EE140 Introduction to Communication Systems Lecture 7

Size: px
Start display at page:

Download "EE140 Introduction to Communication Systems Lecture 7"

Transcription

1 3/4/08 EE40 Introdution to Communiation Systems Leture 7 Instrutor: Prof. Xiliang Luo ShanghaiTeh University, Spring 08 Arhiteture of a (Digital) Communiation System Transmitter Soure A/D onverter Soure enoder Channel enoder Modulator Absent if soure is digital Noise Channel User D/A onverter Soure deoder Channel deoder Detetor Reeiver

2 3/4/08 Contents Analog Modulation Amplitude modulation DSB SSB VSB Pulse modulation Angle modulation (phase/frequeny) 3 Examples of Analog Modulation 4

3 3/4/08 What is modulation? Modulation Transform a message into another signal to failitate transmission over a ommuniation hannel Generate a arrier signal at the transmitter Modify some harateristis of the arrier with the information to be transmitted Detet the modifiations at the reeiver Why modulation? Frequeny translation Frequeny-division multiplexing Noise performane improvement 5 Analog Modulation Charateristis that an be modified in the arrier C(t ) A(t )osπf (t )t θ(t ) Amplitude Frequeny Phase Amplitude modulation Angle modulation AM PM 6 3

4 3/4/08 Amplitude Modulation Double-sideband suppressed-arrier AM (DSB-SC) S(t ) Baseband signal (modulating wave): m(t ) Carrier wave C(t ) Modulated wave Aos πft θ 0 m(t )C(t ) Am(t )os πft θ 0 7 DSB-SC Spetrum S(f ) A M(f f ) M(f f ) 8 4

5 3/4/08 Demodulation of DSB-SC Signals Phase-oherent demodulation r(t ) s(t )Aos A πf t m(t )A os m(t ) m(t ) os 4πf t πf t s(t) v(t) vo(t) Produt modulator os(πf t) Low-pass filter Loal osillator PLL (phase-loked loop) 9 Demodulation of DSB-SC Signals DSB-SC demodulation: graphi interpretation 0 5

6 3/4/08 Question: not Phase Coherent? Phase error r(t ) s(t )os( πf t θ ) Am(t ) os πf t os( πf t θ ) Aosθm(t ) Aos( 4πft θ )m(t ) Unertainty in the amplitude r (t ) Am(t ) A os 4 πf t m(t ) Another Way to Generate DSB-SC Signals A signal spetrum an be translated an amount ω by multiplying the signal with any periodi wave form whose fundamental frequeny is ω 6

7 3/4/08 Double-sideband, Large-arrier (DSB-LC) DSB-LC signal (onventional AM signal) = DSB-SC signal + a arrier term s(t ) m(t )os ω t Aos ω t 3 DSB-LC signal Graphi Interpretation Time domain Frequeny domain 4 7

8 3/4/08 DSB-LC Properties The role played by parameter A If A is larger enough, say A minm(t ), the envelope of the modulated waveform will be proportional to m(t ). The DC response of the signal m(t ) has been lost in the demodulation as a result of the addition of the arrier. 5 Modulation Index Modulation index m is a dimensionless sale fator and used to represent the relative magnitudes of the sideband and arrier portion of the modulated signal. peak DSB - SC amplitude max m peak arrier amplitude A m(t ) 0 When m<, and maxm(t ) m(t ) m(t ) minm(t ) we also have (max. magnitude) - (min. magnitude) m (max. magnitude) (min. magnitude) 6 8

9 3/4/08 Modulation Index (ont d) 7 Demodulation of DSB-LC Signals Coherent demod: possible, but not easy. Phase and frequeny synhronizations are required; Nonoherent demod: envelope detetion The RC iruit an perform low pass filtering Condition: A min m(t ) or m Corret RC RC too large The simpliity of envelop detetor has made Conventional AM a pratial hoie for AM-radio broadasting RC too small 8 9

