Lecture 1: Introduction to pedigree analysis

Size: px
Start display at page:

Download "Lecture 1: Introduction to pedigree analysis"

Transcription

1 Lecture 1: Introduction to pedigree analysis Magnus Dehli Vigeland NORBIS course, 8 th 12 th of January 2018, Oslo

2 Outline Part I: Brief introductions Pedigrees symbols and terminology Some common relationships Genetics Locus, allele, genotype, marker Mendelian inheritance Autosomal X, Y Part II: Pedigree likelihoods Motivation: Real-life problems Ingredients: Hardy-Weinberg equilibrium Mendelian transition probabilities Likelihoods by hand Computer algorithms

3 Outline Part I: Brief introductions Pedigrees symbols and terminology Some common relationships Genetics Locus, allele, genotype, marker Mendelian inheritance Autosomal X, Y Part II: Pedigree likelihoods Motivation: Real-life problems Ingredients: Hardy-Weinberg equilibrium Mendelian transition probabilities Likelihoods by hand Computer algorithms

4 Pedigrees: Symbols and terminology Founders: No parents included in the pedigree = male = female Nonfounders

5 Pedigrees: Symbols and terminology = male = female Consanguineous marriage

6 Pedigrees: Symbols and terminology Medical pedigrees: = affected = unaffected = carrier of disease allele

7 Alternative ways of drawing pedigrees Standard Simplified Directed acyclic graph

8 Outline Part I: Brief introductions Pedigrees symbols and terminology Some common relationships Genetics Locus, allele, genotype, marker Mendelian inheritance Autosomal X, Y Part II: Pedigree likelihoods Motivation: Real-life problems Ingredients: Hardy-Weinberg equilibrium Mendelian transition probabilities Likelihoods by hand Computer algorithms

9 Cousin relationships Full siblings First cousins Second cousins

10 Cousin relationships First cousins once removed

11 Half cousin relationships Half siblings (paternal) Half first cousins Half second cousins

12 Half cousin relationships

13 More complicated relationships Other: Double first cousins Quadruple half first cousins 3/4 siblings

14 Outline Part I: Brief introductions Pedigrees symbols and terminology Some common relationships Genetics Locus, allele, genotype, marker Mendelian inheritance Autosomal X, Y Part II: Pedigree likelihoods Motivation: Real-life problems Ingredients: Hardy-Weinberg equilibrium Mendelian transition probabilities Likelihoods by hand Computer algorithms

15 Genetics Human genome: Diploid 22 pairs of autosomes Sex chroms: X and Y Some important terms Locus Allele Genotype Genetic markers SNPs microsatellites

16 Locus, allele, genotype M F alleles A B locus genotype: A/B Homologous chromosomes LOCUS = a specific place in the genome, e.g. a base pair, a gene or a region ALLELE = any of the alternative forms of a locus GENOTYPE = the set of alleles carried by an individual at a given locus

17 Genetic markers Small parts of the genome which... have known position vary in the population are easy to genotype SNPs (single nucleotide polymorphisms) two alleles usual requirement: MAF > 1% = minor allele frequency very common in the genome (millions!) used in medical genetics CCGTTATATGGGC......CCGTTAGATGGGC......CCGTTATATGGGC......CCGTTATATGGGC......CCGTTAGATGGGC... STRs (short tandem repeats) = microsatellites consecutive repeats of 2-5 bases multiallelic: 5-50 alleles allele names: # repeats used in forensics...acg TTAG TTAG TTAG TTAG AAC.....ACG TTAG TTAG AAC.....ACG TTAG TTAG TTAG TTAG TTAG AAC..

18 Outline Part I: Brief introductions Pedigrees symbols and terminology Some common relationships Genetics Locus, allele, genotype, marker Mendelian inheritance Autosomal X, Y Part II: Pedigree likelihoods Motivation: Real-life problems Ingredients: Hardy-Weinberg equilibrium Mendelian transition probabilities Likelihoods by hand Computer algorithms

19 Mendelian inheritance: Autosomal (chromosomes 1-22) Example: autosomal marker with 3 alleles: A, B, C homozygous A/A B/C heterozygous A/B A/C A/B Probability of transmitting either allele: always 50% B/C

20 Mendelian inheritance: X-linked Example: X-linked marker with 3 alleles: A, B, C males are hemizygous A B/C A/C A/B C forced transmission from father to daughter A no transmisison from father to son

21 Mendelian inheritance: Y-linked Example: Y-linked marker with 2 alleles: A, B A B no transmission involving females B father-son forced

22 Assumptions throughout (most of) this course Diploid species No cytogenetic abnormalitites No de novo mutations COFFEE BREAK!

23 Outline Part I: Brief introductions Pedigrees symbols and terminology Some common relationships Genetics Locus, allele, genotype, marker Mendelian inheritance Autosomal X, Y Part II: Pedigree likelihoods Motivation: Real-life problems Ingredients: Hardy-Weinberg equilibrium Mendelian transition probabilities Likelihoods by hand Computer algorithms

24 Questions related to pedigrees with genotypes Will my child have the disease? Is NN the true father? Brothers or half brothers? Is NN related to this family? How? Predict the missing genotype?

25 Questions related to pedigrees with genotypes D/N? D Disease locus: alleles D and N Will my child have the disease?

26 Questions related to pedigrees with genotypes /13 -/- 13/18 11/18 Suppose: 11 is common 18 is rare Who is the true father?

