Coalescence. Outline History. History, Model, and Application. Coalescence. The Model. Application

Size: px
Start display at page:

Download "Coalescence. Outline History. History, Model, and Application. Coalescence. The Model. Application"

Transcription

1 Coalescence History, Model, and Application Outline History Origins of theory/approach Trace the incorporation of other s ideas Coalescence Definition and descriptions The Model Assumptions and Uses Application Population genetics Phylogenetics 1

2 Coalescence The merging of ancestral lineages going back in time. Rosenberg & Nordborg 2002 History 2

3 History Ewens (1972) sampling formula Griffiths (1980) molecular variation 1940 s 1950 s 1960 s 1970 s 1980 s Gustave Malecot s path toward the coalescent Harris (1966) and Lewontin & Hubby (1966) begin measurements of molecular variation Watterson ( ) gene frequencies Wakeley 2009 History: According to Kingman Ewens (1972) sampling formula Kingman s (1982) pub on the coalescent Watterson s gene frequencies Hudson (1990) review of the coalescent Wakeley s (2009) text on Coalescent Theory 1970 s 1980 s 1990 s 2000 s 2010 s Genealogical connection? Hudson and Tajima (1983) pubs on similar topic 1974: Australia and the Wright-Fisher model of evolution Wakeley 2009, Nordborg 2001, Kingman

4 Kingman s argument The Wright-Fisher model as equivalent to rule that each member of a generation chooses its mother at random from the previous generation and each member s choice is independent 2 members of same generation have a probability (1 N -1 ) r of having different ancestors r generations back (if N > ) Trace back lines until they coalesce or the number of lines is reduced to one, by means of a Markov chain Kingman 2000 Kingman s Moral Articles on coherent random walks are very mathematically heavy If equations were thought about probabilistically, then family tree wouldn t have been overlooked Simplification: mutation is non-recurrent (mutant is independent of the parent) Those who analyze stochastic models should always lift their eyes from their equations to ask what they actually mean. Kingman

5 Coalescence Definitions and Descriptions Coalescence The merging of ancestral lineages going back in time. Rosenberg & Norborg

6 Lines of Descent Crandall & Templeton 1993 Coalesce Vs. Diverge 6

7 Population Genetics Understand forces that produce and maintain genetic variation within species Mutation, recombination, natural selection, population structure, and random transmission of genetic material from parents to offspring Coalescent theory is a part of theoretical population genetics Wakeley 2009 Coalescent Theory Describes the connection between demographic history and genetic data, and provides a framework for extracting information from samples of DNA sequences Often too simple to explain all aspects of variation Wakeley

8 Coalescent Theory Describes the genetic ancestry of a sample of sequences and makes predictions about patterns of genetic variation Gene genealogy set of ancestral relationships among the members of the sample Times to common ancestry Gene genealogies are unobservable and are treated like random variables in a statistical setting Wakeley 2009 Lines of Descent Genealogy Crandall & Templeton

9 The Model Assumptions and Uses Population Genetics: Natural population Fundamental problems: 1) no replication of experiment, only one run of evolution is available to be studied 2) starting conditions of the experiment are unknown Allelic states are statistically dependent because of linkage and shared ancestry mutation, recombination, and coalescence of lineages in the ancestry of the sample Rosenberg & Nordborg

10 Population Genetics: Natural population Heuristics don t fully account for uncertainty from inherent randomness of evolution Solution past modeled stochastically and model constructs random genealogies the coalescent To model a genealogy, you need to consider recombination and coalescence of lineages Rosenberg & Nordborg 2002 Basic principle In the absence of selection Sampled lineages can be viewed as randomly picking their parents, as they go back in time Whenever two lineages pick the same parent, their lineages coalesce Eventually all lineages coalesce into a single lineage, the MRCA (most recent common ancestor) of the sample Rosenberg & Nordborg

11 The source of genetic variation polymorphism at a particular site results from mutations along branches of the genealogical tree, which connects sampled copies of the site to their MRCA. Rosenberg & Nordborg 2002 The basic principle behind the coalescent only necessary to keep track of the times between coalescence events [ T(3) and T(2) ] and the topology (which lineages coalesce with which) Rosenberg & Nordborg

12 Basic principle Rate at which lineages coalesce depends on: Lineages picking their parents more lineages = faster rate Size of the population more parents to choose from = slower rate Selectively neutral mutations do not affect reproduction, they can be superimposed on the tree afterwards Rosenberg & Nordborg 2002 Factors included Changes to rate of coalescence variation in reproductive success age structure skewed sex ratios Changes to shape of genealogical trees population structure fluctuation in population size Recombination (random graph vs. tree) Selection the real difficulty! some genotypes reproduce more than others (i.e. lineages do not randomly pick parents) Rosenberg & Nordborg

13 Classical vs. Coalescent Traditional: simulated evolution of entire population, forwards in time, until equilibrium is reached, then sample is taken forward-in-time approach more appropriate for studies of how the long-term behavior of evolutionary systems depends on initial conditions Rosenberg & Nordborg 2002 Classical vs. Coalescent Coalescent: simulates the genealogy of the sample going back in time until MRCA, then add mutations forwards along the branches of the new trees studies of the effects of past evolutionary forces on current genetic variation use individuals that are ancestral computational efficiency increased Rosenberg & Nordborg

14 Coalescence and Phylogenetics Phylogenetics: What is the true tree? Coalescence: What caused the tree? Both methods give a tree and the parameters Probability distributions used (Bayesian) Phylogenetics: probability distribution for tree and includes uncertainty in parameters Coalescence: probability distribution for parameters and includes uncertainty in tree Genealogical and Phylogenetic Fundamentally different Developed to determine pattern of species descent (assumed tree-like) Sequences from individuals, genealogy estimated from sequences Estimated gene tree used to draw conclusions about relationships between species Gene tree equivalent to species tree Rosenberg & Norborg