10 3/4/08 Transmission Effiieny Transmission (modulation) effiieny: Ps μ P t m (t ) A m (t ) If m(t ) maos ωt, we have m (t ) ma. The transmission effiieny m η m Beause m, the transmission effiieny of a DSB-LC system is at best 33.3%. That is, at least 67% of the total power is expended in the arrier and wasted as the arrier term does not ontain any information. For omparison, the transmission effiieny of a DSB-SC system is 00%. 9 Single-sideband (SSB) Modulation DSB modulation results in a doubling of the bandwidth of a given signal. Eah pair of sidebands (i.e. upper or lower) ontains the omplete information of the original signal. The original signal an be reovered again from either the upper or lower pair of sidebands by an appropriate frequeny translation. singlesideband modulation 0 0

11 3/4/08 SSB Advantage: SSB modulation is effiient beause it requires no more bandwidth than that of the original signal and only half that of the orresponding DSB signal. Generation of SSB-SC Signals Generation of SSB-SC signals Method : filtering generate a DSB-SC signal; filter out one pair of sidebands (upper or lower). Requirement of method : does not ontain signifiant low-frequeny omponents; the sideband filter is usually built at a ditated frequeny.

12 3/4/08 Generation of SSB-SC Signals (Cont d) Method : phase-shift generate the quadrature funtion mˆ (t ) by shifting the phase of m(t ) by 90 degrees at eah frequeny omponent. Upper (SSB+) sideband and lower (SSB-) sideband are given by φ SSB Requirement: phase shifted by exatly 90 degrees. used in low-freq SSB generation and in digital ( t ) m(t )os ωt mˆ (t )sin ωt 3 SSB-SC Demodulation Synhronous detetion Reeived SSB-SC signal: s(t ) m(t )os ωt mˆ (t )sin ωt Loal generated arrier signal: C(t ) os[( ω Δω)t θ ] s(t )C(t ) [ m(t )os m(t ) {os[( Δω)t θ ] os[( ω mˆ ω t mˆ (t )sin ω t ] os[( ω (t ) {sin[( Δω)t θ ] sin[( ω Δω)t θ ] Δω)t θ ]} Δω)t θ ]} Through a low-pass filter (LPF), the output is given by: m e (t ) If no error m(t ) os[( Δ ω)t θ ] m e (t ) m(t ) mˆ (t ) sin[( Δω)t θ ] 4

13 3/4/08 SSB-SC Demodulation (Cont d) Frequeny domain graphi interpretation 5 Single-sideband, Large-arrier (SSB-LC) SSB-LC signal: SSB-SC signal + a arrier term In time domain: s(t ) Aos ω t m(t )os ω t mˆ (t )sin ω t The frequeny response at DC is NOT desired. Synhronous detetion: Envelope detetion, not straightforward r(t ) [ A m(t )] [ mˆ (t )] A m(t ) A A m(t ) A Requirement of envelope detetion: the arrier is muh larger than the SSB-SC envelope, i.e. A m (t ) mˆ m(t ) m (t ) mˆ (t ) A A A (t ) 6 3

14 3/4/08 Good: Save spetrum Save energy Bad: Complex implementation Comments on SSB 7 Vestigial-sideband (VSB) Modulation The generation of SSB signals may be quite diffiult when the modulating signal bandwidth is wide or where one annot disregard the low-frequeny omponents. In Vestigial-sideband (VSB) modulation, a portion of one sideband is transmitted. VSB is a ompromise between SSB and DSB. Generation of VSB-SC signals: in frequeny domain S VSBSC ( ω ) M( ω ω ) M( ω ω ) H ( ω) where filter H V ( ω) passes some of the lower (or upper) sideband and most of the upper (or lower) sideband. V 8 4

15 3/4/08 VSB Modulation (Cont d) Frequeny domain graphi interpretation 9 DSB-SC: Comparison of AM Tehniques more power effiient. Seldom used DSB-LC (AM): simple envelop detetor Example: AM radio broadast SSB: requires minimum transmitter power and bandwidth. Suitable for point-topoint and over long distanes VSB: bandwidth requirement between SSB and DSBSC. Example: TV transmission 30 5