27 Questions related to pedigrees with genotypes Brothers or half brothers?

28 Questions related to pedigrees with genotypes 12/14 32/40 7/11 6/21 11/14 32/40 13/13 6/25 12/16 34/40 7/7 12/21 11/16 32/41 7/13 6/25 Is this woman related to the family?

29 Questions related to pedigrees with genotypes A/B A/A A/A?/? A/B A/B Can we predict the missing genotype?

30 Common to all of these: The need to calculate probabilities P( genotypes pedigree, marker info, allele freqs,.. ) Called the likelihood of the pedigree.

31 Ingredients for likelihood computations founder probabilites A/B A/A transition probabilities A/A -/- A/B A/A untyped individuals

32 Ingredient 1: Founder probabilities Suppose the allele frequencies are: P A = p P B = q What are the frequencies of the genotypes AA, AB, BB? Under certain assumptions, the alleles can be treated as independent: P(AA) = P A P A = p 2 P BB = P B P B = q 2 P AB = P AB or BA = pq + qp = 2pq two possible orderings!

33 The Hardy-Weinberg principle Assumptions: A p B q infinite population random mating no selection AA AB BB no mutations no migration A p B q Hardy (1908): Shows «... using a little mathemathics of the multiplication table kind»: p 2 2pq q 2 AA AB BB allele freqs are unchanged from generation to generation after 1 generation the genotype freqs stay unchanged A p B q P AA = p 2 P AB = 2pq P(BB) = q 2 HW equilibrium p 2 AA 2pq AB q 2 BB

34 p AA = p 2 p AB = 2pq p BB = q 2 assuming HWE Allele frequencies Genotype frequencies always p = p AA p AB q = p BB p AB

35 Ingredient 2: Transition probabilities P(g child g parents ) Easy - follows directly from Mendel's laws! A/A -/- A/B child parents A/A AB BB AA AA AA AB AA BB AB AA AB AB AB BB BB AA BB AB BB BB 0 0 1

36 Example 1 2 A/A A/B 3 A/B L = P g 1, g 2, g 3 = P g 1 ) P(g 2 ) P(g 3 g 1, g 2 = P AA P AB P AB parents = AA AB) = p 2 2pq 0.5 = p 3 q assuming HWE!

37 Example on X A 1 2 A/B B/B A/B B 6 B/B L = P genotypes pedigree, p, q contribution from each individual = p 2pq q 2 1 = 0.5 p 2 q 3

38 Ingredient 3: How to deal with untyped individuals Solution: Sum of all possible genotypes for the untyped 1 2 A/A -/- 3 A/B P g 1, g 3 = P(g 1, g 2, g 3 ) = P g 1 ) P(g 2 ) P(g 3 g 1, g 2 g 2 g 2 = P(AA) P(AA) P AB AA AA) + P(AA) P(AB) P AB AA AB) + P(AA) P(BB) P AB AA BB) = p 2 p p 2 2pq p 2 q 2 1 = p 3 q + p 2 q 2 = p 2 q p + q = p 2 q

39 Pedigree likelihood: General formula Given: pedigree with n individuals k members are genotyped: g 1, g 2,, g k Then: founders non-founders P g 1,..., g k = G 1 G 2 G n P g 1 P g j P g j+1 par P g n par If everyone is typed: Only one term easy G i = set of possible genotypes for individual i Number of terms grows exponentially in #(untyped) but clever algorithms exist!

40 Computer algorithms for pedigree likelihoods Elston-Stewart algorithm a peeling algorithm linear in pedigree size! A/B A/A A/A -/- A/A Lander-Green based on inheritance vectors hidden Markov model best choice with many linked markers small/medium pedigrees only A/B

41 Software R/paramlink R environment Elston-Stewart general likelihoods, inbreeding, simulation ++ Familias GUI for forensic applications Elston-Stewart handles mutations, HW deviations, ++ MERLIN command line program Lander-Green medical applications: multipoint linkage

Pedigrees How do scientists trace hereditary diseases through a family history?

Pedigrees How do scientists trace hereditary diseases through a family history? Why? Pedigrees How do scientists trace hereditary diseases through a family history? Imagine you want to learn about an inherited genetic trait present in your family. How would you find out the chances

More information

Using Pedigrees to interpret Mode of Inheritance

Using Pedigrees to interpret Mode of Inheritance Using Pedigrees to interpret Mode of Inheritance Objectives Use a pedigree to interpret the mode of inheritance the given trait is with 90% accuracy. 11.2 Pedigrees (It s in your genes) Pedigree Charts

More information

Developing Conclusions About Different Modes of Inheritance

Developing Conclusions About Different Modes of Inheritance Pedigree Analysis Introduction A pedigree is a diagram of family relationships that uses symbols to represent people and lines to represent genetic relationships. These diagrams make it easier to visualize

More information

AFDAA 2012 WINTER MEETING Population Statistics Refresher Course - Lecture 3: Statistics of Kinship Analysis

AFDAA 2012 WINTER MEETING Population Statistics Refresher Course - Lecture 3: Statistics of Kinship Analysis AFDAA 2012 WINTER MEETING Population Statistics Refresher Course - Lecture 3: Statistics of Kinship Analysis Ranajit Chakraborty, PhD Center for Computational Genomics Institute of Applied Genetics Department

More information

Methods of Parentage Analysis in Natural Populations

Methods of Parentage Analysis in Natural Populations Methods of Parentage Analysis in Natural Populations Using molecular markers, estimates of genetic maternity or paternity can be achieved by excluding as parents all adults whose genotypes are incompatible

More information

Puzzling Pedigrees. Essential Question: How can pedigrees be used to study the inheritance of human traits?

