Inbreeding depression in corn. Inbreeding. Inbreeding depression in humans. Genotype frequencies without random mating. Example.

Size: px
Start display at page:

Download "Inbreeding depression in corn. Inbreeding. Inbreeding depression in humans. Genotype frequencies without random mating. Example."

Transcription

1 nbreeding depression in corn nbreeding Alan R Rogers Two plants on left are from inbred homozygous strains Next: the F offspring of these strains Then offspring (F2 ) of two F s Then F3 And so on November 0, 207 (Jones 924) 2 / 30 / 30 nbreeding depression in humans Genotype frequencies without random mating Describes any bi-allelic locus Genotype A A A A2 A2 A2 Offspring of cousin marriages are less likely to survive (Bittles and Neel 994) Frequency p 2 + pqf 2pq( F ) q 2 + pqf F = 0 under random mating Reduces to Hardy-Weinberg F > 0 under inbreeding Gives excess of homozygotes F is the coefficient of inbreeding 3 / 30 Example Outline of theory Assume p = /2 Genotype A A A A2 A2 A2 4 / 30 Frequency F = 0 F = nbred population has more homozygotes Suffers if either Heterozygotes tend to have high fitness Deleterious alleles tend to be recessive nbreeding increases F, which increases homozygosity, which decreases fitness 5 / 30 6 / 30

2 Decay of heterozygosity under selfing Decay of heterozygosity under selfing Gen A A A A 2 A 2 A 2 0 N Half of heterozygosity is lost each generation 7 / 30 8 / 30 What about cousin mating, or mating between sibs? Kinds of gene identity t is extremely difficult to work this out, using the method we just used Between 903 and 95, no one could get it right Pearl (93): Only for brother-sister matings does inbreeding reduce heterozygosity [Wrong!] Solution: build theory looking backwards in time, not forwards There are two senses in which a pair of gene copies may be identical: identity in state : copies of same allele identity by descent : copies of same gene copy in an ancestor Abbreviation: BD = dentity by Descent 9 / 30 0 / 30 Gametes a and b are identical by descent dentical in state, not by descent May be BD relative to an earlier generation a b a b Not BD relative to the pedigree shown here BD is always relative to a particular generation / 30 2 / 30

3 dentical neither in state nor by descent Uniting gametes Consider the two gametes that unite to form an individual F, is the probability that they are BD What is the probability that they both carry A? a b Event Probability BD from A -bearing ancestor Fp Descend from two random ancestors who both carry A ( F )p 2 P = Fp + ( F )p 2 = p 2 + pqf 3 / 30 4 / 30 All three genotypes For blackboard Genotype Frequency A A p 2 + pqf A A 2 2pq( F ) A 2 A 2 q 2 + pqf Same formulas as before F is no longer arbitrary F is probability that uniting gametes are BD Calculating F from pedigrees 5 / 30 6 / 30 Darwin-Wedgewood Genealogy Josiah Wedgewood Sarah Wedgewood Susannah Wedgewood Josiah Wedgewood Charles Darwin Emma Wedgewood George Darwin 7 / 30 8 / 30

4 A complex pedigree Mating between full siblings A B C E D F A C B D E G 9 / / 30 nbreeding and drift nbreeding and Genetic Drift Alan R Rogers Even under random mating, there is inbreeding in any finite population This random inbreeding is the same thing as genetic drift November 0, / / 30 Number of ancestors generation year ancestors , , , , ,384 Number of ancestors: generation year ancestors , , , , , ,048, ,097, ,94, ,388, ,777, ,554, ,08, ,27, ,435, / / 30

5 Number of ancestors: generation Drift and inbreeding year ancestors 536,870,92,073,74,824 2,47,483,648 4,294,967,296 Drift After t generations of genetic drift, the expected heterozygosity is E [H(t) p0 ] = 2p0 q0 ( /2N)t nbreeding f Ft is the average inbreeding coefficient in generation t, relative to generation 0, f you were born in 994, then you had over 4 billion ancestors in 066 E [H(t) p0 ] = 2p0 q0 ( Ft ) But there were not that many people on the planet Equating these expressions gives Many of your ancestors in 066 were the same people we are all inbred Ft = ( /2N)t nbreeding is genetic drift Let us build a model of this inbreeding 25 / / 30 Genotype frequencies and fitnesses Genotype A A A A2 A2 A2 Fitness and nbreeding Frequency Fp + ( F )p 2 2pq( F ) Fq + ( F )q 2 Fitness hs s Mean fitness: Alan R Rogers w = 2pq( F )hs [Fq + ( F )q 2 ]s = a bf November 0, 207 linear func of F where a = 2pqsh + q 2 s b = 2pqs(/2 h) 27 / 30 Why is inbreeding harmful? 28 / 30 What inbreeding depression tells us We have just seen that mean fitness is nbreeding depression is widespread in Nature w = a bf where mplies that deleterious alleles tend to be partially recessive b = 2pqs(/2 h) Fitness decreases with inbreeding if b > 0, which is true if s > 0 and h < /2, or in other words, if deleterious alleles are at least partially recessive (Jones 924) 29 / / 30