16 3/4/08 Performane of AM Demod Synhronous detetion vs envelope detetion In synhronous detetion, the output signal and noise always remain additive and the urve-slope is a onstant, independent of input SNR. The nonlinear behavior of envelope detetion delines the SNR performane wheninput noise inreases. 3 Contents Analog Modulation Amplitude modulation Pulse modulation Angle modulation (phase/frequeny) 3 6

17 3/4/08 Analog Pulse Modulation Modulating Signal Pulse-Amplitude Modulation (PAM) Pulse-Width Modulation (PWM) Pulse-Position Modulation (PPM) 33 Analog Pulse Modulation (ont d) PAM: onstant-width, uniformly spaed pulses whose amplitude is proportional to the values of at the sampling instants. PWM: onstant-amplitude pulses whose width is proportional to the values of the input at the sampling instants. PPM: onstant-width, onstant-amplitude pulses whose position is proportional to the values of the input at the sampling instants. 34 7

18 3/4/08 Remarks Analog Pulse Modulation (ont d) PWM is a popular hoie where the remote proportional ontrol of a position or a position rate is desired. Disadvantages of PWM inlude the neessity for detetion of both pulse edges and a relatively large guard time is needed. Only the trailing edges of the PWM waveforms ontain the modulating information. PPM onveys only the timing marks of the trailing edges. PAM and PWM are self-loking (the waveform presents lok timing), while the use of PPM requires a method of regenerating lok timing. PWM and PPM are nonlinear, Fourier analysis annot be used diretly. 35 Pulse-ode Modulation (PCM) Quantization: the sampled analog signal is quantized into a number of disrete levels. Digitization: assign a digit to eah level (one-to-one mapping) so that the waveform is redued to a set of digits at the suessive sample times. Code: the digits are expressed in a oded form. Binary ode (i.e. a ode using only two possible pulse levels) is the most popular hoie. (8 levels) (3-bit ode) Representations of PCM ode 36 8

19 3/4/08 PCM (ont d) Advantages of PCM systems In long-distane ommuniations, PCM signals an be ompletely regenerated (noise-free) at intermediate repeater stations beause all the information is ontained in the ode. The effets of noise do not aumulate and only the transmission noise between adjaent repeaters need be onerned. Modulating and demodulating iruitry is all digital, thus affording high reliability and stability. Signals may be stored and time saled effiiently. Effiient odes an be utilized to redue unneessary repetition (redundany) in message. (soure oding) Appropriate oding an redue the effets of noise and interferene. (hannel oding) 37 Thanks for your kind attention! Questions? 38 9

ENSC327 Communications Systems 4. Double Sideband Modulation. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 4. Double Sideband Modulation. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communiations Systems 4. Double Sideband Modulation Jie Liang Shool of Engineering Siene Simon Fraser University 1 Outline DSB: Modulator Spetrum Coherent Demodulator: Three methods Quadrature-arrier

More information

ENSC327 Communications Systems 4. Double Sideband Modulation. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 4. Double Sideband Modulation. School of Engineering Science Simon Fraser University ENSC327 Communiations Systems 4. Double Sideband Modulation Shool of Engineering Siene Simon Fraser University 1 Outline Required Bakground DSB: Modulator Spetrum Coherent Demodulator: Three methods Quadrature-arrier

More information

6. Amplitude Modulation

6. Amplitude Modulation 6. Amplitude Modulation Modulation is a proess by whih some parameter of a arrier signal is varied in aordane with a message signal. The message signal is alled a modulating signal. Definitions A bandpass

More information

Analog Communications

Analog Communications 1 Analog Communiations Amplitude Modulation (AM) Frequeny Modulation (FM) 2 Radio broadasting 30-300M Hz SOURCE Soure Transmitter Transmitted signal Channel Reeived signal Reeiver User Analog baseband

More information

TELE3013 Mid-session QUIZ 1

TELE3013 Mid-session QUIZ 1 TELE3013 Mid-session QUIZ 1 Week 7 10 th April, 2006 Name: Student No: Instrutions to Candidates (1) Time allowed: 90 minutes or so (2) Answer all questions. Total Marks = 90. (3) Marks are as indiated.