15 Gene Trees and Species Trees Two levels of error: 1) gene tree for sequences will be incorrectly inferred if there is sufficient random or systematic error 2) even if gene tree is correctly inferred, deep gene coalescence (ancestral polymorphisms), gene duplication, and lateral gene transfer can produce a gene tree different from the true species tree Slowinski et al Branches of species tree similar length as genealogical tree in species Resolved as long as time intervals between species-branching events are much greater than time intervals between lineage-branching events in each species, gene and species divergences are likely to be nearly congruent. Branches of species tree much longer than genealogical tree in species Rosenberg & Norborg

16 Application Population Genetics and Phylogenetics Application Modeling tool for population genetics Used to analyze DNA sequence polymorphism data Based on realization that genealogy is usually easier to model backward in time and that selectively neutral mutations can be superimposed afterwards Nordborg

17 Application Widely applied in studies of evolution Estimates time to common ancestor Can provide evidence for balancing selection Estimates of recombination and rate of selfing Assessing migration patterns in human ancestry (Y chromosome and MtDNA) Kingman 2000 Population Genetics 17

18 Population Genetics Approach Development of coalescent-based statistical methods for analyzing DNA sequence samples θ = 4Nµ estimators via Watterson (1975) and Tajima (1983) unbiased under the neutral Wright-Fisher model improvements by Felsenstein (1992) and Fu and Li (1993), Fu (1994) Fu & Li 2002 Population Genetics Approach Maximum Likelihood 1) Griffiths and Tavare (1994, 1995) Monte Carlo method 2) Kuhner et al. (1995) Monte Carlo estimator and Metropolis-Hastings method 3) Fu (1998) Maximum-likelihood method Fu & Li

19 Ex: Population Genetics Approach Palaeo-distributional model generated by projecting ecological niche model (current distribution onto model of past climatic condition) Coalescent simulations used help model population genetic structure and compare phylogeography among different taxa Carstens & Richards 2007 Phylogenetics 19

20 Ex1: Phylogenetic Approach Gene tree parsimony: terminal sequences of a gene tree have shared a single history represented by a binary tree Finds species tree that minimizes weighted sum of different kinds of incongruence needed to fit each gene tree to a species tree via GeneTree (Page & Charleston 1997) Slowinski et al Ex2: Phylogenetic Approach Incorporating a model of stochastic loss of gene lineages by genetic drift into a phylogenetic estimation procedure can provide a robust estimate of grasshopper species relationships Use of ESP (estimated species phylogeny) with coalescent-based approach VS Concatenation of multiple loci Carstens & Knowles

21 Grasshopper Results Coalescent approach: accurate relationships estimated Provided direct statistical evaluation of ESP, versus inferring it from topology of gene tree Concatenation approach: forced topological congruence Estimated trees did not accurately reflect species tree (with recently derived species) Carstens & Knowles 2007 Grasshopper Results They suggested that the coalescent approach may bridge gap between systematics and population genetics ESP chosen maximizes probability of gene trees Carstens & Knowles

22 Ex3: Phylogenetic Approach Methods for estimating gene trees (modelbased estimation of sequence parameters (Ronquist & Huelsenbeck 2003)) commonly used Methods to estimate lineage trees (phylogenetics) from one or more gene trees using coalescent methods is underdeveloped Belfiore et al Ex3: Phylogenetic Approach Better solution Incorporate models of stochastic mutation along with gene coalescence directly into estimation of lineage trees (Felsenstein, Maddison, Takahata) can increase efficiency and accuracy, via increasing number of loci and individuals, can infer lineage relationships in cases of rapid radiation Belfiore et al

23 Ex3: Phylogenetic Approach Problem: individual gene trees often fail to match lineage tree when divergence times are very short relative to effective population size of the ancestral populations Belfiore et al Ex3: Phylogenetic Approach Solution: increase # of loci sampled or increase # of gene copies per taxon where larger # coalescence events in common ancestors Gain information on relative divergence times and topology of lineage tree to overwhelm noise from stochastic lineage sorting Belfiore et al

24 Ex3: Belfiore et al Rapid radiation of Thomomys, species borders and relationships partitioned Bayesian analysis of concatenated sequences (Ronquist & Huelsenbeck 2003) VS new Bayesian method using coalescent framework to simultaneously estimate gene trees and species trees from multi-locus data (Edwards et al. 2007, Liu & Pearl 2007) resolution and comparison to previous phylogenetic analyses Phylogenetic Approach Evaluate extension of coalescent approach use in recent radiations (estimate species trees when multiple individuals are sequenced per taxon) previous methods were based on assumption that loci are congruent and monophyletic within species, otherwise different approach is needed to avoid wrongly assuming that all genes have the same history Belfiore et al

25 Phylogenetic Approach Coalescent-based: estimates species tree from a single sampled allele per taxon (Liu & Pearl 2007) New method: coalescent-based approach allows for divergent histories of independent genes and directly infers species tree, given samples of multiple alleles per gene per species (Belfiore et al. 2008) Belfiore et al Phylogenetic Approach Concatenated each locus considered a partition and assigned its own substitution model assumes that all loci have the same evolutionary history (species tree estimation same as gene tree estimate) Belfiore et al

26 Phylogenetic Approach BEST (Bayesian Estimation of Species Trees) Bayesian hierarchical model, estimates species trees from distribution of gene trees (across multiple loci) modified to incorporate multiple alleles from each taxon into probability density function of gene trees, given species trees (Liu et al. 2008) assumes no reticulation among taxa Belfiore et al Results Concatenated method did not show level of conflict among gene trees BEST method directly estimates relationships among taxa, rather than individuals more biologically realistic and captures basic principles of lineage sorting Belfiore et al