Puzzling Pedigrees. Essential Question: How can pedigrees be used to study the inheritance of human traits? Name: Puzzling Pedigrees Essential Question: How can pedigrees be used to study the inheritance of human traits? Studying inheritance in humans is more difficult than studying inheritance in fruit flies

More information

Two-point linkage analysis using the LINKAGE/FASTLINK programs

Two-point linkage analysis using the LINKAGE/FASTLINK programs 1 Two-point linkage analysis using the LINKAGE/FASTLINK programs Copyrighted 2018 Maria Chahrour and Suzanne M. Leal These exercises will introduce the LINKAGE file format which is the standard format

More information

Population Genetics 3: Inbreeding

Population Genetics 3: Inbreeding Population Genetics 3: nbreeding nbreeding: the preferential mating of closely related individuals Consider a finite population of diploids: What size is needed for every individual to have a separate

More information

Spring 2013 Assignment Set #3 Pedigree Analysis. Set 3 Problems sorted by analytical and/or content type

Spring 2013 Assignment Set #3 Pedigree Analysis. Set 3 Problems sorted by analytical and/or content type Biology 321 Spring 2013 Assignment Set #3 Pedigree Analysis You are responsible for working through on your own, the general rules of thumb for analyzing pedigree data to differentiate autosomal and sex-linked

More information

Genetics. 7 th Grade Mrs. Boguslaw

Genetics. 7 th Grade Mrs. Boguslaw Genetics 7 th Grade Mrs. Boguslaw Introduction and Background Genetics = the study of heredity During meiosis, gametes receive ½ of their parent s chromosomes During sexual reproduction, two gametes (male

More information

Chapter 2: Genes in Pedigrees

Chapter 2: Genes in Pedigrees Chapter 2: Genes in Pedigrees Chapter 2-0 2.1 Pedigree definitions and terminology 2-1 2.2 Gene identity by descent (ibd) 2-5 2.3 ibd of more than 2 genes 2-14 2.4 Data on relatives 2-21 2.1.1 GRAPHICAL

More information

BIOL 502 Population Genetics Spring 2017

BIOL 502 Population Genetics Spring 2017 BIOL 502 Population Genetics Spring 2017 Week 8 Inbreeding Arun Sethuraman California State University San Marcos Table of contents 1. Inbreeding Coefficient 2. Mating Systems 3. Consanguinity and Inbreeding

More information

Decrease of Heterozygosity Under Inbreeding

Decrease of Heterozygosity Under Inbreeding INBREEDING When matings take place between relatives, the pattern is referred to as inbreeding. There are three common areas where inbreeding is observed mating between relatives small populations hermaphroditic

More information

TDT vignette Use of snpstats in family based studies

TDT vignette Use of snpstats in family based studies TDT vignette Use of snpstats in family based studies David Clayton April 30, 2018 Pedigree data The snpstats package contains some tools for analysis of family-based studies. These assume that a subject

More information

DNA Basics, Y DNA Marker Tables, Ancestral Trees and Mutation Graphs: Definitions, Concepts, Understanding

DNA Basics, Y DNA Marker Tables, Ancestral Trees and Mutation Graphs: Definitions, Concepts, Understanding DNA Basics, Y DNA Marker Tables, Ancestral Trees and Mutation Graphs: Definitions, Concepts, Understanding by Dr. Ing. Robert L. Baber 2014 July 26 Rights reserved, see the copyright notice at http://gengen.rlbaber.de

More information

CONGEN. Inbreeding vocabulary

CONGEN. Inbreeding vocabulary CONGEN Inbreeding vocabulary Inbreeding Mating between relatives. Inbreeding depression Reduction in fitness due to inbreeding. Identical by descent Alleles that are identical by descent are direct descendents

More information

Pedigree Charts. The family tree of genetics

Pedigree Charts. The family tree of genetics Pedigree Charts The family tree of genetics Pedigree Charts I II III What is a Pedigree? A pedigree is a chart of the genetic history of family over several generations. Scientists or a genetic counselor

More information

Statistical methods in genetic relatedness and pedigree analysis

Statistical methods in genetic relatedness and pedigree analysis Statistical methods in genetic relatedness and pedigree analysis Oslo, January 2018 Magnus Dehli Vigeland and Thore Egeland Exercise set III: Coecients of pairwise relatedness Exercise III-1. Use Wright's

More information

Eastern Regional High School. 1 2 Aa Aa Aa Aa

Eastern Regional High School. 1 2 Aa Aa Aa Aa Eastern Regional High School Honors Biology Name: Mod: Date: Unit Non-Mendelian Genetics Worksheet - Pedigree Practice Problems. Identify the genotypes of all the individuals in this pedigree. Assume that

More information

Lecture 6: Inbreeding. September 10, 2012

Lecture 6: Inbreeding. September 10, 2012 Lecture 6: Inbreeding September 0, 202 Announcements Hari s New Office Hours Tues 5-6 pm Wed 3-4 pm Fri 2-3 pm In computer lab 3306 LSB Last Time More Hardy-Weinberg Calculations Merle Patterning in Dogs:

More information

ICMP DNA REPORTS GUIDE

ICMP DNA REPORTS GUIDE ICMP DNA REPORTS GUIDE Distribution: General Sarajevo, 16 th December 2010 GUIDE TO ICMP DNA REPORTS 1. Purpose of This Document 1. The International Commission on Missing Persons (ICMP) endeavors to secure