More information

Chapter 3 Amplitude Modulation. Wireless Information Transmission System Lab. Institute of Communications Engineering National Sun Yat-sen University

Chapter 3 Amplitude Modulation. Wireless Information Transmission System Lab. Institute of Communications Engineering National Sun Yat-sen University Chapter 3 Amplitude Modulation Wireless Information Transmission System Lab. Institute of Communiations Engineering National Sun Yat-sen University Outline 3.1 Introdution 3.2 Amplitude Modulation 3.3

More information

Introduction to Analog And Digital Communications

Introduction to Analog And Digital Communications Introdution to Analog And Digital Communiations Seond Edition Simon Haykin, Mihael Moher Chapter 9 Noise in Analog Communiations 9.1 Noise in Communiation Systems 9. Signal-to-Noise Ratios 9.3 Band-Pass

More information

ANALOG COMMUNICATION (9)

ANALOG COMMUNICATION (9) 11/5/013 DEARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING ANALOG COMMUNICATION (9) Fall 013 Original slides by Yrd. Doç. Dr. Burak Kellei Modified by Yrd. Doç. Dr. Didem Kivan Tureli OUTLINE Noise in Analog

More information

ELEC 350 Communications Theory and Systems: I. Analog Signal Transmission and Reception. ELEC 350 Fall

ELEC 350 Communications Theory and Systems: I. Analog Signal Transmission and Reception. ELEC 350 Fall ELEC 350 Communiations Theory and Systems: I Analog Signal Transmission and Reeption ELEC 350 Fall 2007 1 ELEC 350 Fall 2007 2 Analog Modulation A large number o signals are analog speeh musi video These

More information

Single Sideband (SSB) AM

Single Sideband (SSB) AM Single Sideband (SSB) AM Leture 7 Why SSB-AM? Spetral eiieny is o great importane. Conventional & DSB-SC oupy twie the message bandwidth. All the inormation is ontained in either hal the other is redundant.

More information

Principles of Communications

Principles of Communications Priniples of Communiations Meixia Tao Dept. of Eletroni Engineering Shanghai Jiao Tong University Chapter 3: Analog Modulation Seleted from Ch 3, Ch 4.-4.4, Ch 6.-6. of of Fundamentals of Communiations

More information

Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET

Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET EEE 309 Communiation Theory Semester: January 06 Dr. Md. Farhad Hossain Assoiate Proessor Department o EEE, BUET Email: marhadhossain@eee.buet.a.bd Oie: ECE 33, ECE Building Part 03-3 Single-sideband Suppressed

More information

EKT358 Communication Systems

EKT358 Communication Systems EKT358 Communiation Systems Chapter 2 Amplitude Modulation Topis Covered in Chapter 2 2-1: AM Conepts 2-2: Modulation Index and Perentage of Modulation 2-3: Sidebands and the Frequeny Domain 2-4: Single-Sideband

More information

ANALOG COMMUNICATIONS IV Sem. Prepared by Mr. T. Nagarjuna ECE Department

ANALOG COMMUNICATIONS IV Sem. Prepared by Mr. T. Nagarjuna ECE Department ANALOG COMMUNICAIONS IV Sem Prepared by Mr.. Nagaruna ECE Department UNI I SIGNAL ANALYSIS AND LI SYSEMS Classifiation of Signals Deterministi & Non Deterministi Signals Periodi & A periodi Signals Even

More information

Communication Systems Lecture 7. Dong In Kim School of Info/Comm Engineering Sungkyunkwan University