6 Morton and Crow: how large is the effect? Model S = Pr[survival] L = a i b i F i= i= e a i b i F e A BF where A = a i and B = b i Estimates  = 062 ˆB = 734 Example For mating between full sibs, F = /4, and S = exp{ /4} = 085 So we expect 5% mortality in the offspring of full-sib matings 3 / 30

NON-RANDOM MATING AND INBREEDING

NON-RANDOM MATING AND INBREEDING Instructor: Dr. Martha B. Reiskind AEC 495/AEC592: Conservation Genetics DEFINITIONS Nonrandom mating: Mating individuals are more closely related or less closely related than those drawn by chance from

More information

BIOL 502 Population Genetics Spring 2017

BIOL 502 Population Genetics Spring 2017 BIOL 502 Population Genetics Spring 2017 Week 8 Inbreeding Arun Sethuraman California State University San Marcos Table of contents 1. Inbreeding Coefficient 2. Mating Systems 3. Consanguinity and Inbreeding

More information

Population Genetics 3: Inbreeding

Population Genetics 3: Inbreeding Population Genetics 3: nbreeding nbreeding: the preferential mating of closely related individuals Consider a finite population of diploids: What size is needed for every individual to have a separate

More information

Investigations from last time. Inbreeding and neutral evolution Genes, alleles and heterozygosity

Investigations from last time. Inbreeding and neutral evolution Genes, alleles and heterozygosity Investigations from last time. Heterozygous advantage: See what happens if you set initial allele frequency to or 0. What happens and why? Why are these scenario called unstable equilibria? Heterozygous

More information

CONGEN. Inbreeding vocabulary

CONGEN. Inbreeding vocabulary CONGEN Inbreeding vocabulary Inbreeding Mating between relatives. Inbreeding depression Reduction in fitness due to inbreeding. Identical by descent Alleles that are identical by descent are direct descendents

More information

Bottlenecks reduce genetic variation Genetic Drift

Bottlenecks reduce genetic variation Genetic Drift Bottlenecks reduce genetic variation Genetic Drift Northern Elephant Seals were reduced to ~30 individuals in the 1800s. Rare alleles are likely to be lost during a bottleneck Two important determinants

More information

Inbreeding and self-fertilization

Inbreeding and self-fertilization Inbreeding and self-fertilization Introduction Remember that long list of assumptions associated with derivation of the Hardy-Weinberg principle that I went over a couple of lectures ago? Well, we re about

More information

Inbreeding and self-fertilization

Inbreeding and self-fertilization Inbreeding and self-fertilization Introduction Remember that long list of assumptions associated with derivation of the Hardy-Weinberg principle that we just finished? Well, we re about to begin violating

More information

Decrease of Heterozygosity Under Inbreeding

Decrease of Heterozygosity Under Inbreeding INBREEDING When matings take place between relatives, the pattern is referred to as inbreeding. There are three common areas where inbreeding is observed mating between relatives small populations hermaphroditic

More information

Lecture 6: Inbreeding. September 10, 2012

Lecture 6: Inbreeding. September 10, 2012 Lecture 6: Inbreeding September 0, 202 Announcements Hari s New Office Hours Tues 5-6 pm Wed 3-4 pm Fri 2-3 pm In computer lab 3306 LSB Last Time More Hardy-Weinberg Calculations Merle Patterning in Dogs:

More information

Population Structure. Population Structure

Population Structure. Population Structure Nonrandom Mating HWE assumes that mating is random in the population Most natural populations deviate in some way from random mating There are various ways in which a species might deviate from random

More information

Populations. Arindam RoyChoudhury. Department of Biostatistics, Columbia University, New York NY 10032, U.S.A.,

Populations. Arindam RoyChoudhury. Department of Biostatistics, Columbia University, New York NY 10032, U.S.A., Change in Recessive Lethal Alleles Frequency in Inbred Populations arxiv:1304.2955v1 [q-bio.pe] 10 Apr 2013 Arindam RoyChoudhury Department of Biostatistics, Columbia University, New York NY 10032, U.S.A.,

More information

PopGen3: Inbreeding in a finite population

PopGen3: Inbreeding in a finite population PopGen3: Inbreeding in a finite population Introduction The most common definition of INBREEDING is a preferential mating of closely related individuals. While there is nothing wrong with this definition,

More information

Chapter 2: Genes in Pedigrees

Chapter 2: Genes in Pedigrees Chapter 2: Genes in Pedigrees Chapter 2-0 2.1 Pedigree definitions and terminology 2-1 2.2 Gene identity by descent (ibd) 2-5 2.3 ibd of more than 2 genes 2-14 2.4 Data on relatives 2-21 2.1.1 GRAPHICAL

More information

Genetic Effects of Consanguineous Marriage: Facts and Artifacts

Genetic Effects of Consanguineous Marriage: Facts and Artifacts Genetic Effects of Consanguineous Marriage: Facts and Artifacts Maj Gen (R) Suhaib Ahmed, HI (M) MBBS; MCPS; FCPS; PhD (London) Genetics Resource Centre (GRC) Rawalpindi www.grcpk.com Consanguinity The