27 Belfiore s final thoughts Call for coalescent methods that can be applied at the interface of phylogenetic and population processes Powerful tool: coalescent method that can test between hypotheses of recent reticulation versus a relatively recent rapid speciation event (resulting in incomplete lineage sorting) Belfiore et al Future Molecular data most applications with samples of mtdna, Y chromosome for a better picture, more loci need to be looked at nuclear genome Population genetics continuation of Wright-Fisher model little knowledge of natural selection model better model would include migration and population growth Fu & Li

28 Summary History of the coalescent and coalescence involved many great thinkers The model is mathematically complex, but has a simple biological theme Applications were began in population genetics but are being introduced to phylogenetics Story of old ways versus new ways Questions? Questions? 28

Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms

Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms Magnus Nordborg University of Southern California The importance of history Genetic polymorphism data represent the outcome

More information

Population Genetics using Trees. Peter Beerli Genome Sciences University of Washington Seattle WA

Population Genetics using Trees. Peter Beerli Genome Sciences University of Washington Seattle WA Population Genetics using Trees Peter Beerli Genome Sciences University of Washington Seattle WA Outline 1. Introduction to the basic coalescent Population models The coalescent Likelihood estimation of

More information

Analysis of geographically structured populations: Estimators based on coalescence

Analysis of geographically structured populations: Estimators based on coalescence Analysis of geographically structured populations: Estimators based on coalescence Peter Beerli Department of Genetics, Box 357360, University of Washington, Seattle WA 9895-7360, Email: beerli@genetics.washington.edu

More information

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis

More information

Forward thinking: the predictive approach

Forward thinking: the predictive approach Coalescent Theory 1 Forward thinking: the predictive approach Random variation in reproduction causes random fluctuation in allele frequencies. Can describe this process as diffusion: (Wright 1931) showed

More information

Population Structure and Genealogies

Population Structure and Genealogies Population Structure and Genealogies One of the key properties of Kingman s coalescent is that each pair of lineages is equally likely to coalesce whenever a coalescent event occurs. This condition is

More information

Coalescent Theory: An Introduction for Phylogenetics

Coalescent Theory: An Introduction for Phylogenetics Coalescent Theory: An Introduction for Phylogenetics Laura Salter Kubatko Departments of Statistics and Evolution, Ecology, and Organismal Biology The Ohio State University lkubatko@stat.ohio-state.edu

More information

Comparative method, coalescents, and the future

Comparative method, coalescents, and the future Comparative method, coalescents, and the future Joe Felsenstein Depts. of Genome Sciences and of Biology, University of Washington Comparative method, coalescents, and the future p.1/36 Correlation of

More information

Algorithms for Genetics: Basics of Wright Fisher Model and Coalescent Theory

Algorithms for Genetics: Basics of Wright Fisher Model and Coalescent Theory Algorithms for Genetics: Basics of Wright Fisher Model and Coalescent Theory Vineet Bafna Harish Nagarajan and Nitin Udpa 1 Disclaimer Please note that a lot of the text and figures here are copied from

More information

Comparative method, coalescents, and the future. Correlation of states in a discrete-state model

Comparative method, coalescents, and the future. Correlation of states in a discrete-state model Comparative method, coalescents, and the future Joe Felsenstein Depts. of Genome Sciences and of Biology, University of Washington Comparative method, coalescents, and the future p.1/28 Correlation of

More information

Ancestral Recombination Graphs

Ancestral Recombination Graphs Ancestral Recombination Graphs Ancestral relationships among a sample of recombining sequences usually cannot be accurately described by just a single genealogy. Linked sites will have similar, but not

More information

The genealogical history of a population The coalescent process. Identity by descent Distribution of pairwise coalescence times

The genealogical history of a population The coalescent process. Identity by descent Distribution of pairwise coalescence times The coalescent The genealogical history of a population The coalescent process Identity by descent Distribution of pairwise coalescence times Adding mutations Expected pairwise differences Evolutionary

More information

TREES OF GENES IN POPULATIONS

TREES OF GENES IN POPULATIONS 1 TREES OF GENES IN POPULATIONS Joseph Felsenstein Abstract Trees of ancestry of copies of genes form in populations, as a result of the randomness of birth, death, and Mendelian reproduction. Considering

More information

MOLECULAR POPULATION GENETICS: COALESCENT METHODS BASED ON SUMMARY STATISTICS

MOLECULAR POPULATION GENETICS: COALESCENT METHODS BASED ON SUMMARY STATISTICS MOLECULAR POPULATION GENETICS: COALESCENT METHODS BASED ON SUMMARY STATISTICS Daniel A. Vasco*, Keith A. Crandall* and Yun-Xin Fu *Department of Zoology, Brigham Young University, Provo, UT 8460, USA Human

More information

2 The Wright-Fisher model and the neutral theory

2 The Wright-Fisher model and the neutral theory 0 THE WRIGHT-FISHER MODEL AND THE NEUTRAL THEORY The Wright-Fisher model and the neutral theory Although the main interest of population genetics is conceivably in natural selection, we will first assume

More information

BIOL Evolution. Lecture 8

BIOL Evolution. Lecture 8 BIOL 432 - Evolution Lecture 8 Expected Genotype Frequencies in the Absence of Evolution are Determined by the Hardy-Weinberg Equation. Assumptions: 1) No mutation 2) Random mating 3) Infinite population

More information

Chapter 12 Gene Genealogies

Chapter 12 Gene Genealogies Chapter 12 Gene Genealogies Noah A. Rosenberg Program in Molecular and Computational Biology. University of Southern California, Los Angeles, California 90089-1113 USA. E-mail: noahr@usc.edu. Phone: 213-740-2416.