Communication Systems Lecture 7. Dong In Kim School of Info/Comm Engineering Sungkyunkwan University Communiation Systems Leture 7 Dong In Kim Shool o Ino/Comm Engineering Sungkyunkwan University 1 Outline Expression o SSB signals Waveorm o SSB signals Modulators or SSB: Frequeny disrimination Phase disrimination

More information

Figure 4.11: Double conversion FM receiver

Figure 4.11: Double conversion FM receiver 74 4.8 FM Reeivers FM reeivers, like their AM ounterparts, are superheterodyne reeivers. Figure 4.11 shows a simplified blok diagram for a double onversion superheterodyne FM reeiver Figure 4.11: Double

More information

Digitally Demodulating Binary Phase Shift Keyed Data Signals

Digitally Demodulating Binary Phase Shift Keyed Data Signals Digitally Demodulating Binary Phase Shift Keyed Signals Cornelis J. Kikkert, Craig Blakburn Eletrial and Computer Engineering James Cook University Townsville, Qld, Australia, 4811. E-mail: Keith.Kikkert@ju.edu.au,

More information

Lecture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa

Lecture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa Leture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa Eletrial Engineering Department University of Jordan EE421: Communiations I Notation 2 1 Three Modulation Types

More information

Objectives. Presentation Outline. Digital Modulation Lecture 04

Objectives. Presentation Outline. Digital Modulation Lecture 04 Digital Modulation Leture 04 Filters Digital Modulation Tehniques Rihard Harris Objetives To be able to disuss the purpose of filtering and determine the properties of well known filters. You will be able

More information

Lecture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa

Lecture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa Leture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa Eletrial Engineering Department University of Jordan EE421: Communiations I Notation 2 1 Three Modulation Types

More information

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Code: 13A04404 R13 B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 70 PART A

More information

Analog Transmission of Digital Data: ASK, FSK, PSK, QAM

Analog Transmission of Digital Data: ASK, FSK, PSK, QAM Analog Transmission of Digital Data: ASK, FSK, PSK, QAM Required reading: Forouzan 5. Garia 3.7 CSE 33, Fall 6 Instrutor: N. Vlaji Why Do We Need Digital-to-Analog Conversion?! ) The transmission medium

More information

Chapter 3 Digital Transmission Fundamentals

Chapter 3 Digital Transmission Fundamentals Chapter 3 Digital Transmission Fundamentals Modems and Digital Modulation CSE 33, Winter Instrutor: Foroohar Foroozan Modulation of Digital Data Modulation of Digital Data Modulation proess of onverting

More information

AM Limitations. Amplitude Modulation II. DSB-SC Modulation. AM Modifications

AM Limitations. Amplitude Modulation II. DSB-SC Modulation. AM Modifications Lecture 6: Amplitude Modulation II EE 3770: Communication Systems AM Limitations AM Limitations DSB-SC Modulation SSB Modulation VSB Modulation Lecture 6 Amplitude Modulation II Amplitude modulation is

More information

Amplitude Modulated Systems

Amplitude Modulated Systems Amplitude Modulated Systems Communication is process of establishing connection between two points for information exchange. Channel refers to medium through which message travels e.g. wires, links, or

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220405 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 ANALOG COMMUNICATIONS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours

More information

Amplitude Modulation II

Amplitude Modulation II Lecture 6: Amplitude Modulation II EE 3770: Communication Systems Lecture 6 Amplitude Modulation II AM Limitations DSB-SC Modulation SSB Modulation VSB Modulation Multiplexing Mojtaba Vaezi 6-1 Contents

More information

EE (082) Chapter IV: Angle Modulation Lecture 21 Dr. Wajih Abu-Al-Saud

EE (082) Chapter IV: Angle Modulation Lecture 21 Dr. Wajih Abu-Al-Saud EE 70- (08) Chapter IV: Angle Modulation Leture Dr. Wajih Abu-Al-Saud Effet of Non Linearity on AM and FM signals Sometimes, the modulated signal after transmission gets distorted due to non linearities

More information

AMPLITUDE MODULATION AND DEMODULATION

AMPLITUDE MODULATION AND DEMODULATION Modulation is a tehnique to transit inforation via radio arrier wavefor. It is a non-linear proess that generates additional frequenies, as we will see. Aplitude Modulation (AM) works by varying the aplitude

More information

Chapter 3: Analog Modulation Cengage Learning Engineering. All Rights Reserved.

