is infinite and the parent offspring correlation approaches =.5559 as n --f CO and the full sib correlation approaches 3 as n +. 5: -C Q: -f -g I GENERAT I ON FIGURE la.-relationships between the parent offspring correlation and generation. Case (a) a =, all values of p; (h) a = 1, p =.1; (c) a = 1, p =.9; (d) a = 1.5, p =.3; (e) a = 1.5, p =.9; (f) a = w, p =.1 or.9, (g) a = CO, p =.5.

6 PARENT-OFFSPRING AND FULL SIB CORRELATIONS 465 z t.5 a i I I IO GENERATION FIGURE 1b.-Relationships between the full sib correlation and generation. Case (a) a =, all values of p; (b) a = 1, p =.5; (c) a = 1, p =.9; (d) a = 1.5, p =.5; (e) a = 1.5, p =.9; (f) a = m, p =.1 or.9; (8) a =, p =.5. ESTIMATION OF ADDITIVE GENETIC VARIANCE OF ORIGINAL RANDOM MATING POPULATION Parent Ojspring covariance procedure The additive genetic variance in the original random breeding population on the assumption of no dominance is +p(l - p)yz and the covariance of parent in the (n - 1) generation and offspring in the nth generation is - p) (1 + Fn-1 + 2Fn)y2 which suggests estimating the additive genetic variance in the random mating population by A 2~%1(pn-1,n) UA(P) = 1 + Fn-1 -t 2Fn This procedure is, of course, unbiased when there is no dominance. The bias for various gene frequencies and degrees of dominance is graphed against generation in figure 2a. When gene frequency is one half, the bias may be of the order of 1% in early generations for the case of complete dominance. The bias increases as the degree of dominance increases and as p deviates from one half. For example in the case of complete dominance and a gene frequency of.7, the bias using the covariance of parents in the n - 1 = 4 generation and offspring in n = 5 generation is 122%.

7 466 T. W. HORNER Full sib covariance procedure Assuming no dominance, an unbiased estimate of a: ing population is A - 2cGv (F.s. in generation n> d(f.8) - [+(I + On-') - +Fn-I + 4Fn1 in the original random mat- The bias from this procedure is illustrated in figure 2b. The curves are similar to those of figure lb in that the percentage bias approaches the same limit as n increases. :hey differ in that the bias need not be zero in the first generation and in general g:(f.s) is larger than cr:(~..~) for corresponding cases. Total genotypic variance procedure A third unbiased estimate, assuming no dominance, of the additive genetic variance in the random mating population is 27 - p=.f, p=s, a=i p=.l,.3 p =.I, a = 1.5 I IO GENERATI ON FIGURE 2a.-Percentage bias in each generation of the estimate of the additive genetic variance )c of the random mating population by vi (p. o.). oyof= -1% FIGURE 2b.-Percentage - G E N ER AT ION of the random mating population by C T ~ ( ~, ~ ). "-p=.7, -p=.5, as.5 a45 -p=:i I ; Zi.% bias in each generation of the estimate of the additive genetic variance

8 PARENT-OFFSPRING AND FULL SIB CORRELATIONS 467 cn a m w 9 z w W a 5% 4% 3% pf.7, a= t -1% I IO GENE RAT ION p=.l,.5 Figure 2c.-Percentage bias in each generation of the estimate of the additive genetic variance h of the random mating population by Q $(~.~,~). and the bias is graphed in figure 2c against generation. As n increases the bias approaches the same limit as before. In early generations the positive bias is larger (or the negative smaller) than the corresponding cases for the parent offspring and full sib procedures. a: p=.l, a=.5 b: pz.9, as.5 c p=.3, a=l d: p8.3, ~1.5 e: p=.9, a= I f: p=.9,.1.5 GENERATION FIGURE 3.-The additive genetic fraction of the total genotypic variance in the nth generation; the additive genetic variance heing defined in the nth generation.

9 468 T. W. HORNER PARTITION OF THE TOTAL GENOTYPIC VARIANCE The proportion of the additive genetic variance, when this variance is defined in the F, generation, of the total genotypic variance is graphed against generation in figure 3. As n increases the additive fraction tends to constitute, of course, the whole of the genotypic variance. In early generations for the higher gene frequencies and degrees of dominance, this fraction may be quite low. For example in the case of complete dominance and p =.9, the additive genetic variance is only (6%) of the total genotypic variance in the 3rd generation. SUMMARY Parent offspring and full sib correlations in the nth generation are derived for a parent offspring mating system using generation matrix techniques. These correlations are reduced when dominance is present and in early generations may be considerably less than one half. Biases in the estimate of additive genetic variance of the random breeding population by (a) a parent offspring procedure, (b) a full sib procedure and (c) a total genotypic variance procedure are small when gene frequency is close to one half for partial or complete dominance. When dominance is present, considerable positive or negative bias may result, depending on whether gene frequency is larger or smaller than one half, the bias becoming larger as the degree of dominance increases. LITERATURE CITED FISHER, R. A., 1947 The Theory of Inbreeding. Edinburgh: Oliver and Boyd. KEHPTHORNE, O., 1955 The correlations between relatives in inbred populations. Genetics 4 : WRIGHT, SEWALL, 1921 Systems of mating. 11. The effects of inbreeding on the genetic composition of a population. Genetics 6:

NON-RANDOM MATING AND INBREEDING

NON-RANDOM MATING AND INBREEDING Instructor: Dr. Martha B. Reiskind AEC 495/AEC592: Conservation Genetics DEFINITIONS Nonrandom mating: Mating individuals are more closely related or less closely related than those drawn by chance from

More information

Objective: Why? 4/6/2014. Outlines:

Objective: Why? 4/6/2014. Outlines: Objective: Develop mathematical models that quantify/model resemblance between relatives for phenotypes of a quantitative trait : - based on pedigree - based on markers Outlines: Causal model for covariances

More information

Lecture 6: Inbreeding. September 10, 2012

Lecture 6: Inbreeding. September 10, 2012 Lecture 6: Inbreeding September 0, 202 Announcements Hari s New Office Hours Tues 5-6 pm Wed 3-4 pm Fri 2-3 pm In computer lab 3306 LSB Last Time More Hardy-Weinberg Calculations Merle Patterning in Dogs:

More information

BIOL 502 Population Genetics Spring 2017

BIOL 502 Population Genetics Spring 2017 BIOL 502 Population Genetics Spring 2017 Week 8 Inbreeding Arun Sethuraman California State University San Marcos Table of contents 1. Inbreeding Coefficient 2. Mating Systems 3. Consanguinity and Inbreeding

More information

Inbreeding and self-fertilization

Inbreeding and self-fertilization Inbreeding and self-fertilization Introduction Remember that long list of assumptions associated with derivation of the Hardy-Weinberg principle that I went over a couple of lectures ago? Well, we re about

More information

Inbreeding and self-fertilization

Inbreeding and self-fertilization Inbreeding and self-fertilization Introduction Remember that long list of assumptions associated with derivation of the Hardy-Weinberg principle that we just finished? Well, we re about to begin violating

More information

CONGEN. Inbreeding vocabulary

CONGEN. Inbreeding vocabulary CONGEN Inbreeding vocabulary Inbreeding Mating between relatives. Inbreeding depression Reduction in fitness due to inbreeding. Identical by descent Alleles that are identical by descent are direct descendents

More information

Inbreeding depression in corn. Inbreeding. Inbreeding depression in humans. Genotype frequencies without random mating. Example.

Inbreeding depression in corn. Inbreeding. Inbreeding depression in humans. Genotype frequencies without random mating. Example. nbreeding depression in corn nbreeding Alan R Rogers Two plants on left are from inbred homozygous strains Next: the F offspring of these strains Then offspring (F2 ) of two F s Then F3 And so on November

More information

Received December 28, 1964

Received December 28, 1964 EFFECT OF LINKAGE ON THE GENETIC LOAD MANIFESTED UNDER INBREEDING MASATOSHI NE1 Division of Genetics, National Institute of Radiological Sciences, Chiba, Japan Received December 28, 1964 IN the theory

More information

Decrease of Heterozygosity Under Inbreeding

Decrease of Heterozygosity Under Inbreeding INBREEDING When matings take place between relatives, the pattern is referred to as inbreeding. There are three common areas where inbreeding is observed mating between relatives small populations hermaphroditic

More information

Chapter 2: Genes in Pedigrees

Chapter 2: Genes in Pedigrees Chapter 2: Genes in Pedigrees Chapter 2-0 2.1 Pedigree definitions and terminology 2-1 2.2 Gene identity by descent (ibd) 2-5 2.3 ibd of more than 2 genes 2-14 2.4 Data on relatives 2-21 2.1.1 GRAPHICAL

More information

Population Structure. Population Structure

Population Structure. Population Structure Nonrandom Mating HWE assumes that mating is random in the population Most natural populations deviate in some way from random mating There are various ways in which a species might deviate from random

More information

Population Genetics 3: Inbreeding

Population Genetics 3: Inbreeding Population Genetics 3: nbreeding nbreeding: the preferential mating of closely related individuals Consider a finite population of diploids: What size is needed for every individual to have a separate

More information

Methods of Parentage Analysis in Natural Populations

Methods of Parentage Analysis in Natural Populations Methods of Parentage Analysis in Natural Populations Using molecular markers, estimates of genetic maternity or paternity can be achieved by excluding as parents all adults whose genotypes are incompatible

More information

Bottlenecks reduce genetic variation Genetic Drift

Bottlenecks reduce genetic variation Genetic Drift Bottlenecks reduce genetic variation Genetic Drift Northern Elephant Seals were reduced to ~30 individuals in the 1800s. Rare alleles are likely to be lost during a bottleneck Two important determinants

More information

Kinship and Population Subdivision

Kinship and Population Subdivision Kinship and Population Subdivision Henry Harpending University of Utah The coefficient of kinship between two diploid organisms describes their overall genetic similarity to each other relative to some