More information

Bottlenecks reduce genetic variation Genetic Drift

Bottlenecks reduce genetic variation Genetic Drift Bottlenecks reduce genetic variation Genetic Drift Northern Elephant Seals were reduced to ~30 individuals in the 1800s. Rare alleles are likely to be lost during a bottleneck Two important determinants

More information

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/70

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/70 Population Genetics Joe Felsenstein GENOME 453, Autumn 2013 Population Genetics p.1/70 Godfrey Harold Hardy (1877-1947) Wilhelm Weinberg (1862-1937) Population Genetics p.2/70 A Hardy-Weinberg calculation

More information

Investigations from last time. Inbreeding and neutral evolution Genes, alleles and heterozygosity

Investigations from last time. Inbreeding and neutral evolution Genes, alleles and heterozygosity Investigations from last time. Heterozygous advantage: See what happens if you set initial allele frequency to or 0. What happens and why? Why are these scenario called unstable equilibria? Heterozygous

More information

Kinship/relatedness. David Balding Professor of Statistical Genetics University of Melbourne, and University College London.

Kinship/relatedness. David Balding Professor of Statistical Genetics University of Melbourne, and University College London. Kinship/relatedness David Balding Professor of Statistical Genetics University of Melbourne, and University College London 2 Feb 2016 1 Ways to measure relatedness 2 Pedigree-based kinship coefficients

More information

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/74

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/74 Population Genetics Joe Felsenstein GENOME 453, Autumn 2011 Population Genetics p.1/74 Godfrey Harold Hardy (1877-1947) Wilhelm Weinberg (1862-1937) Population Genetics p.2/74 A Hardy-Weinberg calculation

More information

BIOL Evolution. Lecture 8

BIOL Evolution. Lecture 8 BIOL 432 - Evolution Lecture 8 Expected Genotype Frequencies in the Absence of Evolution are Determined by the Hardy-Weinberg Equation. Assumptions: 1) No mutation 2) Random mating 3) Infinite population

More information

1.4.1(Question should be rather: Another sibling of these two brothers) 25% % % (population risk of heterozygot*2/3*1/4)

1.4.1(Question should be rather: Another sibling of these two brothers) 25% % % (population risk of heterozygot*2/3*1/4) ----------------------------------------------------------Chapter 1--------------------------------------------------------------- (each task of this chapter is dedicated as x (x meaning the exact task.

More information

Growing the Family Tree: The Power of DNA in Reconstructing Family Relationships

Growing the Family Tree: The Power of DNA in Reconstructing Family Relationships Growing the Family Tree: The Power of DNA in Reconstructing Family Relationships Luke A. D. Hutchison Natalie M. Myres Scott R. Woodward Sorenson Molecular Genealogy Foundation (www.smgf.org) 2511 South

More information

Popstats Parentage Statistics Strength of Genetic Evidence In Parentage Testing

Popstats Parentage Statistics Strength of Genetic Evidence In Parentage Testing Popstats Parentage Statistics Strength of Genetic Evidence In Parentage Testing Arthur J. Eisenberg, Ph.D. Director DNA Identity Laboratory UNT-Health Science Center eisenber@hsc.unt.edu PATERNITY TESTING

More information

The Pedigree. NOTE: there are no definite conclusions that can be made from a pedigree. However, there are more likely and less likely explanations

The Pedigree. NOTE: there are no definite conclusions that can be made from a pedigree. However, there are more likely and less likely explanations The Pedigree A tool (diagram) used to trace traits in a family The diagram shows the history of a trait between generations Designed to show inherited phenotypes Using logic we can deduce the inherited

More information

Population Structure. Population Structure

Population Structure. Population Structure Nonrandom Mating HWE assumes that mating is random in the population Most natural populations deviate in some way from random mating There are various ways in which a species might deviate from random

More information

Pedigree Worksheet Name Period Date Interpreting a Human Pedigree Use the pedigree below to answer 1-5

Pedigree Worksheet Name Period Date Interpreting a Human Pedigree Use the pedigree below to answer 1-5 Pedigree Worksheet Name Period Date Interpreting a Human Pedigree Use the pedigree below to answer 1-5 1. In a pedigree, a square represents a male. If it is darkened he has hemophilia; if clear, he had

More information

Populations. Arindam RoyChoudhury. Department of Biostatistics, Columbia University, New York NY 10032, U.S.A.,

Populations. Arindam RoyChoudhury. Department of Biostatistics, Columbia University, New York NY 10032, U.S.A., Change in Recessive Lethal Alleles Frequency in Inbred Populations arxiv:1304.2955v1 [q-bio.pe] 10 Apr 2013 Arindam RoyChoudhury Department of Biostatistics, Columbia University, New York NY 10032, U.S.A.,

More information

Linkage Analysis in Merlin. Meike Bartels Kate Morley Danielle Posthuma

Linkage Analysis in Merlin. Meike Bartels Kate Morley Danielle Posthuma Linkage Analysis in Merlin Meike Bartels Kate Morley Danielle Posthuma Software for linkage analyses Genehunter Mendel Vitesse Allegro Simwalk Loki Merlin. Mx R Lisrel MERLIN software Programs: MERLIN

More information

Development Team. Importance and Implications of Pedigree and Genealogy. Anthropology. Principal Investigator. Paper Coordinator.