More information

9Consanguineous marriage and recessive

9Consanguineous marriage and recessive 9Consanguineous marriage and recessive disorders Introduction: The term consanguineous literally means related by blood. A consanguineous marriage is defined as marriage between individuals who have at

More information

Received December 28, 1964

Received December 28, 1964 EFFECT OF LINKAGE ON THE GENETIC LOAD MANIFESTED UNDER INBREEDING MASATOSHI NE1 Division of Genetics, National Institute of Radiological Sciences, Chiba, Japan Received December 28, 1964 IN the theory

More information

Kinship and Population Subdivision

Kinship and Population Subdivision Kinship and Population Subdivision Henry Harpending University of Utah The coefficient of kinship between two diploid organisms describes their overall genetic similarity to each other relative to some

More information

D became evident that the most striking consequences of inbreeding were increases

D became evident that the most striking consequences of inbreeding were increases AN ANALYSIS OF INBREEDINGIN THE EUROPEAN BISON1 HERMAN M. SLATIS Division of Biological and Medical Research, Argonne National Laboratory, Lemont, Illinois Received August 24, 1959 LJRING a study of inbreeding

More information

Lecture 1: Introduction to pedigree analysis

Lecture 1: Introduction to pedigree analysis Lecture 1: Introduction to pedigree analysis Magnus Dehli Vigeland NORBIS course, 8 th 12 th of January 2018, Oslo Outline Part I: Brief introductions Pedigrees symbols and terminology Some common relationships

More information

INFERRING PURGING FROM PEDIGREE DATA

INFERRING PURGING FROM PEDIGREE DATA ORIGINAL ARTICLE doi:10.1111/j.1558-5646.007.00088.x INFERRING PURGING FROM PEDIGREE DATA Davorka Gulisija 1, and James F. Crow 1,3 1 Department of Dairy Science and Laboratory of Genetics, University

More information

Objective: Why? 4/6/2014. Outlines:

Objective: Why? 4/6/2014. Outlines: Objective: Develop mathematical models that quantify/model resemblance between relatives for phenotypes of a quantitative trait : - based on pedigree - based on markers Outlines: Causal model for covariances

More information

Methods of Parentage Analysis in Natural Populations

Methods of Parentage Analysis in Natural Populations Methods of Parentage Analysis in Natural Populations Using molecular markers, estimates of genetic maternity or paternity can be achieved by excluding as parents all adults whose genotypes are incompatible

More information

Breeding a Royal Line - a cautionary tale

Breeding a Royal Line - a cautionary tale Breeding a Royal Line - a cautionary tale By Stephen Mulholland, Ph.D. The ultimate goal of most animal breeders is continual improvement of the breed through careful selection of sire and dam. The "average"

More information

Detecting inbreeding depression is difficult in captive endangered species

Detecting inbreeding depression is difficult in captive endangered species Animal Conservation (1999) 2, 131 136 1999 The Zoological Society of London Printed in the United Kingdom Detecting inbreeding depression is difficult in captive endangered species Steven T. Kalinowski

More information

Inbreeding Using Genomics and How it Can Help. Dr. Flavio S. Schenkel CGIL- University of Guelph

Inbreeding Using Genomics and How it Can Help. Dr. Flavio S. Schenkel CGIL- University of Guelph Inbreeding Using Genomics and How it Can Help Dr. Flavio S. Schenkel CGIL- University of Guelph Introduction Why is inbreeding a concern? The biological risks of inbreeding: Inbreeding depression Accumulation

More information

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/70

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/70 Population Genetics Joe Felsenstein GENOME 453, Autumn 2013 Population Genetics p.1/70 Godfrey Harold Hardy (1877-1947) Wilhelm Weinberg (1862-1937) Population Genetics p.2/70 A Hardy-Weinberg calculation

More information

Optimum contribution selection conserves genetic diversity better than random selection in small populations with overlapping generations

Optimum contribution selection conserves genetic diversity better than random selection in small populations with overlapping generations Optimum contribution selection conserves genetic diversity better than random selection in small populations with overlapping generations K. Stachowicz 12*, A. C. Sørensen 23 and P. Berg 3 1 Department

More information

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/74

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/74 Population Genetics Joe Felsenstein GENOME 453, Autumn 2011 Population Genetics p.1/74 Godfrey Harold Hardy (1877-1947) Wilhelm Weinberg (1862-1937) Population Genetics p.2/74 A Hardy-Weinberg calculation

More information

U among relatives in inbred populations for the special case of no dominance or

U among relatives in inbred populations for the special case of no dominance or PARENT-OFFSPRING AND FULL SIB CORRELATIONS UNDER A PARENT-OFFSPRING MATING SYSTEM THEODORE W. HORNER Statistical Laboratory, Iowa State College, Ames, Iowa Received February 25, 1956 SING the method of

More information

BIOL Evolution. Lecture 8

BIOL Evolution. Lecture 8 BIOL 432 - Evolution Lecture 8 Expected Genotype Frequencies in the Absence of Evolution are Determined by the Hardy-Weinberg Equation. Assumptions: 1) No mutation 2) Random mating 3) Infinite population