More information

I genetic distance for short-term evolution, when the divergence between

I genetic distance for short-term evolution, when the divergence between Copyright 0 1983 by the Genetics Society of America ESTIMATION OF THE COANCESTRY COEFFICIENT: BASIS FOR A SHORT-TERM GENETIC DISTANCE JOHN REYNOLDS, B. S. WEIR AND C. CLARK COCKERHAM Department of Statistics,

More information

CONDITIONS FOR EQUILIBRIUM

CONDITIONS FOR EQUILIBRIUM SYSTEMS OF MATING. I. THE BIOMETRIC RELATIONS BETWEEN PARENT AND OFFSPRING SEWALL WRIGHT Bureau of Animal Industry, United States Department oj Agriculture, Washington, D. C. Received October 29, 1920

More information

Lecture 1: Introduction to pedigree analysis

Lecture 1: Introduction to pedigree analysis Lecture 1: Introduction to pedigree analysis Magnus Dehli Vigeland NORBIS course, 8 th 12 th of January 2018, Oslo Outline Part I: Brief introductions Pedigrees symbols and terminology Some common relationships

More information

Exact Inbreeding Coefficient and Effective Size of Finite Populations Under Partial Sib Mating

Exact Inbreeding Coefficient and Effective Size of Finite Populations Under Partial Sib Mating Copyright 0 1995 by the Genetics Society of America Exact Inbreeding Coefficient Effective Size of Finite Populations Under Partial Sib Mating Jinliang Wang College vf Animal Sciences, Zhejiang Agricultural

More information

University of Washington, TOPMed DCC July 2018

University of Washington, TOPMed DCC July 2018 Module 12: Comput l Pipeline for WGS Relatedness Inference from Genetic Data Timothy Thornton (tathornt@uw.edu) & Stephanie Gogarten (sdmorris@uw.edu) University of Washington, TOPMed DCC July 2018 1 /

More information

Section 6.4. Sampling Distributions and Estimators

Section 6.4. Sampling Distributions and Estimators Section 6.4 Sampling Distributions and Estimators IDEA Ch 5 and part of Ch 6 worked with population. Now we are going to work with statistics. Sample Statistics to estimate population parameters. To make

More information

Algorithms for Genetics: Basics of Wright Fisher Model and Coalescent Theory

Algorithms for Genetics: Basics of Wright Fisher Model and Coalescent Theory Algorithms for Genetics: Basics of Wright Fisher Model and Coalescent Theory Vineet Bafna Harish Nagarajan and Nitin Udpa 1 Disclaimer Please note that a lot of the text and figures here are copied from

More information

BIOL Evolution. Lecture 8

BIOL Evolution. Lecture 8 BIOL 432 - Evolution Lecture 8 Expected Genotype Frequencies in the Absence of Evolution are Determined by the Hardy-Weinberg Equation. Assumptions: 1) No mutation 2) Random mating 3) Infinite population

More information

Investigations from last time. Inbreeding and neutral evolution Genes, alleles and heterozygosity

Investigations from last time. Inbreeding and neutral evolution Genes, alleles and heterozygosity Investigations from last time. Heterozygous advantage: See what happens if you set initial allele frequency to or 0. What happens and why? Why are these scenario called unstable equilibria? Heterozygous

More information

286 K. TANAKA [Vol. 40,

286 K. TANAKA [Vol. 40, No. 4] 285 64. Preliminary Report o f Studies on Genetic Effects o f Consanguineous Marriages. III *' Ascertainment and Estimation o f Mortality -- a Consanguinity Study in Shizuoka By Katumi TANAKA* *'

More information

Received October 29, 1920 TABLE OF CONTENTS

Received October 29, 1920 TABLE OF CONTENTS SYSTEMS OF MATING. 11. THE EFFECTS OF INBREEDING ON THE GENETIC COMPOSITION OF A POPULATION SEWALL WRIGHT Bureau of Animal Industry, United States Department of Agriculture, Washington, D. C. INTRODUCTION.

More information

Populations. Arindam RoyChoudhury. Department of Biostatistics, Columbia University, New York NY 10032, U.S.A.,

Populations. Arindam RoyChoudhury. Department of Biostatistics, Columbia University, New York NY 10032, U.S.A., Change in Recessive Lethal Alleles Frequency in Inbred Populations arxiv:1304.2955v1 [q-bio.pe] 10 Apr 2013 Arindam RoyChoudhury Department of Biostatistics, Columbia University, New York NY 10032, U.S.A.,

More information

Miguel I. Aguirre-Urreta

Miguel I. Aguirre-Urreta RESEARCH NOTE REVISITING BIAS DUE TO CONSTRUCT MISSPECIFICATION: DIFFERENT RESULTS FROM CONSIDERING COEFFICIENTS IN STANDARDIZED FORM Miguel I. Aguirre-Urreta School of Accountancy and MIS, College of