More information

Ioanna Manolopoulou and Brent C. Emerson. October 7, Abstract

Ioanna Manolopoulou and Brent C. Emerson. October 7, Abstract Phylogeographic Ancestral Inference Using the Coalescent Model on Haplotype Trees Ioanna Manolopoulou and Brent C. Emerson October 7, 2011 Abstract Phylogeographic ancestral inference is a question frequently

More information

5 Inferring Population

5 Inferring Population 5 Inferring Population History and Demography While population genetics was a very theoretical discipline originally, the modern abundance of population genetic data has forced the field to become more

More information

Viral epidemiology and the Coalescent

Viral epidemiology and the Coalescent Viral epidemiology and the Coalescent Philippe Lemey and Marc A. Suchard Department of Microbiology and Immunology K.U. Leuven, and Departments of Biomathematics and Human Genetics David Geffen School

More information

Coalescent Theory. Magnus Nordborg. Department of Genetics, Lund University. March 24, 2000

Coalescent Theory. Magnus Nordborg. Department of Genetics, Lund University. March 24, 2000 Coalescent Theory Magnus Nordborg Department of Genetics, Lund University March 24, 2000 Abstract The coalescent process is a powerful modeling tool for population genetics. The allelic states of all homologous

More information

GENEALOGICAL TREES, COALESCENT THEORY AND THE ANALYSIS OF GENETIC POLYMORPHISMS

GENEALOGICAL TREES, COALESCENT THEORY AND THE ANALYSIS OF GENETIC POLYMORPHISMS GENEALOGICAL TREES, COALESCENT THEORY AND THE ANALYSIS OF GENETIC POLYMORPHISMS Noah A. Rosenberg and Magnus Nordborg Improvements in genotyping technologies have led to the increased use of genetic polymorphism

More information

Coalescents. Joe Felsenstein. GENOME 453, Autumn Coalescents p.1/48

Coalescents. Joe Felsenstein. GENOME 453, Autumn Coalescents p.1/48 Coalescents p.1/48 Coalescents Joe Felsenstein GENOME 453, Autumn 2015 Coalescents p.2/48 Cann, Stoneking, and Wilson Becky Cann Mark Stoneking the late Allan Wilson Cann, R. L., M. Stoneking, and A. C.

More information

Bioinformatics I, WS 14/15, D. Huson, December 15,

Bioinformatics I, WS 14/15, D. Huson, December 15, Bioinformatics I, WS 4/5, D. Huson, December 5, 204 07 7 Introduction to Population Genetics This chapter is closely based on a tutorial given by Stephan Schiffels (currently Sanger Institute) at the Australian

More information

MODERN population genetics is data driven and

MODERN population genetics is data driven and Copyright Ó 2009 by the Genetics Society of America DOI: 10.1534/genetics.108.092460 Note Extensions of the Coalescent Effective Population Size John Wakeley 1 and Ori Sargsyan Department of Organismic

More information

DISCUSSION: RECENT COMMON ANCESTORS OF ALL PRESENT-DAY INDIVIDUALS

DISCUSSION: RECENT COMMON ANCESTORS OF ALL PRESENT-DAY INDIVIDUALS Adv. Appl. Prob. 31, 1027 1035 (1999) Printed in Northern Ireland Applied Probability Trust 1999 DISCUSSION: RECENT COMMON ANCESTORS OF ALL PRESENT-DAY INDIVIDUALS It is a pleasure to be able to comment

More information

STAT 536: The Coalescent

STAT 536: The Coalescent STAT 536: The Coalescent Karin S. Dorman Department of Statistics Iowa State University November 7, 2006 Wright-Fisher Model Our old friend the Wright-Fisher model envisions populations moving forward

More information

Coalescence time distributions for hypothesis testing -Kapil Rajaraman 498BIN, HW# 2

Coalescence time distributions for hypothesis testing -Kapil Rajaraman 498BIN, HW# 2 Coalescence time distributions for hypothesis testing -Kapil Rajaraman (rajaramn@uiuc.edu) 498BIN, HW# 2 This essay will be an overview of Maryellen Ruvolo s work on studying modern human origins using

More information

Coalescent Theory for a Partially Selfing Population

Coalescent Theory for a Partially Selfing Population Copyright 6 1997 by the Genetics Society of America T Coalescent Theory for a Partially Selfing Population Yun-xin FU Human Genetics Center, University of Texas, Houston, Texas 77225 Manuscript received

More information

6.047/6.878 Lecture 21: Phylogenomics II

6.047/6.878 Lecture 21: Phylogenomics II Guest Lecture by Matt Rasmussen Orit Giguzinsky and Ethan Sherbondy December 13, 2012 1 Contents 1 Introduction 3 2 Inferring Orthologs/Paralogs, Gene Duplication and Loss 3 2.1 Species Tree..............................................

More information

Coalescents. Joe Felsenstein. GENOME 453, Winter Coalescents p.1/39

Coalescents. Joe Felsenstein. GENOME 453, Winter Coalescents p.1/39 Coalescents Joe Felsenstein GENOME 453, Winter 2007 Coalescents p.1/39 Cann, Stoneking, and Wilson Becky Cann Mark Stoneking the late Allan Wilson Cann, R. L., M. Stoneking, and A. C. Wilson. 1987. Mitochondrial

More information

Coalescent Likelihood Methods. Mary K. Kuhner Genome Sciences University of Washington Seattle WA

Coalescent Likelihood Methods. Mary K. Kuhner Genome Sciences University of Washington Seattle WA Coalescent Likelihood Methods Mary K. Kuhner Genome Sciences University of Washington Seattle WA Outline 1. Introduction to coalescent theory 2. Practical example 3. Genealogy samplers 4. Break 5. Survey

More information

Evaluating the performance of likelihood methods for. detecting population structure and migration

Evaluating the performance of likelihood methods for. detecting population structure and migration Molecular Ecology (2004) 13, 837 851 doi: 10.1111/j.1365-294X.2004.02132.x Evaluating the performance of likelihood methods for Blackwell Publishing, Ltd. detecting population structure and migration ZAID