More information

Developing Conclusions About Different Modes of Inheritance

Developing Conclusions About Different Modes of Inheritance Pedigree Analysis Introduction A pedigree is a diagram of family relationships that uses symbols to represent people and lines to represent genetic relationships. These diagrams make it easier to visualize

More information

Genomic Variation of Inbreeding and Ancestry in the Remaining Two Isle Royale Wolves

Genomic Variation of Inbreeding and Ancestry in the Remaining Two Isle Royale Wolves Journal of Heredity, 17, 1 16 doi:1.19/jhered/esw8 Original Article Advance Access publication December 1, 16 Original Article Genomic Variation of Inbreeding and Ancestry in the Remaining Two Isle Royale

More information

Kinship/relatedness. David Balding Professor of Statistical Genetics University of Melbourne, and University College London.

Kinship/relatedness. David Balding Professor of Statistical Genetics University of Melbourne, and University College London. Kinship/relatedness David Balding Professor of Statistical Genetics University of Melbourne, and University College London 2 Feb 2016 1 Ways to measure relatedness 2 Pedigree-based kinship coefficients

More information

Development Team. Importance and Implications of Pedigree and Genealogy. Anthropology. Principal Investigator. Paper Coordinator.

Development Team. Importance and Implications of Pedigree and Genealogy. Anthropology. Principal Investigator. Paper Coordinator. Paper No. : 13 Research Methods and Fieldwork Module : 10 Development Team Principal Investigator Prof. Anup Kumar Kapoor Department of, University of Delhi Paper Coordinator Dr. P. Venkatramana Faculty

More information

Spring 2013 Assignment Set #3 Pedigree Analysis. Set 3 Problems sorted by analytical and/or content type

Spring 2013 Assignment Set #3 Pedigree Analysis. Set 3 Problems sorted by analytical and/or content type Biology 321 Spring 2013 Assignment Set #3 Pedigree Analysis You are responsible for working through on your own, the general rules of thumb for analyzing pedigree data to differentiate autosomal and sex-linked

More information

Detection of Misspecified Relationships in Inbred and Outbred Pedigrees

Detection of Misspecified Relationships in Inbred and Outbred Pedigrees Detection of Misspecified Relationships in Inbred and Outbred Pedigrees Lei Sun 1, Mark Abney 1,2, Mary Sara McPeek 1,2 1 Department of Statistics, 2 Department of Human Genetics, University of Chicago,

More information

Pedigrees How do scientists trace hereditary diseases through a family history?

Pedigrees How do scientists trace hereditary diseases through a family history? Why? Pedigrees How do scientists trace hereditary diseases through a family history? Imagine you want to learn about an inherited genetic trait present in your family. How would you find out the chances

More information

Impact of inbreeding Managing a declining Holstein gene pool Dr. Filippo Miglior R&D Coordinator, CDN, Guelph, Canada

Impact of inbreeding Managing a declining Holstein gene pool Dr. Filippo Miglior R&D Coordinator, CDN, Guelph, Canada Impact of inbreeding Managing a declining Holstein gene pool Dr. Filippo Miglior R&D Coordinator, CDN, Guelph, Canada In dairy cattle populations, genetic gains through selection have occurred, largely

More information

Exact Inbreeding Coefficient and Effective Size of Finite Populations Under Partial Sib Mating

Exact Inbreeding Coefficient and Effective Size of Finite Populations Under Partial Sib Mating Copyright 0 1995 by the Genetics Society of America Exact Inbreeding Coefficient Effective Size of Finite Populations Under Partial Sib Mating Jinliang Wang College vf Animal Sciences, Zhejiang Agricultural

More information

Genetic Load in an Isolated Tribal Population of South India

Genetic Load in an Isolated Tribal Population of South India Hum. Genet. 51,203--208 (1979) by Springer-Verlag 1979 Genetic Load in an Isolated Tribal Population of South India Aloke K. Ghosh and Partha P. Majumder* Indian Statistical Institute, 203 Barrackpore

More information

Inbreeding and its effect on fitness traits in captive populations of North Persian leopard and Mhorr gazelle

Inbreeding and its effect on fitness traits in captive populations of North Persian leopard and Mhorr gazelle Faculty of Veterinary Medicine and Animal Science Department of Animal Breeding and Genetics Inbreeding and its effect on fitness traits in captive populations of North Persian leopard and Mhorr gazelle

More information

Received October 29, 1920 TABLE OF CONTENTS

Received October 29, 1920 TABLE OF CONTENTS SYSTEMS OF MATING. 11. THE EFFECTS OF INBREEDING ON THE GENETIC COMPOSITION OF A POPULATION SEWALL WRIGHT Bureau of Animal Industry, United States Department of Agriculture, Washington, D. C. INTRODUCTION.