More information

THE SPECTRAL METHOD FOR PRECISION ESTIMATE OF THE CIRCLE ACCELERATOR ALIGNMENT

THE SPECTRAL METHOD FOR PRECISION ESTIMATE OF THE CIRCLE ACCELERATOR ALIGNMENT II/201 THE SPECTRAL METHOD FOR PRECISION ESTIMATE OF THE CIRCLE ACCELERATOR ALIGNMENT Jury Kirochkin Insitute for High Energy Physics, Protvino, Russia Inna Sedelnikova Moscow State Building University,

More information

Distribution of Aces Among Dealt Hands

Distribution of Aces Among Dealt Hands Distribution of Aces Among Dealt Hands Brian Alspach 3 March 05 Abstract We provide details of the computations for the distribution of aces among nine and ten hold em hands. There are 4 aces and non-aces

More information

Linkage Analysis in Merlin. Meike Bartels Kate Morley Danielle Posthuma

Linkage Analysis in Merlin. Meike Bartels Kate Morley Danielle Posthuma Linkage Analysis in Merlin Meike Bartels Kate Morley Danielle Posthuma Software for linkage analyses Genehunter Mendel Vitesse Allegro Simwalk Loki Merlin. Mx R Lisrel MERLIN software Programs: MERLIN

More information

Optimum contribution selection conserves genetic diversity better than random selection in small populations with overlapping generations

Optimum contribution selection conserves genetic diversity better than random selection in small populations with overlapping generations Optimum contribution selection conserves genetic diversity better than random selection in small populations with overlapping generations K. Stachowicz 12*, A. C. Sørensen 23 and P. Berg 3 1 Department

More information

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 13

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 13 Introduction to Econometrics (3 rd Updated Edition by James H. Stock and Mark W. Watson Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 13 (This version July 0, 014 Stock/Watson - Introduction

More information

Laboratory 1: Uncertainty Analysis

Laboratory 1: Uncertainty Analysis University of Alabama Department of Physics and Astronomy PH101 / LeClair May 26, 2014 Laboratory 1: Uncertainty Analysis Hypothesis: A statistical analysis including both mean and standard deviation can

More information

Paper ST03. Variance Estimates for Census 2000 Using SAS/IML Software Peter P. Davis, U.S. Census Bureau, Washington, DC 1

Paper ST03. Variance Estimates for Census 2000 Using SAS/IML Software Peter P. Davis, U.S. Census Bureau, Washington, DC 1 Paper ST03 Variance Estimates for Census 000 Using SAS/IML Software Peter P. Davis, U.S. Census Bureau, Washington, DC ABSTRACT Large variance-covariance matrices are not uncommon in statistical data analysis.

More information

On the Approximation of Pressure Loss Components in Air Conditioning Ducts

On the Approximation of Pressure Loss Components in Air Conditioning Ducts International Journal of Science and Engineering Investigations vol. 6, issue 7, December 07 ISSN: 5-8843 On the Approximation of Pressure Loss Components in Air Conditioning s J. I. Sodiki Department

More information

2 The Wright-Fisher model and the neutral theory

2 The Wright-Fisher model and the neutral theory 0 THE WRIGHT-FISHER MODEL AND THE NEUTRAL THEORY The Wright-Fisher model and the neutral theory Although the main interest of population genetics is conceivably in natural selection, we will first assume

More information

Developing Conclusions About Different Modes of Inheritance

Developing Conclusions About Different Modes of Inheritance Pedigree Analysis Introduction A pedigree is a diagram of family relationships that uses symbols to represent people and lines to represent genetic relationships. These diagrams make it easier to visualize

More information

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/70

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/70 Population Genetics Joe Felsenstein GENOME 453, Autumn 2013 Population Genetics p.1/70 Godfrey Harold Hardy (1877-1947) Wilhelm Weinberg (1862-1937) Population Genetics p.2/70 A Hardy-Weinberg calculation

More information

D became evident that the most striking consequences of inbreeding were increases

D became evident that the most striking consequences of inbreeding were increases AN ANALYSIS OF INBREEDINGIN THE EUROPEAN BISON1 HERMAN M. SLATIS Division of Biological and Medical Research, Argonne National Laboratory, Lemont, Illinois Received August 24, 1959 LJRING a study of inbreeding

More information

STUDENT LABORATORY PACKET

STUDENT LABORATORY PACKET L13a Mendelian Genetics- Corn Page 1 of 6 STUDENT LABORATORY PACKET Student s Full Name Lab #13a: Mendelian Genetics in Corn Lab Instructor Date Points Objectives: Students will be able to: Observe the

More information

NIH Public Access Author Manuscript Genet Res (Camb). Author manuscript; available in PMC 2011 April 4.