Development Team. Importance and Implications of Pedigree and Genealogy. Anthropology. Principal Investigator. Paper Coordinator. Paper No. : 13 Research Methods and Fieldwork Module : 10 Development Team Principal Investigator Prof. Anup Kumar Kapoor Department of, University of Delhi Paper Coordinator Dr. P. Venkatramana Faculty

More information

Contributed by "Kathy Hallett"

Contributed by Kathy Hallett National Geographic: The Genographic Project Name Background The National Geographic Society is undertaking the ambitious process of tracking human migration using genetic technology. By using the latest

More information

DNA: Statistical Guidelines

DNA: Statistical Guidelines Frequency calculations for STR analysis When a probative association between an evidence profile and a reference profile is made, a frequency estimate is calculated to give weight to the association. Frequency

More information

PopGen3: Inbreeding in a finite population

PopGen3: Inbreeding in a finite population PopGen3: Inbreeding in a finite population Introduction The most common definition of INBREEDING is a preferential mating of closely related individuals. While there is nothing wrong with this definition,

More information

Genome-Wide Association Exercise - Data Quality Control

Genome-Wide Association Exercise - Data Quality Control Genome-Wide Association Exercise - Data Quality Control The Rockefeller University, New York, June 25, 2016 Copyright 2016 Merry-Lynn McDonald & Suzanne M. Leal Introduction In this exercise, you will

More information

Pedigree Reconstruction using Identity by Descent

Pedigree Reconstruction using Identity by Descent Pedigree Reconstruction using Identity by Descent Bonnie Kirkpatrick Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2010-43 http://www.eecs.berkeley.edu/pubs/techrpts/2010/eecs-2010-43.html

More information

The Coalescent Model. Florian Weber

The Coalescent Model. Florian Weber The Coalescent Model Florian Weber 23. 7. 2016 The Coalescent Model coalescent = zusammenwachsend Outline Population Genetics and the Wright-Fisher-model The Coalescent on-constant population-sizes Further

More information

NON-RANDOM MATING AND INBREEDING

NON-RANDOM MATING AND INBREEDING Instructor: Dr. Martha B. Reiskind AEC 495/AEC592: Conservation Genetics DEFINITIONS Nonrandom mating: Mating individuals are more closely related or less closely related than those drawn by chance from

More information

SNP variant discovery in pedigrees using Bayesian networks. Amit R. Indap

SNP variant discovery in pedigrees using Bayesian networks. Amit R. Indap SNP variant discovery in pedigrees using Bayesian networks Amit R. Indap 1 1 Background Next generation sequencing technologies have reduced the cost and increased the throughput of DNA sequencing experiments

More information

Inbreeding depression in corn. Inbreeding. Inbreeding depression in humans. Genotype frequencies without random mating. Example.

Inbreeding depression in corn. Inbreeding. Inbreeding depression in humans. Genotype frequencies without random mating. Example. nbreeding depression in corn nbreeding Alan R Rogers Two plants on left are from inbred homozygous strains Next: the F offspring of these strains Then offspring (F2 ) of two F s Then F3 And so on November

More information

fbat August 21, 2010 Basic data quality checks for markers

fbat August 21, 2010 Basic data quality checks for markers fbat August 21, 2010 checkmarkers Basic data quality checks for markers Basic data quality checks for markers. checkmarkers(genesetobj, founderonly=true, thrsh=0.05, =TRUE) checkmarkers.default(pedobj,

More information

Population Genetics using Trees. Peter Beerli Genome Sciences University of Washington Seattle WA

Population Genetics using Trees. Peter Beerli Genome Sciences University of Washington Seattle WA Population Genetics using Trees Peter Beerli Genome Sciences University of Washington Seattle WA Outline 1. Introduction to the basic coalescent Population models The coalescent Likelihood estimation of

More information

4. Kinship Paper Challenge

4. Kinship Paper Challenge 4. António Amorim (aamorim@ipatimup.pt) Nádia Pinto (npinto@ipatimup.pt) 4.1 Approach After a woman dies her child claims for a paternity test of the man who is supposed to be his father. The test is carried

More information

TRACK 1: BEGINNING DNA RESEARCH presented by Andy Hochreiter

TRACK 1: BEGINNING DNA RESEARCH presented by Andy Hochreiter TRACK 1: BEGINNING DNA RESEARCH presented by Andy Hochreiter 1-1: DNA: WHERE DO I START? Definition Genetic genealogy is the application of genetics to traditional genealogy. Genetic genealogy uses genealogical

More information

Ancestral Recombination Graphs

Ancestral Recombination Graphs Ancestral Recombination Graphs Ancestral relationships among a sample of recombining sequences usually cannot be accurately described by just a single genealogy. Linked sites will have similar, but not

More information

An Optimal Algorithm for Automatic Genotype Elimination

An Optimal Algorithm for Automatic Genotype Elimination Am. J. Hum. Genet. 65:1733 1740, 1999 An Optimal Algorithm for Automatic Genotype Elimination Jeffrey R. O Connell 1,2 and Daniel E. Weeks 1 1 Department of Human Genetics, University of Pittsburgh, Pittsburgh,

More information

Determining Relatedness from a Pedigree Diagram

Determining Relatedness from a Pedigree Diagram Kin structure & relatedness Francis L. W. Ratnieks Aims & Objectives Aims 1. To show how to determine regression relatedness among individuals using a pedigree diagram. Social Insects: C1139 2. To show

More information

DNA Testing. February 16, 2018

DNA Testing. February 16, 2018 DNA Testing February 16, 2018 What Is DNA? Double helix ladder structure where the rungs are molecules called nucleotides or bases. DNA contains only four of these nucleotides A, G, C, T The sequence that

More information

Inbreeding and self-fertilization

Inbreeding and self-fertilization Inbreeding and self-fertilization Introduction Remember that long list of assumptions associated with derivation of the Hardy-Weinberg principle that I went over a couple of lectures ago? Well, we re about