More information

Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling

Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling Mary K. Kuhner, Jon Yamato, and Joseph Felsenstein Department of Genetics, University of Washington

More information

Population genetics: Coalescence theory II

Population genetics: Coalescence theory II Population genetics: Coalescence theory II Peter Beerli August 27, 2009 1 The variance of the coalescence process The coalescent is an accumulation of waiting times. We can think of it as standard queuing

More information

Exercise 4 Exploring Population Change without Selection

Exercise 4 Exploring Population Change without Selection Exercise 4 Exploring Population Change without Selection This experiment began with nine Avidian ancestors of identical fitness; the mutation rate is zero percent. Since descendants can never differ in

More information

Tópicos Depto. Ciencias Biológicas, UniAndes Profesor Andrew J. Crawford Semestre II

Tópicos Depto. Ciencias Biológicas, UniAndes Profesor Andrew J. Crawford Semestre II Tópicos Depto. Ciencias Biológicas, UniAndes Profesor Andrew J. Crawford Semestre 29 -II Lab Coalescent simulation using SIMCOAL 17 septiembre 29 Coalescent theory provides a powerful model

More information

arxiv: v1 [q-bio.pe] 4 Mar 2013

arxiv: v1 [q-bio.pe] 4 Mar 2013 Hybrid-Lambda: simulation of multiple merger and Kingman gene genealogies in species networks and species trees arxiv:1303.0673v1 [q-bio.pe] 4 Mar 2013 Sha Zhu 1,, James H Degnan 2 and Bjarki Eldon 3 1

More information

A Likelihood Method to Estimate/Detect Gene Flow and A Distance Method to. Estimate Species Trees in the Presence of Gene Flow.

A Likelihood Method to Estimate/Detect Gene Flow and A Distance Method to. Estimate Species Trees in the Presence of Gene Flow. A Likelihood Method to Estimate/Detect Gene Flow and A Distance Method to Estimate Species Trees in the Presence of Gene Flow Thesis Presented in Partial Fulfillment of the Requirements for the Degree

More information

Part I. Concepts and Methods in Bacterial Population Genetics COPYRIGHTED MATERIAL

Part I. Concepts and Methods in Bacterial Population Genetics COPYRIGHTED MATERIAL Part I Concepts and Methods in Bacterial Population Genetics COPYRIGHTED MATERIAL Chapter 1 The Coalescent of Bacterial Populations Mikkel H. Schierup and Carsten Wiuf 1.1 BACKGROUND AND MOTIVATION Recent

More information

Advanced data analysis in population genetics Likelihood-based demographic inference using the coalescent

Advanced data analysis in population genetics Likelihood-based demographic inference using the coalescent Advanced data analysis in population genetics Likelihood-based demographic inference using the coalescent Raphael Leblois Centre de Biologie pour la Gestion des Populations (CBGP), INRA, Montpellier master

More information

Pedigree Reconstruction using Identity by Descent

Pedigree Reconstruction using Identity by Descent Pedigree Reconstruction using Identity by Descent Bonnie Kirkpatrick Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2010-43 http://www.eecs.berkeley.edu/pubs/techrpts/2010/eecs-2010-43.html

More information

Chapter 4 Neutral Mutations and Genetic Polymorphisms

Chapter 4 Neutral Mutations and Genetic Polymorphisms Chapter 4 Neutral Mutations and Genetic Polymorphisms The relationship between genetic data and the underlying genealogy was introduced in Chapter. Here we will combine the intuitions of Chapter with the

More information

Approximating the coalescent with recombination

Approximating the coalescent with recombination Approximating the coalescent with recombination Gilean A. T. McVean* and Niall J. Cardin 360, 1387 1393 doi:10.1098/rstb.2005.1673 Published online 7 July 2005 Department of Statistics, 1 South Parks Road,

More information

Warning: software often displays unrooted trees like this:

Warning: software often displays unrooted trees like this: Warning: software often displays unrooted trees like this: /------------------------------ Chara /-------------------------- Chlorella /---------16 \---------------------------- Volvox +-------------------17

More information

Coalescent genealogy samplers: windows into population history

Coalescent genealogy samplers: windows into population history Review Coalescent genealogy samplers: windows into population history Mary K. Kuhner Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA 98195-5065, USA Coalescent genealogy

More information

Where do evolutionary trees comes from?

Where do evolutionary trees comes from? Probabilistic models of evolutionary trees Joint work with Outline of talk Part 1: History, overview Part 2: Discrete models of tree shape Part 3: Continuous trees Part 4: Applications: phylogenetic diversity,

More information

The Coalescent. Chapter Population Genetic Models

The Coalescent. Chapter Population Genetic Models Chapter 3 The Coalescent To coalesce means to grow together, to join, or to fuse. When two copies of a gene are descended from a common ancestor which gave rise to them in some past generation, looking

More information

The African Origin Hypothesis What do the data tell us?

The African Origin Hypothesis What do the data tell us? The African Origin Hypothesis What do the data tell us? Mitochondrial DNA and Human Evolution Cann, Stoneking and Wilson, Nature 1987. WOS - 1079 citations Mitochondrial DNA and Human Evolution Cann, Stoneking

More information

BI515 - Population Genetics

BI515 - Population Genetics BI515 - Population Genetics Fall 2014 Michael Sorenson msoren@bu.edu Office hours (BRB529): M, Th, F 4-5PM or by appt. (send e-mail) My research: Avian behavior, systematics, population genetics, and molecular

More information

Inbreeding and self-fertilization

Inbreeding and self-fertilization Inbreeding and self-fertilization Introduction Remember that long list of assumptions associated with derivation of the Hardy-Weinberg principle that I went over a couple of lectures ago? Well, we re about

More information

The Two Phases of the Coalescent and Fixation Processes

The Two Phases of the Coalescent and Fixation Processes The Two Phases of the Coalescent and Fixation Processes Introduction The coalescent process which traces back the current population to a common ancestor and the fixation process which follows an individual