NIH Public Access Author Manuscript Genet Res (Camb). Author manuscript; available in PMC 2011 April 4. NIH Public Access Author Manuscript Published in final edited form as: Genet Res (Camb). 2011 February ; 93(1): 47 64. doi:10.1017/s0016672310000480. Variation in actual relationship as a consequence of

More information

Vesselin K. Vassilev South Bank University London Dominic Job Napier University Edinburgh Julian F. Miller The University of Birmingham Birmingham

Vesselin K. Vassilev South Bank University London Dominic Job Napier University Edinburgh Julian F. Miller The University of Birmingham Birmingham Towards the Automatic Design of More Efficient Digital Circuits Vesselin K. Vassilev South Bank University London Dominic Job Napier University Edinburgh Julian F. Miller The University of Birmingham Birmingham

More information

Development of an improved flood frequency curve applying Bulletin 17B guidelines

Development of an improved flood frequency curve applying Bulletin 17B guidelines 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 2015 www.mssanz.org.au/modsim2015 Development of an improved flood frequency curve applying Bulletin 17B

More information

Mapping small-effect and linked quantitative trait loci for complex traits in. backcross or DH populations via a multi-locus GWAS methodology

Mapping small-effect and linked quantitative trait loci for complex traits in. backcross or DH populations via a multi-locus GWAS methodology Mapping small-effect and linked quantitative trait loci for complex traits in backcross or DH populations via a multi-locus GWAS methodology Shi-Bo Wang 1,2, Yang-Jun Wen 2, Wen-Long Ren 2, Yuan-Li Ni

More information

DNA: Statistical Guidelines

DNA: Statistical Guidelines Frequency calculations for STR analysis When a probative association between an evidence profile and a reference profile is made, a frequency estimate is calculated to give weight to the association. Frequency

More information

Popstats Parentage Statistics Strength of Genetic Evidence In Parentage Testing

Popstats Parentage Statistics Strength of Genetic Evidence In Parentage Testing Popstats Parentage Statistics Strength of Genetic Evidence In Parentage Testing Arthur J. Eisenberg, Ph.D. Director DNA Identity Laboratory UNT-Health Science Center eisenber@hsc.unt.edu PATERNITY TESTING

More information

Prediction Method of Beef Marbling Standard Number Using Parameters Obtained from Image Analysis for Beef Ribeye

Prediction Method of Beef Marbling Standard Number Using Parameters Obtained from Image Analysis for Beef Ribeye Prediction Method of Beef Marbling Standard Number Using Parameters Obtained from Image Analysis for Beef Ribeye Keigo KUCHIDA, Shogo TSURUTA1, a, L. D. Van Vleck2, Mitsuyoshi SUZUKI and Shunzo MIYOSHI

More information

Mehdi Sargolzaei L Alliance Boviteq, St-Hyacinthe, QC, Canada and CGIL, University of Guelph, Guelph, ON, Canada. Summary

Mehdi Sargolzaei L Alliance Boviteq, St-Hyacinthe, QC, Canada and CGIL, University of Guelph, Guelph, ON, Canada. Summary An Additive Relationship Matrix for the Sex Chromosomes 2013 ELARES:50 Mehdi Sargolzaei L Alliance Boviteq, St-Hyacinthe, QC, Canada and CGIL, University of Guelph, Guelph, ON, Canada Larry Schaeffer CGIL,

More information

Statistical methods in genetic relatedness and pedigree analysis

Statistical methods in genetic relatedness and pedigree analysis Statistical methods in genetic relatedness and pedigree analysis Oslo, January 2018 Magnus Dehli Vigeland and Thore Egeland Exercise set III: Coecients of pairwise relatedness Exercise III-1. Use Wright's

More information

Functions of several variables

Functions of several variables Chapter 6 Functions of several variables 6.1 Limits and continuity Definition 6.1 (Euclidean distance). Given two points P (x 1, y 1 ) and Q(x, y ) on the plane, we define their distance by the formula

More information

Characterization of the global Brown Swiss cattle population structure

Characterization of the global Brown Swiss cattle population structure Swedish University of Agricultural Sciences Faculty of Veterinary Medicine and Animal Science Characterization of the global Brown Swiss cattle population structure Worede Zinabu Gebremariam Examensarbete

More information

Analysis of geographically structured populations: Estimators based on coalescence

Analysis of geographically structured populations: Estimators based on coalescence Analysis of geographically structured populations: Estimators based on coalescence Peter Beerli Department of Genetics, Box 357360, University of Washington, Seattle WA 9895-7360, Email: beerli@genetics.washington.edu

More information

4. Kinship Paper Challenge

4. Kinship Paper Challenge 4. António Amorim (aamorim@ipatimup.pt) Nádia Pinto (npinto@ipatimup.pt) 4.1 Approach After a woman dies her child claims for a paternity test of the man who is supposed to be his father. The test is carried

More information

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/74

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/74 Population Genetics Joe Felsenstein GENOME 453, Autumn 2011 Population Genetics p.1/74 Godfrey Harold Hardy (1877-1947) Wilhelm Weinberg (1862-1937) Population Genetics p.2/74 A Hardy-Weinberg calculation