Chapter 3: Analog Modulation Cengage Learning Engineering. All Rights Reserved. Contemporary Communication Systems using MATLAB Chapter 3: Analog Modulation 2013 Cengage Learning Engineering. All Rights Reserved. 3.1 Preview In this chapter we study analog modulation & demodulation,

More information

ELG3175 Introduction to Communication Systems. Conventional AM

ELG3175 Introduction to Communication Systems. Conventional AM ELG317 Introdution to Communiation Systems Conventional AM Disadvantages o DSB-SC The reeiver must generate a replia o the arrier in order to demodulate a DSB-SC signal. Any phase and/or requeny error

More information

BPSK so that we have a discrete set of RF signals. t)cos(

BPSK so that we have a discrete set of RF signals. t)cos( BPSK. BPSK Introdution Reall that the most general modulation has the form s( t) a( t)os[ t ( t)]. We remared earlier that phase modulation was not an effetive way to implement analog ommuniation, one

More information

Introductory Notions

Introductory Notions Introdutory Notions - he blok diagram of a transmission link, whih onveys information by means of eletromagneti signals, is depited in the figure below. Message Signal aqusition blok Information ransmitter

More information

Modulations Analog Modulations Amplitude modulation (AM) Linear modulation Frequency modulation (FM) Phase modulation (PM) cos Angle modulation FM PM Digital Modulations ASK FSK PSK MSK MFSK QAM PAM Etc.

More information

Multiplication/Modulation Property For Continuous-Time.

Multiplication/Modulation Property For Continuous-Time. Multipliation/Modulation Property For Continuous-Time. X( X(j) y(=(.( Y(j)=[C(j) X(j)]/2π )] ( )* ( [ 2 ) ( ). (. π j X j C t t T F X ( C(j) + = = = θ θ θ θ θ π d Xj j C jw Y ) ( ) ( 2 ) ( Multipliation/Modulation

More information

Communication Systems, 5e

Communication Systems, 5e Communiation Systems, 5e Chapter 7: Analog Communiation Systems A. Brue Carlson Paul B. Crilly 010 The Mraw-Hill Companies Chapter 7: Analog Communiation Systems Reeiver blok diagram design Image requeny

More information

Analog Communication.

Analog Communication. Analog Communication Vishnu N V Tele is Greek for at a distance, and Communicare is latin for to make common. Telecommunication is the process of long distance communications. Early telecommunications

More information

Generating 4-Level and Multitone FSK Using a Quadrature Modulator

Generating 4-Level and Multitone FSK Using a Quadrature Modulator Generating 4-Level and Multitone FSK Using a Quadrature Modulator Page 1 of 9 Generating 4-Level and Multitone FSK Using a Quadrature Modulator by In a reent olumn (lik on the Arhives botton at the top

More information

Reasons for Choosing Encoding Techniques. Signal Encoding Techniques. Reasons for Choosing Encoding Techniques. Signal Encoding Criteria

Reasons for Choosing Encoding Techniques. Signal Encoding Techniques. Reasons for Choosing Encoding Techniques. Signal Encoding Criteria Reaon for Chooing Enoding Tehnique Signal Enoding Tehnique Chapter 6 Digital data, digital ignal Equipment le omplex and expenive than digital-to-analog modulation equipment Analog data, digital ignal

More information

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the nature of the signal. For instance, in the case of audio

More information

Module 5 Carrier Modulation. Version 2 ECE IIT, Kharagpur

Module 5 Carrier Modulation. Version 2 ECE IIT, Kharagpur Module 5 Carrier Modulation Version ECE II, Kharagpur Lesson 5 Quaternary Phase Shift Keying (QPSK) Modulation Version ECE II, Kharagpur After reading this lesson, you will learn about Quaternary Phase