More information

Pedigree Reconstruction using Identity by Descent

Pedigree Reconstruction using Identity by Descent Pedigree Reconstruction using Identity by Descent Bonnie Kirkpatrick Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2010-43 http://www.eecs.berkeley.edu/pubs/techrpts/2010/eecs-2010-43.html

More information

STUDENT LABORATORY PACKET

STUDENT LABORATORY PACKET L13a Mendelian Genetics- Corn Page 1 of 6 STUDENT LABORATORY PACKET Student s Full Name Lab #13a: Mendelian Genetics in Corn Lab Instructor Date Points Objectives: Students will be able to: Observe the

More information

Using Pedigrees to interpret Mode of Inheritance

Using Pedigrees to interpret Mode of Inheritance Using Pedigrees to interpret Mode of Inheritance Objectives Use a pedigree to interpret the mode of inheritance the given trait is with 90% accuracy. 11.2 Pedigrees (It s in your genes) Pedigree Charts

More information

CONDITIONS FOR EQUILIBRIUM

CONDITIONS FOR EQUILIBRIUM SYSTEMS OF MATING. I. THE BIOMETRIC RELATIONS BETWEEN PARENT AND OFFSPRING SEWALL WRIGHT Bureau of Animal Industry, United States Department oj Agriculture, Washington, D. C. Received October 29, 1920

More information

The Coalescent Model. Florian Weber

The Coalescent Model. Florian Weber The Coalescent Model Florian Weber 23. 7. 2016 The Coalescent Model coalescent = zusammenwachsend Outline Population Genetics and the Wright-Fisher-model The Coalescent on-constant population-sizes Further

More information

The effect of fast created inbreeding on litter size and body weights in mice

The effect of fast created inbreeding on litter size and body weights in mice Genet. Sel. Evol. 37 (2005) 523 537 523 c INRA, EDP Sciences, 2005 DOI: 10.1051/gse:2005014 Original article The effect of fast created inbreeding on litter size and body weights in mice Marte HOLT,TheoMEUWISSEN,

More information

A hidden Markov model to estimate inbreeding from whole genome sequence data

A hidden Markov model to estimate inbreeding from whole genome sequence data A hidden Markov model to estimate inbreeding from whole genome sequence data Tom Druet & Mathieu Gautier Unit of Animal Genomics, GIGA-R, University of Liège, Belgium Centre de Biologie pour la Gestion

More information

Genetics. 7 th Grade Mrs. Boguslaw

Genetics. 7 th Grade Mrs. Boguslaw Genetics 7 th Grade Mrs. Boguslaw Introduction and Background Genetics = the study of heredity During meiosis, gametes receive ½ of their parent s chromosomes During sexual reproduction, two gametes (male

More information

The Two Phases of the Coalescent and Fixation Processes

The Two Phases of the Coalescent and Fixation Processes The Two Phases of the Coalescent and Fixation Processes Introduction The coalescent process which traces back the current population to a common ancestor and the fixation process which follows an individual

More information

NIH Public Access Author Manuscript Genet Res (Camb). Author manuscript; available in PMC 2011 April 4.

NIH Public Access Author Manuscript Genet Res (Camb). Author manuscript; available in PMC 2011 April 4. NIH Public Access Author Manuscript Published in final edited form as: Genet Res (Camb). 2011 February ; 93(1): 47 64. doi:10.1017/s0016672310000480. Variation in actual relationship as a consequence of

More information

Genetic Research in Utah

Genetic Research in Utah Genetic Research in Utah Lisa Cannon Albright, PhD Professor, Program Leader Genetic Epidemiology Department of Internal Medicine University of Utah School of Medicine George E. Wahlen Department of Veterans

More information

DNA: Statistical Guidelines

DNA: Statistical Guidelines Frequency calculations for STR analysis When a probative association between an evidence profile and a reference profile is made, a frequency estimate is calculated to give weight to the association. Frequency

More information

Conservation Genetics Inbreeding, Fluctuating Asymmetry, and Captive Breeding Exercise

Conservation Genetics Inbreeding, Fluctuating Asymmetry, and Captive Breeding Exercise Conservation Genetics Inbreeding, Fluctuating Asymmetry, and Captive Breeding Exercise James P. Gibbs Reproduction of this material is authorized by the recipient institution for nonprofit/non-commercial

More information

Characterization of the global Brown Swiss cattle population structure

Characterization of the global Brown Swiss cattle population structure Swedish University of Agricultural Sciences Faculty of Veterinary Medicine and Animal Science Characterization of the global Brown Swiss cattle population structure Worede Zinabu Gebremariam Examensarbete

More information

Linkage Analysis in Merlin. Meike Bartels Kate Morley Danielle Posthuma

Linkage Analysis in Merlin. Meike Bartels Kate Morley Danielle Posthuma Linkage Analysis in Merlin Meike Bartels Kate Morley Danielle Posthuma Software for linkage analyses Genehunter Mendel Vitesse Allegro Simwalk Loki Merlin. Mx R Lisrel MERLIN software Programs: MERLIN

More information

Eastern Regional High School. 1 2 Aa Aa Aa Aa

Eastern Regional High School. 1 2 Aa Aa Aa Aa Eastern Regional High School Honors Biology Name: Mod: Date: Unit Non-Mendelian Genetics Worksheet - Pedigree Practice Problems. Identify the genotypes of all the individuals in this pedigree. Assume that

More information

Pedigree Worksheet Name Period Date Interpreting a Human Pedigree Use the pedigree below to answer 1-5