More information

MOLECULAR POPULATION GENETICS: COALESCENT METHODS BASED ON SUMMARY STATISTICS

MOLECULAR POPULATION GENETICS: COALESCENT METHODS BASED ON SUMMARY STATISTICS MOLECULAR POPULATION GENETICS: COALESCENT METHODS BASED ON SUMMARY STATISTICS Daniel A. Vasco*, Keith A. Crandall* and Yun-Xin Fu *Department of Zoology, Brigham Young University, Provo, UT 8460, USA Human

More information

AFDAA 2012 WINTER MEETING Population Statistics Refresher Course - Lecture 3: Statistics of Kinship Analysis

AFDAA 2012 WINTER MEETING Population Statistics Refresher Course - Lecture 3: Statistics of Kinship Analysis AFDAA 2012 WINTER MEETING Population Statistics Refresher Course - Lecture 3: Statistics of Kinship Analysis Ranajit Chakraborty, PhD Center for Computational Genomics Institute of Applied Genetics Department

More information

Forward thinking: the predictive approach

Forward thinking: the predictive approach Coalescent Theory 1 Forward thinking: the predictive approach Random variation in reproduction causes random fluctuation in allele frequencies. Can describe this process as diffusion: (Wright 1931) showed

More information

14.2 Limits and Continuity

14.2 Limits and Continuity 14 Partial Derivatives 14.2 Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Let s compare the behavior of the functions Tables 1 2 show values of f(x,

More information

Kinship/relatedness. David Balding Professor of Statistical Genetics University of Melbourne, and University College London.

Kinship/relatedness. David Balding Professor of Statistical Genetics University of Melbourne, and University College London. Kinship/relatedness David Balding Professor of Statistical Genetics University of Melbourne, and University College London 2 Feb 2016 1 Ways to measure relatedness 2 Pedigree-based kinship coefficients

More information

I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB APPLICATIONS

I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB APPLICATIONS Six Sigma Quality Concepts & Cases- Volume I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB APPLICATIONS Chapter 7 Measurement System Analysis Gage Repeatability & Reproducibility (Gage R&R)

More information

Genetic Analysis for Spring- and Fall- Run San Joaquin River Chinook Salmon for the San Joaquin River Restoration Program

Genetic Analysis for Spring- and Fall- Run San Joaquin River Chinook Salmon for the San Joaquin River Restoration Program Study 49 Genetic Analysis for Spring- and Fall- Run San Joaquin River Chinook Salmon for the San Joaquin River Restoration Program Final 2015 Monitoring and Analysis Plan January 2015 Statement of Work

More information

Detection of Misspecified Relationships in Inbred and Outbred Pedigrees

Detection of Misspecified Relationships in Inbred and Outbred Pedigrees Detection of Misspecified Relationships in Inbred and Outbred Pedigrees Lei Sun 1, Mark Abney 1,2, Mary Sara McPeek 1,2 1 Department of Statistics, 2 Department of Human Genetics, University of Chicago,

More information

Coalescence. Outline History. History, Model, and Application. Coalescence. The Model. Application

Coalescence. Outline History. History, Model, and Application. Coalescence. The Model. Application Coalescence History, Model, and Application Outline History Origins of theory/approach Trace the incorporation of other s ideas Coalescence Definition and descriptions The Model Assumptions and Uses Application

More information

How to Solve Linkage Map Problems

How to Solve Linkage Map Problems Page 1 of 6 Examples to Accompany How to Solve Linkage Map Problems Note that these examples are invented. Real numbers would be much messier than these. Determining Linkage/Independence Suppose you want

More information

Determining Relatedness from a Pedigree Diagram

Determining Relatedness from a Pedigree Diagram Kin structure & relatedness Francis L. W. Ratnieks Aims & Objectives Aims 1. To show how to determine regression relatedness among individuals using a pedigree diagram. Social Insects: C1139 2. To show

More information

I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB APPLICATIONS

I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB APPLICATIONS Six Sigma Quality Concepts & Cases- Volume I STATISTICAL TOOLS IN SIX SIGMA DMAIC PROCESS WITH MINITAB APPLICATIONS Chapter 7 Measurement System Analysis Gage Repeatability & Reproducibility (Gage R&R)

More information

How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory

How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory Prev Sci (2007) 8:206 213 DOI 10.1007/s11121-007-0070-9 How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory John W. Graham & Allison E. Olchowski & Tamika

More information

Twenty-fourth Annual UNC Math Contest Final Round Solutions Jan 2016 [(3!)!] 4

Twenty-fourth Annual UNC Math Contest Final Round Solutions Jan 2016 [(3!)!] 4 Twenty-fourth Annual UNC Math Contest Final Round Solutions Jan 206 Rules: Three hours; no electronic devices. The positive integers are, 2, 3, 4,.... Pythagorean Triplet The sum of the lengths of the

More information

PopGen3: Inbreeding in a finite population

PopGen3: Inbreeding in a finite population PopGen3: Inbreeding in a finite population Introduction The most common definition of INBREEDING is a preferential mating of closely related individuals. While there is nothing wrong with this definition,