More information

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3]

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3] Code No: RR220401 Set No. 1 1. (a) The antenna current of an AM Broadcast transmitter is 10A, if modulated to a depth of 50% by an audio sine wave. It increases to 12A as a result of simultaneous modulation

More information

Introduction to Amplitude Modulation

Introduction to Amplitude Modulation 1 Introduction to Amplitude Modulation Introduction to project management. Problem definition. Design principles and practices. Implementation techniques including circuit design, software design, solid

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

Modulation Technique:

Modulation Technique: Modulation Tehnique: There are two basi failies of ontinuous-wave odulation tehniques: 1. Aplitude odulation, in whih the aplitude of a sinusoidal arrier is varied in aordane with an inoing essage signal.

More information

Outline : Wireless Networks Lecture 6: Physical Layer Coding and Modulation 1. Basic Modulation Techniques. From Signals to Packets.

Outline : Wireless Networks Lecture 6: Physical Layer Coding and Modulation 1. Basic Modulation Techniques. From Signals to Packets. Outline 18-759 : Wireless Networks Leure 6: Physial Layer Coding and Modulation 1 Peter Steenkiste Departments of Computer Siene and Elerial and Computer Engineering Spring Semester 2016 http://www.s.mu.edu/~prs/wirelesss16/

More information

CHAPTER 3 BER EVALUATION OF IEEE COMPLIANT WSN

CHAPTER 3 BER EVALUATION OF IEEE COMPLIANT WSN CHAPTER 3 EVALUATIO OF IEEE 8.5.4 COMPLIAT WS 3. OVERVIEW Appliations of Wireless Sensor etworks (WSs) require long system lifetime, and effiient energy usage ([75], [76], [7]). Moreover, appliations an

More information

Amplitude Modulation, II

Amplitude Modulation, II Amplitude Modulation, II Single sideband modulation (SSB) Vestigial sideband modulation (VSB) VSB spectrum Modulator and demodulator NTSC TV signsals Quadrature modulation Spectral efficiency Modulator

More information

CHAPTER-8 Spread Spectrum Modulation Introduction: Problem of radio transmission Solution Firstly Secondly

CHAPTER-8 Spread Spectrum Modulation Introduction: Problem of radio transmission Solution Firstly Secondly CHAPER-8 Spread Spetrum Modulation Introdution: Initially developed for military appliations during II world war, that was less sensitive to intentional interferene or jamming y third parties. Spread spetrum

More information

Amplitude Modulation

Amplitude Modulation Amplitude Modulation Ang Man Shun October 30, 01 Reference Hwei P. Hsu Analog and Digital Communication Summary Message Carrier Simple AM DSB-LC DSB-SC SSB / VSB Equation m(t) Large Carrier Unity A m cos

More information

Copyright Blind Selected Mapping Techniques for Space-Time Block Coded Filtered Single-Carrier Signals

Copyright Blind Selected Mapping Techniques for Space-Time Block Coded Filtered Single-Carrier Signals Blind Seleted Mapping Tehniques for Spae-Time Blok Coded Filtered Single-Carrier Signals IEEE VTS AWCS 6 6 August 6 @ Tokyo, Japan Amnart Boonkaay Fumiyuki Adahi Wireless Signal roessing Researh Group

More information

2. Continuous-wave modulation

2. Continuous-wave modulation . Continuous-wave odulation 1. Appliation goal We study representations in tie and frequeny doain for two types of ontinuous wave odulation: aplitude odulation (AM) and frequeny odulation (FM).. Continuous-wave

More information

Lecture Notes On Analogue Communication Techniques(Module 1 & 2) Topics Covered: 1. Spectral Analysis of Signals 2. Amplitude Modulation Techniques

Lecture Notes On Analogue Communication Techniques(Module 1 & 2) Topics Covered: 1. Spectral Analysis of Signals 2. Amplitude Modulation Techniques Leture Notes On Analogue Communiation Tehniques(Module 1 & ) Topis Covered: 1. Spetral Analysis of Signals. Amplitude Modulation Tehniques 3. Angle Modulation 4. Mathematial Representation of Noise 5.