More information

Every human cell (except red blood cells and sperm and eggs) has an. identical set of 23 pairs of chromosomes which carry all the hereditary

Every human cell (except red blood cells and sperm and eggs) has an. identical set of 23 pairs of chromosomes which carry all the hereditary Introduction to Genetic Genealogy Every human cell (except red blood cells and sperm and eggs) has an identical set of 23 pairs of chromosomes which carry all the hereditary information that is passed

More information

Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms

Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms Magnus Nordborg University of Southern California The importance of history Genetic polymorphism data represent the outcome

More information

On identification problems requiring linked autosomal markers

On identification problems requiring linked autosomal markers * Title Page (with authors & addresses) On identification problems requiring linked autosomal markers Thore Egeland a Nuala Sheehan b a Department of Medical Genetics, Ulleval University Hospital, 0407

More information

Maximum likelihood pedigree reconstruction using integer programming

Maximum likelihood pedigree reconstruction using integer programming Maximum likelihood pedigree reconstruction using integer programming James Dept of Computer Science & York Centre for Complex Systems Analysis University of York, York, YO10 5DD, UK jc@cs.york.ac.uk Abstract

More information

Walter Steets Houston Genealogical Forum DNA Interest Group January 6, 2018

Walter Steets Houston Genealogical Forum DNA Interest Group January 6, 2018 DNA, Ancestry, and Your Genealogical Research- Segments and centimorgans Walter Steets Houston Genealogical Forum DNA Interest Group January 6, 2018 1 Today s agenda Brief review of previous DIG session

More information

Halley Family. Mystery? Mystery? Can you solve a. Can you help solve a

Halley Family. Mystery? Mystery? Can you solve a. Can you help solve a Can you solve a Can you help solve a Halley Halley Family Family Mystery? Mystery? Who was the great grandfather of John Bennett Halley? He lived in Maryland around 1797 and might have been born there.

More information

Kenneth Nordtvedt. Many genetic genealogists eventually employ a time-tomost-recent-common-ancestor

Kenneth Nordtvedt. Many genetic genealogists eventually employ a time-tomost-recent-common-ancestor Kenneth Nordtvedt Many genetic genealogists eventually employ a time-tomost-recent-common-ancestor (TMRCA) tool to estimate how far back in time the common ancestor existed for two Y-STR haplotypes obtained

More information

DNA Testing What you need to know first

DNA Testing What you need to know first DNA Testing What you need to know first This article is like the Cliff Notes version of several genetic genealogy classes. It is a basic general primer. The general areas include Project support DNA test

More information

Inbreeding and self-fertilization

Inbreeding and self-fertilization Inbreeding and self-fertilization Introduction Remember that long list of assumptions associated with derivation of the Hardy-Weinberg principle that we just finished? Well, we re about to begin violating

More information

Pizza and Who do you think you are?

Pizza and Who do you think you are? Pizza and Who do you think you are? an overview of one of the newest and possibly more helpful developments in researching genealogy and family history that of using DNA for research What is DNA? Part

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1122655/dc1 Supporting Online Material for Finding Criminals Through DNA of Their Relatives Frederick R. Bieber,* Charles H. Brenner, David Lazer *Author for correspondence.

More information

Genetic Effects of Consanguineous Marriage: Facts and Artifacts

Genetic Effects of Consanguineous Marriage: Facts and Artifacts Genetic Effects of Consanguineous Marriage: Facts and Artifacts Maj Gen (R) Suhaib Ahmed, HI (M) MBBS; MCPS; FCPS; PhD (London) Genetics Resource Centre (GRC) Rawalpindi www.grcpk.com Consanguinity The

More information

Biology Partnership (A Teacher Quality Grant) Lesson Plan Construction Form

Biology Partnership (A Teacher Quality Grant) Lesson Plan Construction Form Biology Partnership (A Teacher Quality Grant) Lesson Plan Construction Form Identifying Information: (Group Members and Schools, Title of Lesson, Length in Minutes, Course Level) Teachers in Study Group

More information

9Consanguineous marriage and recessive

9Consanguineous marriage and recessive 9Consanguineous marriage and recessive disorders Introduction: The term consanguineous literally means related by blood. A consanguineous marriage is defined as marriage between individuals who have at

More information

BIOINFORMATICS. Efficient Genome Ancestry Inference in Complex Pedigrees with Inbreeding

BIOINFORMATICS. Efficient Genome Ancestry Inference in Complex Pedigrees with Inbreeding BIOINFORMATICS Vol. no. 2 Pages 9 Efficient Genome Ancestry Inference in Complex Pedigrees with Inbreeding Eric Yi Liu, Qi Zhang 2, Leonard McMillan, Fernando Pardo-Manuel de Villena 3 and Wei Wang Department

More information

Your Family 101 Beginning Genealogical Research

Your Family 101 Beginning Genealogical Research Your Family 101 Beginning Genealogical Research What Will We Cover Today? Session 1: Getting Started Session 2: Your Resources Session 3: Common Mistakes and Pitfalls Session 4: DNA Testing and Medical

More information

Using Meiosis to make a Mini-Manc

Using Meiosis to make a Mini-Manc Using Meiosis to make a Mini-Manc INTRODUCTION This activity demonstrates the principles of Independent assortment of chromosomes and shows how meiosis leads to tremendous genetic variation. Mini-Manc