More information

Sampling distributions and the Central Limit Theorem

Sampling distributions and the Central Limit Theorem Sampling distributions and the Central Limit Theorem Johan A. Elkink University College Dublin 14 October 2013 Johan A. Elkink (UCD) Central Limit Theorem 14 October 2013 1 / 29 Outline 1 Sampling 2 Statistical

More information

GENETICS AND BREEDING. Calculation and Use of Inbreeding Coefficients for Genetic Evaluation of United States Dairy Cattle

GENETICS AND BREEDING. Calculation and Use of Inbreeding Coefficients for Genetic Evaluation of United States Dairy Cattle GENETICS AND BREEDING Calculation and Use of Inbreeding Coefficients for Genetic Evaluation of United States Dairy Cattle. R. WlGGANS and P. M. VanRADEN Animal Improvement Programs Laboratory Agricultural

More information

Simulated Statistics for the Proposed By-Division Design In the Consumer Price Index October 2014

Simulated Statistics for the Proposed By-Division Design In the Consumer Price Index October 2014 Simulated Statistics for the Proposed By-Division Design In the Consumer Price Index October 2014 John F Schilp U.S. Bureau of Labor Statistics, Office of Prices and Living Conditions 2 Massachusetts Avenue

More information

Assessing Measurement System Variation

Assessing Measurement System Variation Example 1 Fuel Injector Nozzle Diameters Problem A manufacturer of fuel injector nozzles has installed a new digital measuring system. Investigators want to determine how well the new system measures the

More information

Guess the Mean. Joshua Hill. January 2, 2010

Guess the Mean. Joshua Hill. January 2, 2010 Guess the Mean Joshua Hill January, 010 Challenge: Provide a rational number in the interval [1, 100]. The winner will be the person whose guess is closest to /3rds of the mean of all the guesses. Answer:

More information

MS.LS2.A: Interdependent Relationships in Ecosystems. MS.LS2.C: Ecosystem Dynamics, Functioning, and Resilience. MS.LS4.D: Biodiversity and Humans

MS.LS2.A: Interdependent Relationships in Ecosystems. MS.LS2.C: Ecosystem Dynamics, Functioning, and Resilience. MS.LS4.D: Biodiversity and Humans Disciplinary Core Idea MS.LS2.A: Interdependent Relationships in Ecosystems Similarly, predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 24. Optical Receivers-

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 24. Optical Receivers- FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 24 Optical Receivers- Receiver Sensitivity Degradation Fiber Optics, Prof. R.K.

More information

Two-point linkage analysis using the LINKAGE/FASTLINK programs

Two-point linkage analysis using the LINKAGE/FASTLINK programs 1 Two-point linkage analysis using the LINKAGE/FASTLINK programs Copyrighted 2018 Maria Chahrour and Suzanne M. Leal These exercises will introduce the LINKAGE file format which is the standard format

More information

BMT 2018 Combinatorics Test Solutions March 18, 2018

BMT 2018 Combinatorics Test Solutions March 18, 2018 . Bob has 3 different fountain pens and different ink colors. How many ways can he fill his fountain pens with ink if he can only put one ink in each pen? Answer: 0 Solution: He has options to fill his

More information

May 10, 2016, NSF-Census Research Network, Census Bureau. Research supported by NSF grant SES

May 10, 2016, NSF-Census Research Network, Census Bureau. Research supported by NSF grant SES A 2016 View of 2020 Census Quality, Costs, Benefits Bruce D. Spencer Department of Statistics and Institute for Policy Research Northwestern University May 10, 2016, NSF-Census Research Network, Census

More information

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers Chapter 4 CMOS Cascode Amplifiers 4.1 Introduction A single stage CMOS amplifier cannot give desired dc voltage gain, output resistance and transconductance. The voltage gain can be made to attain higher

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Hypergeometric Probability Distribution

Hypergeometric Probability Distribution Hypergeometric Probability Distribution Example problem: Suppose 30 people have been summoned for jury selection, and that 12 people will be chosen entirely at random (not how the real process works!).

More information

6. Bipolar Diode. Owing to this one-direction conductance, current-voltage characteristic of p-n diode has a rectifying shape shown in Fig. 2.

6. Bipolar Diode. Owing to this one-direction conductance, current-voltage characteristic of p-n diode has a rectifying shape shown in Fig. 2. 33 6. Bipolar Diode 6.1. Objectives - to experimentally observe temperature dependence of the current flowing in p-n junction silicon and germanium diodes; - to measure current-voltage characteristics

More information

Possible responses to the 2015 AP Statistics Free Resposne questions, Draft #2. You can access the questions here at AP Central.