Pedigree Worksheet Name Period Date Interpreting a Human Pedigree Use the pedigree below to answer 1-5 Pedigree Worksheet Name Period Date Interpreting a Human Pedigree Use the pedigree below to answer 1-5 1. In a pedigree, a square represents a male. If it is darkened he has hemophilia; if clear, he had

More information

The Pedigree. NOTE: there are no definite conclusions that can be made from a pedigree. However, there are more likely and less likely explanations

The Pedigree. NOTE: there are no definite conclusions that can be made from a pedigree. However, there are more likely and less likely explanations The Pedigree A tool (diagram) used to trace traits in a family The diagram shows the history of a trait between generations Designed to show inherited phenotypes Using logic we can deduce the inherited

More information

ORIGINAL ARTICLE Purging deleterious mutations in conservation programmes: combining optimal contributions with inbred matings

ORIGINAL ARTICLE Purging deleterious mutations in conservation programmes: combining optimal contributions with inbred matings (203), 8 & 203 Macmillan Publishers Limited www.nature.com/hdy All rights reserved 008-067X/3 ORIGINAL ARTICLE Purging deleterious mutations in conservation programmes: combining optimal contributions

More information

Algorithms for Genetics: Basics of Wright Fisher Model and Coalescent Theory

Algorithms for Genetics: Basics of Wright Fisher Model and Coalescent Theory Algorithms for Genetics: Basics of Wright Fisher Model and Coalescent Theory Vineet Bafna Harish Nagarajan and Nitin Udpa 1 Disclaimer Please note that a lot of the text and figures here are copied from

More information

Bioinformatics I, WS 14/15, D. Huson, December 15,

Bioinformatics I, WS 14/15, D. Huson, December 15, Bioinformatics I, WS 4/5, D. Huson, December 5, 204 07 7 Introduction to Population Genetics This chapter is closely based on a tutorial given by Stephan Schiffels (currently Sanger Institute) at the Australian

More information

Genetic analysis of multiple sclerosis in Orkney

Genetic analysis of multiple sclerosis in Orkney Journal of Epidemiology and Community Health, 1979, 33, 229-235 Genetic analysis of multiple sclerosis in Orkney DEREK F. ROBERTS AND MARY J. ROBERTS From the Department of Human Genetics, University of

More information

University of Washington, TOPMed DCC July 2018

University of Washington, TOPMed DCC July 2018 Module 12: Comput l Pipeline for WGS Relatedness Inference from Genetic Data Timothy Thornton (tathornt@uw.edu) & Stephanie Gogarten (sdmorris@uw.edu) University of Washington, TOPMed DCC July 2018 1 /

More information

1.4.1(Question should be rather: Another sibling of these two brothers) 25% % % (population risk of heterozygot*2/3*1/4)

1.4.1(Question should be rather: Another sibling of these two brothers) 25% % % (population risk of heterozygot*2/3*1/4) ----------------------------------------------------------Chapter 1--------------------------------------------------------------- (each task of this chapter is dedicated as x (x meaning the exact task.

More information

fbat August 21, 2010 Basic data quality checks for markers

fbat August 21, 2010 Basic data quality checks for markers fbat August 21, 2010 checkmarkers Basic data quality checks for markers Basic data quality checks for markers. checkmarkers(genesetobj, founderonly=true, thrsh=0.05, =TRUE) checkmarkers.default(pedobj,

More information

Exercise 4 Exploring Population Change without Selection

Exercise 4 Exploring Population Change without Selection Exercise 4 Exploring Population Change without Selection This experiment began with nine Avidian ancestors of identical fitness; the mutation rate is zero percent. Since descendants can never differ in

More information

I genetic distance for short-term evolution, when the divergence between

I genetic distance for short-term evolution, when the divergence between Copyright 0 1983 by the Genetics Society of America ESTIMATION OF THE COANCESTRY COEFFICIENT: BASIS FOR A SHORT-TERM GENETIC DISTANCE JOHN REYNOLDS, B. S. WEIR AND C. CLARK COCKERHAM Department of Statistics,

More information

AFDAA 2012 WINTER MEETING Population Statistics Refresher Course - Lecture 3: Statistics of Kinship Analysis

AFDAA 2012 WINTER MEETING Population Statistics Refresher Course - Lecture 3: Statistics of Kinship Analysis AFDAA 2012 WINTER MEETING Population Statistics Refresher Course - Lecture 3: Statistics of Kinship Analysis Ranajit Chakraborty, PhD Center for Computational Genomics Institute of Applied Genetics Department

More information

Forward thinking: the predictive approach

Forward thinking: the predictive approach Coalescent Theory 1 Forward thinking: the predictive approach Random variation in reproduction causes random fluctuation in allele frequencies. Can describe this process as diffusion: (Wright 1931) showed

More information

Two-point linkage analysis using the LINKAGE/FASTLINK programs

Two-point linkage analysis using the LINKAGE/FASTLINK programs 1 Two-point linkage analysis using the LINKAGE/FASTLINK programs Copyrighted 2018 Maria Chahrour and Suzanne M. Leal These exercises will introduce the LINKAGE file format which is the standard format