More information

Large scale kinship:familial Searching and DVI. Seoul, ISFG workshop

Large scale kinship:familial Searching and DVI. Seoul, ISFG workshop Large scale kinship:familial Searching and DVI Seoul, ISFG workshop 29 August 2017 Large scale kinship Familial Searching: search for a relative of an unidentified offender whose profile is available in

More information

Ewing Surname Y-DNA Project Article 8

Ewing Surname Y-DNA Project Article 8 Ewing Surname Y-DNA Project Article 8 This is the eighth in a series of articles about the Ewing Surname Y-DNA Project. The previous seven articles have appeared in the last seven issues of the Journal

More information

University of Washington, TOPMed DCC July 2018

University of Washington, TOPMed DCC July 2018 Module 12: Comput l Pipeline for WGS Relatedness Inference from Genetic Data Timothy Thornton (tathornt@uw.edu) & Stephanie Gogarten (sdmorris@uw.edu) University of Washington, TOPMed DCC July 2018 1 /

More information

COMMUNITY UNIT SCHOOL DISTRICT 200 Science Curriculum Philosophy

COMMUNITY UNIT SCHOOL DISTRICT 200 Science Curriculum Philosophy COMMUNITY UNIT SCHOOL DISTRICT 200 Science Curriculum Philosophy Science instruction focuses on the development of inquiry, process and application skills across the grade levels. As the grade levels increase,

More information

Using Y-DNA for Genealogy Debbie Parker Wayne, CG, CGL SM

Using Y-DNA for Genealogy Debbie Parker Wayne, CG, CGL SM Using Y-DNA for Genealogy Debbie Parker Wayne, CG, CGL SM This is one article of a series on using DNA for genealogical research. There are several types of DNA tests offered for genealogical purposes.

More information

Automated Discovery of Pedigrees and Their Structures in Collections of STR DNA Specimens Using a Link Discovery Tool

Automated Discovery of Pedigrees and Their Structures in Collections of STR DNA Specimens Using a Link Discovery Tool University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2010 Automated Discovery of Pedigrees and Their Structures in Collections of STR DNA

More information

Gene coancestry in pedigrees and populations

Gene coancestry in pedigrees and populations Gene coancestry in pedigrees and populations Thompson, Elizabeth University of Washington, Department of Statistics Box 354322 Seattle, WA 98115-4322, USA E-mail: eathomp@uw.edu Glazner, Chris University

More information

Mehdi Sargolzaei L Alliance Boviteq, St-Hyacinthe, QC, Canada and CGIL, University of Guelph, Guelph, ON, Canada. Summary

Mehdi Sargolzaei L Alliance Boviteq, St-Hyacinthe, QC, Canada and CGIL, University of Guelph, Guelph, ON, Canada. Summary An Additive Relationship Matrix for the Sex Chromosomes 2013 ELARES:50 Mehdi Sargolzaei L Alliance Boviteq, St-Hyacinthe, QC, Canada and CGIL, University of Guelph, Guelph, ON, Canada Larry Schaeffer CGIL,

More information

Genetics Practice Problems Pedigree Tables Answer Key

Genetics Practice Problems Pedigree Tables Answer Key Pedigree Tables Answer Key Free PDF ebook Download: Pedigree Tables Answer Key Download or Read Online ebook genetics practice problems pedigree tables answer key in PDF Format From The Best User Guide

More information

Primer on Human Pedigree Analysis:

Primer on Human Pedigree Analysis: Primer on Human Pedigree Analysis: Criteria for the selection and collection of appropriate Family Reference Samples John V. Planz. Ph.D. UNT Center for Human Identification Successful Missing Person ID

More information

THE BASICS OF DNA TESTING. By Jill Garrison, Genealogy Coordinator Frankfort Community Public Library

THE BASICS OF DNA TESTING. By Jill Garrison, Genealogy Coordinator Frankfort Community Public Library THE BASICS OF DNA TESTING By Jill Garrison, Genealogy Coordinator Frankfort Community Public Library TYPES OF TESTS Mitochondrial DNA (mtdna/mdna) Y-DNA Autosomal DNA (atdna/audna) MITOCHONDRIAL DNA Found

More information

Illumina GenomeStudio Analysis

Illumina GenomeStudio Analysis Illumina GenomeStudio Analysis Paris Veltsos University of St Andrews February 23, 2012 1 Introduction GenomeStudio is software by Illumina used to score SNPs based on the Illumina BeadExpress platform.

More information

Assessment of alternative genotyping strategies to maximize imputation accuracy at minimal cost

Assessment of alternative genotyping strategies to maximize imputation accuracy at minimal cost Huang et al. Genetics Selection Evolution 2012, 44:25 Genetics Selection Evolution RESEARCH Open Access Assessment of alternative genotyping strategies to maximize imputation accuracy at minimal cost Yijian

More information

Detection of Misspecified Relationships in Inbred and Outbred Pedigrees

Detection of Misspecified Relationships in Inbred and Outbred Pedigrees Detection of Misspecified Relationships in Inbred and Outbred Pedigrees Lei Sun 1, Mark Abney 1,2, Mary Sara McPeek 1,2 1 Department of Statistics, 2 Department of Human Genetics, University of Chicago,

More information

NIH Public Access Author Manuscript Genet Res (Camb). Author manuscript; available in PMC 2011 April 4.