More information

POPULATION GENETICS: WRIGHT FISHER MODEL AND COALESCENT PROCESS. Hailong Cui and Wangshu Zhang. Superviser: Prof. Quentin Berger

POPULATION GENETICS: WRIGHT FISHER MODEL AND COALESCENT PROCESS. Hailong Cui and Wangshu Zhang. Superviser: Prof. Quentin Berger POPULATIO GEETICS: WRIGHT FISHER MODEL AD COALESCET PROCESS by Hailong Cui and Wangshu Zhang Superviser: Prof. Quentin Berger A Final Project Report Presented In Partial Fulfillment of the Requirements

More information

Evolutionary trees and population genetics: a family reunion

Evolutionary trees and population genetics: a family reunion Evolutionary trees and population genetics: a family reunion 9 October 2009. Joe Felsenstein 500th anniversary (or something) of the University of Chicago Evolutionary trees and population genetics: a

More information

The Coalescent Model. Florian Weber

The Coalescent Model. Florian Weber The Coalescent Model Florian Weber 23. 7. 2016 The Coalescent Model coalescent = zusammenwachsend Outline Population Genetics and the Wright-Fisher-model The Coalescent on-constant population-sizes Further

More information

Human origins and analysis of mitochondrial DNA sequences

Human origins and analysis of mitochondrial DNA sequences Human origins and analysis of mitochondrial DNA sequences Science, February 7, 1992 L. Vigilant et al. [1] recently presented "the strongest support yet for the placement of [their] common mtdna [mitochondrial

More information

Frequent Inconsistency of Parsimony Under a Simple Model of Cladogenesis

Frequent Inconsistency of Parsimony Under a Simple Model of Cladogenesis Syst. Biol. 52(5):641 648, 2003 Copyright c Society of Systematic Biologists ISSN: 1063-5157 print / 1076-836X online DOI: 10.1080/10635150390235467 Frequent Inconsistency of Parsimony Under a Simple Model

More information

Your mtdna Full Sequence Results

Your mtdna Full Sequence Results Congratulations! You are one of the first to have your entire mitochondrial DNA (DNA) sequenced! Testing the full sequence has already become the standard practice used by researchers studying the DNA,

More information

Inbreeding and self-fertilization

Inbreeding and self-fertilization Inbreeding and self-fertilization Introduction Remember that long list of assumptions associated with derivation of the Hardy-Weinberg principle that we just finished? Well, we re about to begin violating

More information

SINGLE nucleotide polymorphisms (SNPs) are single cases the SNPs have originally been identified by sequencing.

SINGLE nucleotide polymorphisms (SNPs) are single cases the SNPs have originally been identified by sequencing. Copyright 2000 by the Genetics Society of America Estimation of Population Parameters and Recombination Rates From Single Nucleotide Polymorphisms Rasmus Nielsen Department of Organismic and Evolutionary

More information

can mathematicians find the woods?

can mathematicians find the woods? Eolutionary trees, coalescents, and gene trees: can mathematicians find the woods? Joe Felsenstein Department of Genome Sciences and Department of Biology Eolutionary trees, coalescents, and gene trees:

More information

Estimating Ancient Population Sizes using the Coalescent with Recombination

Estimating Ancient Population Sizes using the Coalescent with Recombination Estimating Ancient Population Sizes using the Coalescent with Recombination Sara Sheehan joint work with Kelley Harris and Yun S. Song May 26, 2012 Sheehan, Harris, Song May 26, 2012 1 Motivation Introduction

More information

Introduction to Biosystematics - Zool 575

Introduction to Biosystematics - Zool 575 Introduction to Biosystematics Lecture 21-1. Introduction to maximum likelihood - synopsis of how it works - likelihood of a single sequence - likelihood across a single branch - likelihood as branch length

More information

Kinship and Population Subdivision

Kinship and Population Subdivision Kinship and Population Subdivision Henry Harpending University of Utah The coefficient of kinship between two diploid organisms describes their overall genetic similarity to each other relative to some

More information

Gene coancestry in pedigrees and populations

Gene coancestry in pedigrees and populations Gene coancestry in pedigrees and populations Thompson, Elizabeth University of Washington, Department of Statistics Box 354322 Seattle, WA 98115-4322, USA E-mail: eathomp@uw.edu Glazner, Chris University

More information

DNA Basics, Y DNA Marker Tables, Ancestral Trees and Mutation Graphs: Definitions, Concepts, Understanding

DNA Basics, Y DNA Marker Tables, Ancestral Trees and Mutation Graphs: Definitions, Concepts, Understanding DNA Basics, Y DNA Marker Tables, Ancestral Trees and Mutation Graphs: Definitions, Concepts, Understanding by Dr. Ing. Robert L. Baber 2014 July 26 Rights reserved, see the copyright notice at http://gengen.rlbaber.de

More information

Recap: Properties of Trees. Rooting an unrooted tree. Questions trees can address: Data for phylogeny reconstruction. Rooted vs unrooted trees:

Recap: Properties of Trees. Rooting an unrooted tree. Questions trees can address: Data for phylogeny reconstruction. Rooted vs unrooted trees: Pairwise sequence alignment (global and local) Recap: Properties of rees Multiple sequence alignment global local ubstitution matrices atabase ing L equence statistics Leaf nodes contemporary taxa Internal

More information

Theoretical Population Biology. An approximate likelihood for genetic data under a model with recombination and population splitting

Theoretical Population Biology. An approximate likelihood for genetic data under a model with recombination and population splitting Theoretical Population Biology 75 (2009) 33 345 Contents lists available at ScienceDirect Theoretical Population Biology journal homepage: www.elsevier.com/locate/tpb An approximate likelihood for genetic