More information

Determining Relatedness from a Pedigree Diagram

Determining Relatedness from a Pedigree Diagram Kin structure & relatedness Francis L. W. Ratnieks Aims & Objectives Aims 1. To show how to determine regression relatedness among individuals using a pedigree diagram. Social Insects: C1139 2. To show

More information

and g2. The second genotype, however, has a doubled opportunity of transmitting the gene X to any

and g2. The second genotype, however, has a doubled opportunity of transmitting the gene X to any Brit. J. prev. soc. Med. (1958), 12, 183-187 GENOTYPIC FREQUENCIES AMONG CLOSE RELATIVES OF PROPOSITI WITH CONDITIONS DETERMINED BY X-RECESSIVE GENES BY GEORGE KNOX* From the Department of Social Medicine,

More information

Estimation of the Inbreeding Coefficient through Use of Genomic Data

Estimation of the Inbreeding Coefficient through Use of Genomic Data Am. J. Hum. Genet. 73:516 523, 2003 Estimation of the Inbreeding Coefficient through Use of Genomic Data Anne-Louise Leutenegger, 1,2 Bernard Prum, 4 Emmanuelle Génin, 1 Christophe Verny, 6 Arnaud Lemainque,

More information

Popstats Parentage Statistics Strength of Genetic Evidence In Parentage Testing

Popstats Parentage Statistics Strength of Genetic Evidence In Parentage Testing Popstats Parentage Statistics Strength of Genetic Evidence In Parentage Testing Arthur J. Eisenberg, Ph.D. Director DNA Identity Laboratory UNT-Health Science Center eisenber@hsc.unt.edu PATERNITY TESTING

More information

ARTICLE Using Genomic Inbreeding Coefficient Estimates for Homozygosity Mapping of Rare Recessive Traits: Application to Taybi-Linder Syndrome

ARTICLE Using Genomic Inbreeding Coefficient Estimates for Homozygosity Mapping of Rare Recessive Traits: Application to Taybi-Linder Syndrome ARTICLE Using Genomic Inbreeding Coefficient Estimates for Homozygosity Mapping of Rare Recessive Traits: Application to Taybi-Linder Syndrome Anne-Louise Leutenegger, Audrey Labalme, Emmanuelle Génin,

More information

Exercise 8. Procedure. Observation

Exercise 8. Procedure. Observation Exercise 8 Procedure Observe the slide under lower magnification of the microscope. In case of chart/models/photographs, note the feature of blastula in your practical record and draw labelled diagram.

More information

Consanguinity, inbreeding and genetic load in salis: A sub divided population of Andhra Pradesh, South India

Consanguinity, inbreeding and genetic load in salis: A sub divided population of Andhra Pradesh, South India Document heading doi: 10.21276/apjhs.2017.4.1.29 Research Article Consanguinity, inbreeding and genetic load in salis: A sub divided population of Andhra Pradesh, South India P. Mohan Rao 1*, M. Ramesh

More information

Statistical methods in genetic relatedness and pedigree analysis

Statistical methods in genetic relatedness and pedigree analysis Statistical methods in genetic relatedness and pedigree analysis Oslo, January 2018 Magnus Dehli Vigeland and Thore Egeland Exercise set III: Coecients of pairwise relatedness Exercise III-1. Use Wright's

More information

Population Genetics using Trees. Peter Beerli Genome Sciences University of Washington Seattle WA

Population Genetics using Trees. Peter Beerli Genome Sciences University of Washington Seattle WA Population Genetics using Trees Peter Beerli Genome Sciences University of Washington Seattle WA Outline 1. Introduction to the basic coalescent Population models The coalescent Likelihood estimation of

More information

Trends in genome wide and region specific genetic diversity in the Dutch Flemish Holstein Friesian breeding program from 1986 to 2015

Trends in genome wide and region specific genetic diversity in the Dutch Flemish Holstein Friesian breeding program from 1986 to 2015 https://doi.org/10.1186/s12711-018-0385-y Genetics Selection Evolution RESEARCH ARTICLE Open Access Trends in genome wide and region specific genetic diversity in the Dutch Flemish Holstein Friesian breeding

More information

Pedigree analysis and estimation of inbreeding effects on calving traits in an organized performance test for functional traits

Pedigree analysis and estimation of inbreeding effects on calving traits in an organized performance test for functional traits Agrar- und Ernährungswissenschaftliche Fakultät an-albrechts-universität zu Kiel Institut für Tierzucht und Tierhaltung Pedigree analysis and estimation of inbreeding effects on calving traits in an organized

More information

Genetic variability of Lizard canary breed inferred from pedigree analysis

Genetic variability of Lizard canary breed inferred from pedigree analysis Short code: ASJ Title: Animal Science Journal ISSN: 1344-3941 Created by: NikiChen Word version: 11.0 Email proofs to: francesca.cecchi@unipi.it Copyright: 2014 Japanese Society of Animal Science Volume:

More information

Linear and Curvilinear Effects of Inbreeding on Production Traits for Walloon Holstein Cows