NIH Public Access Author Manuscript Genet Res (Camb). Author manuscript; available in PMC 2011 April 4. NIH Public Access Author Manuscript Published in final edited form as: Genet Res (Camb). 2011 February ; 93(1): 47 64. doi:10.1017/s0016672310000480. Variation in actual relationship as a consequence of

More information

ville, VA Associate Editor: XXXXXXX Received on XXXXX; revised on XXXXX; accepted on XXXXX

ville, VA Associate Editor: XXXXXXX Received on XXXXX; revised on XXXXX; accepted on XXXXX Robust Relationship Inference in Genome Wide Association Studies Ani Manichaikul 1,2, Josyf Mychaleckyj 1, Stephen S. Rich 1, Kathy Daly 3, Michele Sale 1,4,5 and Wei- Min Chen 1,2,* 1 Center for Public

More information

and g2. The second genotype, however, has a doubled opportunity of transmitting the gene X to any

and g2. The second genotype, however, has a doubled opportunity of transmitting the gene X to any Brit. J. prev. soc. Med. (1958), 12, 183-187 GENOTYPIC FREQUENCIES AMONG CLOSE RELATIVES OF PROPOSITI WITH CONDITIONS DETERMINED BY X-RECESSIVE GENES BY GEORGE KNOX* From the Department of Social Medicine,

More information

Genomic Variation of Inbreeding and Ancestry in the Remaining Two Isle Royale Wolves

Genomic Variation of Inbreeding and Ancestry in the Remaining Two Isle Royale Wolves Journal of Heredity, 17, 1 16 doi:1.19/jhered/esw8 Original Article Advance Access publication December 1, 16 Original Article Genomic Variation of Inbreeding and Ancestry in the Remaining Two Isle Royale

More information

The Structure of DNA Let s take a closer look at how this looks under a microscope.

The Structure of DNA Let s take a closer look at how this looks under a microscope. DNA Basics Adapted from a MyHeritage Blog and the International Society of Genetic Genealogy (ISOGG) Wiki by Earl Cory MyHeritage has started a series to explain DNA, how it works and answer the most common

More information

1) Using the sightings data, determine who moved from one area to another and fill this data in on the data sheet.

1) Using the sightings data, determine who moved from one area to another and fill this data in on the data sheet. Parentage and Geography 5. The Life of Lulu the Lioness: A Heroine s Story Name: Objective Using genotypes from many individuals, determine maternity, paternity, and relatedness among a group of lions.

More information

What Can I Learn From DNA Testing?

What Can I Learn From DNA Testing? What Can I Learn From DNA Testing? From where did my ancestors migrate? What is my DNA Signature? Was my ancestor a Jewish Cohanim Priest? Was my great great grandmother really an Indian Princes? I was

More information

Chromosome X haplotyping in deficiency paternity testing principles and case report

Chromosome X haplotyping in deficiency paternity testing principles and case report International Congress Series 1239 (2003) 815 820 Chromosome X haplotyping in deficiency paternity testing principles and case report R. Szibor a, *, I. Plate a, J. Edelmann b, S. Hering c, E. Kuhlisch

More information

Pedigree- The Genetic Family Tree

Pedigree- The Genetic Family Tree Pedigree- The Genetic Family Tree CATHERINE MARTIN, M.ED. NATIONAL NETWORK LIBRARIES OF MEDICINE NEW ENGLAND REGION Objectives q Evaluate family genetics in health q Discover the basics of pedigree lines

More information

genetics paper pets By the end of the eighth grade, students are Learning with Introduction to inheritance by Valerie Raunig Finnerty

genetics paper pets By the end of the eighth grade, students are Learning with Introduction to inheritance by Valerie Raunig Finnerty genetics Learning with paper pets by Valerie Raunig Finnerty By the end of the eighth grade, students are expected to have a basic understanding of the mechanisms of basic genetic inheritance (NRC 1996).

More information

Optimum contribution selection conserves genetic diversity better than random selection in small populations with overlapping generations

Optimum contribution selection conserves genetic diversity better than random selection in small populations with overlapping generations Optimum contribution selection conserves genetic diversity better than random selection in small populations with overlapping generations K. Stachowicz 12*, A. C. Sørensen 23 and P. Berg 3 1 Department

More information

DNA Basics. OLLI: Genealogy 101 October 1, ~ Monique E. Rivera ~

DNA Basics. OLLI: Genealogy 101 October 1, ~ Monique E. Rivera ~ DNA Basics OLLI: Genealogy 101 October 1, 2018 ~ Monique E. Rivera ~ WHAT IS DNA? DNA (deoxyribonucleic acid) is found in every living cell everywhere. It is a long chemical chain that tells our cells

More information

A hidden Markov model to estimate inbreeding from whole genome sequence data

A hidden Markov model to estimate inbreeding from whole genome sequence data A hidden Markov model to estimate inbreeding from whole genome sequence data Tom Druet & Mathieu Gautier Unit of Animal Genomics, GIGA-R, University of Liège, Belgium Centre de Biologie pour la Gestion

More information

! FTDNA! Ancestry. ! 23andMe. ! Medical Considera,ons. ! Iden,fying family medical history. ! Communica,ng with the medical community

! FTDNA! Ancestry. ! 23andMe. ! Medical Considera,ons. ! Iden,fying family medical history. ! Communica,ng with the medical community by JEFF CARPENTER! Brief Defini,ons about YDNA, XDNA, mtdna, atdna (Covered in Part 1)! Benefits of Tes,ng DNA! Examples of DNA TESTING! FTDNA! Ancestry! 3andMe Jeff Carpenter, 016 jeffcarpenter1939@gmal.com!

More information

Need a little help with the lab?

Need a little help with the lab? Need a little help with the lab? Alleles are corresponding pairs of genes located on an individual s chromosomes. Together, alleles determine the genotype of an individual. The Genotype describes the specific

More information