More information

Investigations from last time. Inbreeding and neutral evolution Genes, alleles and heterozygosity

Investigations from last time. Inbreeding and neutral evolution Genes, alleles and heterozygosity Investigations from last time. Heterozygous advantage: See what happens if you set initial allele frequency to or 0. What happens and why? Why are these scenario called unstable equilibria? Heterozygous

More information

Research Article The Ancestry of Genetic Segments

Research Article The Ancestry of Genetic Segments International Scholarly Research Network ISRN Biomathematics Volume 2012, Article ID 384275, 8 pages doi:105402/2012/384275 Research Article The Ancestry of Genetic Segments R B Campbell Department of

More information

ESTIMATION OF THE NUMBER OF INDIVIDUALS FOUNDING COLONIZED POPULATIONS

ESTIMATION OF THE NUMBER OF INDIVIDUALS FOUNDING COLONIZED POPULATIONS ORIGINAL ARTICLE doi:1.1111/j.1558-5646.7.8.x ESTIMATION OF THE NUMBER OF INDIVIDUALS FOUNDING COLONIZED POPULATIONS Eric C. Anderson 1, and Montgomery Slatkin 3,4 1 Fisheries Ecology Division, Southwest

More information

Kenneth Nordtvedt. Many genetic genealogists eventually employ a time-tomost-recent-common-ancestor

Kenneth Nordtvedt. Many genetic genealogists eventually employ a time-tomost-recent-common-ancestor Kenneth Nordtvedt Many genetic genealogists eventually employ a time-tomost-recent-common-ancestor (TMRCA) tool to estimate how far back in time the common ancestor existed for two Y-STR haplotypes obtained

More information

Behavioral Adaptations for Survival 1. Co-evolution of predator and prey ( evolutionary arms races )

Behavioral Adaptations for Survival 1. Co-evolution of predator and prey ( evolutionary arms races ) Behavioral Adaptations for Survival 1 Co-evolution of predator and prey ( evolutionary arms races ) Outline Mobbing Behavior What is an adaptation? The Comparative Method Divergent and convergent evolution

More information

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/70

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/70 Population Genetics Joe Felsenstein GENOME 453, Autumn 2013 Population Genetics p.1/70 Godfrey Harold Hardy (1877-1947) Wilhelm Weinberg (1862-1937) Population Genetics p.2/70 A Hardy-Weinberg calculation

More information

G ene tree discordance, phylogenetic inference and the m ultispecies coalescent

G ene tree discordance, phylogenetic inference and the m ultispecies coalescent Review G ene tree discordance, phylogenetic inference and the m ultispecies coalescent Ja m es H. Degnan 1,2 and N oah A. Rosenberg 1,3,4 1 Department of Human Genetics, University of Michigan, Ann Arbor,

More information

Mitochondrial Eve and Y-chromosome Adam: Who do your genes come from?

Mitochondrial Eve and Y-chromosome Adam: Who do your genes come from? Mitochondrial Eve and Y-chromosome Adam: Who do your genes come from? 28 July 2010. Joe Felsenstein Evening At The Genome Mitochondrial Eve and Y-chromosome Adam: Who do your genes come from? p.1/39 Evolutionary

More information

Lecture 6: Inbreeding. September 10, 2012

Lecture 6: Inbreeding. September 10, 2012 Lecture 6: Inbreeding September 0, 202 Announcements Hari s New Office Hours Tues 5-6 pm Wed 3-4 pm Fri 2-3 pm In computer lab 3306 LSB Last Time More Hardy-Weinberg Calculations Merle Patterning in Dogs:

More information

Biology 559R: Introduction to Phylogenetic Comparative Methods Topics for this week (Feb 3 & 5):

Biology 559R: Introduction to Phylogenetic Comparative Methods Topics for this week (Feb 3 & 5): Biology 559R: Introduction to Phylogenetic Comparative Methods Topics for this week (Feb 3 & 5): Chronogram estimation: Penalized Likelihood Approach BEAST Presentations of your projects 1 The Anatomy

More information

Bottlenecks reduce genetic variation Genetic Drift

Bottlenecks reduce genetic variation Genetic Drift Bottlenecks reduce genetic variation Genetic Drift Northern Elephant Seals were reduced to ~30 individuals in the 1800s. Rare alleles are likely to be lost during a bottleneck Two important determinants

More information

How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?

How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? C:/ITOOLS/WMS/CUP/183027/WORKINGFOLDER/BLL/9780521866309C03.3D 39 [39 77] 20.12.2008 9:13AM How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? 3 PETER BEERLI Population genetic

More information

PHYLOGEOGRAPHIC BREAKS WITHOUT GEOGRAPHIC BARRIERS TO GENE FLOW

PHYLOGEOGRAPHIC BREAKS WITHOUT GEOGRAPHIC BARRIERS TO GENE FLOW Evolution, 56(1), 00, pp. 383 394 PHYLOGEOGRAPHIC BREAKS WITHOUT GEOGRAPHIC BARRIERS TO GENE FLOW DARREN E. IRWIN 1 Section for Animal Ecology, Department of Ecology, Lund University, S-3 6 Lund, Sweden

More information

Simulated gene genealogy of a sample of size 50 from a population of constant size. The History of Population Size from Whole Genomes.