Possible responses to the 2015 AP Statistics Free Resposne questions, Draft #2. You can access the questions here at AP Central. Possible responses to the 2015 AP Statistics Free Resposne questions, Draft #2. You can access the questions here at AP Central. Note: I construct these as a service for both students and teachers to start

More information

Exercise 4 Exploring Population Change without Selection

Exercise 4 Exploring Population Change without Selection Exercise 4 Exploring Population Change without Selection This experiment began with nine Avidian ancestors of identical fitness; the mutation rate is zero percent. Since descendants can never differ in

More information

Math 247: Continuous Random Variables: The Uniform Distribution (Section 6.1) and The Normal Distribution (Section 6.2)

Math 247: Continuous Random Variables: The Uniform Distribution (Section 6.1) and The Normal Distribution (Section 6.2) Math 247: Continuous Random Variables: The Uniform Distribution (Section 6.1) and The Normal Distribution (Section 6.2) The Uniform Distribution Example: If you are asked to pick a number from 1 to 10

More information

Probabilities and Probability Distributions

Probabilities and Probability Distributions Probabilities and Probability Distributions George H Olson, PhD Doctoral Program in Educational Leadership Appalachian State University May 2012 Contents Basic Probability Theory Independent vs. Dependent

More information

Chapter 20. Inference about a Population Proportion. BPS - 5th Ed. Chapter 19 1

Chapter 20. Inference about a Population Proportion. BPS - 5th Ed. Chapter 19 1 Chapter 20 Inference about a Population Proportion BPS - 5th Ed. Chapter 19 1 Proportions The proportion of a population that has some outcome ( success ) is p. The proportion of successes in a sample

More information

Genetic Drift, Gene Flow & Natural Selection Activity

Genetic Drift, Gene Flow & Natural Selection Activity Name: Date: Period: Genetic Drift, Gene Flow & Natural Selection Activity Part I Directions: Genetic Drift 1. Grab a bag of beads; this represents the (72) of the Colored beadius organism. TABLE I A B

More information

Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms

Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms Magnus Nordborg University of Southern California The importance of history Genetic polymorphism data represent the outcome

More information

Math 3338: Probability (Fall 2006)

Math 3338: Probability (Fall 2006) Math 3338: Probability (Fall 2006) Jiwen He Section Number: 10853 http://math.uh.edu/ jiwenhe/math3338fall06.html Probability p.1/7 2.3 Counting Techniques (III) - Partitions Probability p.2/7 Partitioned

More information

NRZ Bandwidth (-3db HF Cutoff vs SNR) How Much Bandwidth is Enough?

NRZ Bandwidth (-3db HF Cutoff vs SNR) How Much Bandwidth is Enough? NRZ Bandwidth (-3db HF Cutoff vs SNR) How Much Bandwidth is Enough? Introduction 02XXX-WTP-001-A March 28, 2003 A number of customer-initiated questions have arisen over the determination of the optimum

More information

Image Enhancement in Spatial Domain

Image Enhancement in Spatial Domain Image Enhancement in Spatial Domain 2 Image enhancement is a process, rather a preprocessing step, through which an original image is made suitable for a specific application. The application scenarios

More information

The effect of fast created inbreeding on litter size and body weights in mice

The effect of fast created inbreeding on litter size and body weights in mice Genet. Sel. Evol. 37 (2005) 523 537 523 c INRA, EDP Sciences, 2005 DOI: 10.1051/gse:2005014 Original article The effect of fast created inbreeding on litter size and body weights in mice Marte HOLT,TheoMEUWISSEN,

More information

Antennas and Propagation. Chapter 5c: Array Signal Processing and Parametric Estimation Techniques

Antennas and Propagation. Chapter 5c: Array Signal Processing and Parametric Estimation Techniques Antennas and Propagation : Array Signal Processing and Parametric Estimation Techniques Introduction Time-domain Signal Processing Fourier spectral analysis Identify important frequency-content of signal

More information

THE ASSOCIATION OF MATHEMATICS TEACHERS OF NEW JERSEY 2018 ANNUAL WINTER CONFERENCE FOSTERING GROWTH MINDSETS IN EVERY MATH CLASSROOM

THE ASSOCIATION OF MATHEMATICS TEACHERS OF NEW JERSEY 2018 ANNUAL WINTER CONFERENCE FOSTERING GROWTH MINDSETS IN EVERY MATH CLASSROOM THE ASSOCIATION OF MATHEMATICS TEACHERS OF NEW JERSEY 2018 ANNUAL WINTER CONFERENCE FOSTERING GROWTH MINDSETS IN EVERY MATH CLASSROOM CREATING PRODUCTIVE LEARNING ENVIRONMENTS WEDNESDAY, FEBRUARY 7, 2018

More information

Chapter 5 - Elementary Probability Theory

Chapter 5 - Elementary Probability Theory Chapter 5 - Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling

More information

Unit Nine Precalculus Practice Test Probability & Statistics. Name: Period: Date: NON-CALCULATOR SECTION

Unit Nine Precalculus Practice Test Probability & Statistics. Name: Period: Date: NON-CALCULATOR SECTION Name: Period: Date: NON-CALCULATOR SECTION Vocabulary: Define each word and give an example. 1. discrete mathematics 2. dependent outcomes 3. series Short Answer: 4. Describe when to use a combination.

More information