Linear and Curvilinear Effects of Inbreeding on Production Traits for Walloon Holstein Cows J. Dairy Sci. 90:465 471 American Dairy Science Association, 2007. Linear and Curvilinear Effects of Inbreeding on Production Traits for Walloon Holstein Cows C. Croquet,* 1 P. Mayeres, A. Gillon, H. Hammami,

More information

ville, VA Associate Editor: XXXXXXX Received on XXXXX; revised on XXXXX; accepted on XXXXX

ville, VA Associate Editor: XXXXXXX Received on XXXXX; revised on XXXXX; accepted on XXXXX Robust Relationship Inference in Genome Wide Association Studies Ani Manichaikul 1,2, Josyf Mychaleckyj 1, Stephen S. Rich 1, Kathy Daly 3, Michele Sale 1,4,5 and Wei- Min Chen 1,2,* 1 Center for Public

More information

Puzzling Pedigrees. Essential Question: How can pedigrees be used to study the inheritance of human traits?

Puzzling Pedigrees. Essential Question: How can pedigrees be used to study the inheritance of human traits? Name: Puzzling Pedigrees Essential Question: How can pedigrees be used to study the inheritance of human traits? Studying inheritance in humans is more difficult than studying inheritance in fruit flies

More information

286 K. TANAKA [Vol. 40,

286 K. TANAKA [Vol. 40, No. 4] 285 64. Preliminary Report o f Studies on Genetic Effects o f Consanguineous Marriages. III *' Ascertainment and Estimation o f Mortality -- a Consanguinity Study in Shizuoka By Katumi TANAKA* *'

More information

Genetic Conservation of Endangered Animal Populations

Genetic Conservation of Endangered Animal Populations Genetic Conservation of Endangered Animal Populations Promotor: Co-promotor: Promotiecommissie: Prof. dr. ir. Johan A.M. van Arendonk Hoogleraar in de Fokkerij en Genetica Wageningen Universiteit Dr. ir.

More information

Common ancestors of all humans

Common ancestors of all humans Definitions Skip the methodology and jump down the page to the Conclusion Discussion CAs using Genetics CAs using Archaeology CAs using Mathematical models CAs using Computer simulations Recent news Mark

More information

Biology Partnership (A Teacher Quality Grant) Lesson Plan Construction Form

Biology Partnership (A Teacher Quality Grant) Lesson Plan Construction Form Biology Partnership (A Teacher Quality Grant) Lesson Plan Construction Form Identifying Information: (Group Members and Schools, Title of Lesson, Length in Minutes, Course Level) Teachers in Study Group

More information

The Coalescent. Chapter Population Genetic Models

The Coalescent. Chapter Population Genetic Models Chapter 3 The Coalescent To coalesce means to grow together, to join, or to fuse. When two copies of a gene are descended from a common ancestor which gave rise to them in some past generation, looking

More information

Human Genetic Isolation and Population Structure of Hancock County, Tennessee

Human Genetic Isolation and Population Structure of Hancock County, Tennessee University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-1974 Human Genetic Isolation and Population Structure of Hancock County, Tennessee James

More information

Alien Life Form (ALF)

Alien Life Form (ALF) Alien Life Form (ALF) Closely related siblings are most often different in both genotype (the actual genes) and phenotype (the appearance of the genes). This is because of the great variety of traits in

More information

Reduction of inbreeding in commercial females by rotational mating with several sire lines

Reduction of inbreeding in commercial females by rotational mating with several sire lines Genet. Sel. Evol. 36 (2004) 509 526 509 c INRA, EDP Sciences, 2004 DOI: 10.1051/gse:2004014 Original article Reduction of inbreeding in commercial females by rotational mating with several sire lines Takeshi

More information

Analysis of geographically structured populations: Estimators based on coalescence

Analysis of geographically structured populations: Estimators based on coalescence Analysis of geographically structured populations: Estimators based on coalescence Peter Beerli Department of Genetics, Box 357360, University of Washington, Seattle WA 9895-7360, Email: beerli@genetics.washington.edu

More information

Automated Discovery of Pedigrees and Their Structures in Collections of STR DNA Specimens Using a Link Discovery Tool

Automated Discovery of Pedigrees and Their Structures in Collections of STR DNA Specimens Using a Link Discovery Tool University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2010 Automated Discovery of Pedigrees and Their Structures in Collections of STR DNA

More information

Thecompletegenomesequenceofa Neanderthal from the Altai Mountains

Thecompletegenomesequenceofa Neanderthal from the Altai Mountains Thecompletegenomesequenceofa Neanderthal from the Altai Mountains Kay Prüfer, Fernando Racimo, Nick Patterson, Flora Jay, Sriram Sankararaman,, Susanna Sayer, Anja Heinze, Gabriel Renaud, Peter H. Sudmant,

More information

The Annals of Human Genetics has an archive of material originally published in print format by the Annals of Eugenics ( ).

The Annals of Human Genetics has an archive of material originally published in print format by the Annals of Eugenics ( ). The Annals of Human Genetics has an archive of material originally published in print format by the Annals of Eugenics (1925-1954). This material is available in specialised libraries and archives. We

More information