Simulated gene genealogy of a sample of size 50 from a population of constant size. The History of Population Size from Whole Genomes. Simulated gene genealogy of a sample of size 50 from a population of constant size The History of Population Size from Whole Genomes Alan R Rogers October 1, 2018 Short terminal branches; long basal ones

More information

Estimating Effective Population Size and Mutation Rate From Sequence Data Using Metropolis-Hastings Sampling

Estimating Effective Population Size and Mutation Rate From Sequence Data Using Metropolis-Hastings Sampling Copyright 0 1995 by the Genetics Society of America Estimating Effective Population Size and Mutation Rate From Sequence Data Using Metropolis-Hastings Sampling Mary K. Kuhner, Jon Yarnato and Joseph Felsenstein

More information

Every human cell (except red blood cells and sperm and eggs) has an. identical set of 23 pairs of chromosomes which carry all the hereditary

Every human cell (except red blood cells and sperm and eggs) has an. identical set of 23 pairs of chromosomes which carry all the hereditary Introduction to Genetic Genealogy Every human cell (except red blood cells and sperm and eggs) has an identical set of 23 pairs of chromosomes which carry all the hereditary information that is passed

More information

Report on the VAN_TUYL Surname Project Y-STR Results 3/11/2013 Rory Van Tuyl

Report on the VAN_TUYL Surname Project Y-STR Results 3/11/2013 Rory Van Tuyl Report on the VAN_TUYL Surname Project Y-STR Results 3/11/2013 Rory Van Tuyl Abstract: Recent data for two descendants of Ott van Tuyl has been added to the project, bringing the total number of Gameren

More information

On the nonidentifiability of migration time estimates in isolation with migration models

On the nonidentifiability of migration time estimates in isolation with migration models Molecular Ecology (2011) 20, 3956 3962 doi: 10.1111/j.1365-294X.2011.05247.x NEWS AND VIEWS COMMENT On the nonidentifiability of migration time estimates in isolation with migration models VITOR C. SOUSA,

More information

Growing the Family Tree: The Power of DNA in Reconstructing Family Relationships

Growing the Family Tree: The Power of DNA in Reconstructing Family Relationships Growing the Family Tree: The Power of DNA in Reconstructing Family Relationships Luke A. D. Hutchison Natalie M. Myres Scott R. Woodward Sorenson Molecular Genealogy Foundation (www.smgf.org) 2511 South

More information

Exploring the Demographic History of DNA Sequences Using the Generalized Skyline Plot

Exploring the Demographic History of DNA Sequences Using the Generalized Skyline Plot Exploring the Demographic History of DNA Sequences Using the Generalized Syline Plot Korbinian Strimmer and Oliver G. Pybus Department of Zoology, University of Oxford We present an intuitive visual framewor,

More information

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/74

Population Genetics. Joe Felsenstein. GENOME 453, Autumn Population Genetics p.1/74 Population Genetics Joe Felsenstein GENOME 453, Autumn 2011 Population Genetics p.1/74 Godfrey Harold Hardy (1877-1947) Wilhelm Weinberg (1862-1937) Population Genetics p.2/74 A Hardy-Weinberg calculation

More information

Methods of Parentage Analysis in Natural Populations

Methods of Parentage Analysis in Natural Populations Methods of Parentage Analysis in Natural Populations Using molecular markers, estimates of genetic maternity or paternity can be achieved by excluding as parents all adults whose genotypes are incompatible

More information

The Structure of Genealogies and the Distribution of Fixed Differences Between DNA Sequence Samples From Natural Populations

The Structure of Genealogies and the Distribution of Fixed Differences Between DNA Sequence Samples From Natural Populations Copyright 0 1991 by the Genetics Society of America The Structure of Genealogies the Distribution of Fixed Differences Between DNA Sequence Samples From Natural Populations Department of Biological Sciences,

More information

Recent Trends in Population Genetics: More Data! More Math! Simple Models?

Recent Trends in Population Genetics: More Data! More Math! Simple Models? Journal of Heredity 24:95(5):397 45 doi:.93/jhered/esh62 ª 24 The American Genetic Association Recent Trends in Population Genetics: More ata! More Math! Simple Models? J. WAKELEY From the epartment of

More information

Objective: Why? 4/6/2014. Outlines:

Objective: Why? 4/6/2014. Outlines: Objective: Develop mathematical models that quantify/model resemblance between relatives for phenotypes of a quantitative trait : - based on pedigree - based on markers Outlines: Causal model for covariances

More information

THE estimation of population genetics parameters such as

THE estimation of population genetics parameters such as INVESTIGATION A Continuous Method for Gene Flow Michal Palczewski 1 and Peter Beerli Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306 ABSTRACT Most modern population

More information

CONGEN. Inbreeding vocabulary

CONGEN. Inbreeding vocabulary CONGEN Inbreeding vocabulary Inbreeding Mating between relatives. Inbreeding depression Reduction in fitness due to inbreeding. Identical by descent Alleles that are identical by descent are direct descendents

More information

The Contest Between Parsimony and Likelihood. Elliott Sober*

The Contest Between Parsimony and Likelihood. Elliott Sober* The Contest Between Parsimony and Likelihood Elliott Sober* Two of the main methods that biologists now use to infer phylogenetic relationships are maximum likelihood and maximum parsimony. The method

More information

DNA: Statistical Guidelines

DNA: Statistical Guidelines Frequency calculations for STR analysis When a probative association between an evidence profile and a reference profile is made, a frequency estimate is calculated to give weight to the association. Frequency

More information

Lecture 1: Introduction to pedigree analysis

Lecture 1: Introduction to pedigree analysis Lecture 1: Introduction to pedigree analysis Magnus Dehli Vigeland NORBIS course, 8 th 12 th of January 2018, Oslo Outline Part I: Brief introductions Pedigrees symbols and terminology Some common relationships

More information

Genetic Diversity and the Structure of Genealogies in Rapidly Adapting Populations

Genetic Diversity and the Structure of Genealogies in Rapidly Adapting Populations Genetic Diversity and the Structure of Genealogies in Rapidly Adapting Populations The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

More information

Optimum contribution selection conserves genetic diversity better than random selection in small populations with overlapping generations

Optimum contribution selection conserves genetic diversity better than random selection in small populations with overlapping generations Optimum contribution selection conserves genetic diversity better than random selection in small populations with overlapping generations K. Stachowicz 12*, A. C. Sørensen 23 and P. Berg 3 1 Department

More information