More information

Master Degree in Electronic Engineering

Master Degree in Electronic Engineering Master Degree in Electronic Engineering Analog and telecommunication electronic course (ATLCE-01NWM) Miniproject: Baseband signal transmission techniques Name: LI. XINRUI E-mail: s219989@studenti.polito.it

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

UNIT I AMPLITUDE MODULATION

UNIT I AMPLITUDE MODULATION UNIT I AMPLITUDE MODULATION Prepared by: S.NANDHINI, Assistant Professor, Dept. of ECE, Sri Venkateswara College of Engineering, Sriperumbudur, Tamilnadu. CONTENTS Introduction to communication systems

More information

A NOVEL 10 GHZ SUPER-HETERODYNE BIO-RADAR SYSTEM BASED ON A FREQUENCY MULTIPLIER AND PHASE-LOCKED LOOP

A NOVEL 10 GHZ SUPER-HETERODYNE BIO-RADAR SYSTEM BASED ON A FREQUENCY MULTIPLIER AND PHASE-LOCKED LOOP Progress In Eletromagnetis Researh C, Vol. 19, 149 162, 2011 A NOVEL 10 GHZ SUPER-HETERODYNE BIO-RADAR SYSTEM BASED ON A FREQUENCY MULTIPLIER AND PHASE-LOCKED LOOP S.-S. Myoung, Y.-J. An, and J.-G. Yook

More information

EE 464 Band-Pass Sampling Example Fall 2018

EE 464 Band-Pass Sampling Example Fall 2018 EE 464 Band-Pass Sampling Example Fall 2018 Summary This example demonstrates the use of band-pass sampling. First, a band-pass signal is onstruted as a osine modulated speeh signal. This is a double sideband

More information

Date: August 23,999 Dist'n: T1E1.4

Date: August 23,999 Dist'n: T1E1.4 08/0/99 1 T1E1.4/99-49 Projet: T1E1.4: VDSL Title: Filtering elements to meet requirements on power spetral density (99-49) Contat: G. Cherubini, E. Eleftheriou, S. Oeler, IBM Zurih Researh Lab. Saeumerstr.

More information

Coherent Detection Method with Compensation at Transmitter in Time Division Duplex System

Coherent Detection Method with Compensation at Transmitter in Time Division Duplex System Coherent Detetion Method with Compensation at Transmitter in Time Division Duplex System Young An Kim 1, Choong Seon Hong 1 1 Department o Eletronis and Inormation, Kyung Hee University, 1 Seoheon, Giheung,

More information

An Acquisition Method Using a Code-Orthogonalizing Filter in UWB-IR Multiple Access

An Acquisition Method Using a Code-Orthogonalizing Filter in UWB-IR Multiple Access 6 IEEE Ninth International Symposium on Spread Spetrum Tehniques and Appliations An Aquisition Method Using a Code-Orthogonalizing Filter in UWB-IR Multiple Aess Shin ihi TACHIKAWA Nagaoka University of

More information

EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation

EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation Chapter 6 Analog Modulation and Demodulation Chapter 6 Analog Modulation and Demodulation Amplitude Modulation Pages 306-309 309 The analytical signal for double sideband, large carrier amplitude modulation

More information

Wireless Communication Fading Modulation

Wireless Communication Fading Modulation EC744 Wireless Communication Fall 2008 Mohamed Essam Khedr Department of Electronics and Communications Wireless Communication Fading Modulation Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5

More information

Metrol. Meas. Syst., Vol. XVIII (2011), No. 2, pp METROLOGY AND MEASUREMENT SYSTEMS. Index , ISSN

Metrol. Meas. Syst., Vol. XVIII (2011), No. 2, pp METROLOGY AND MEASUREMENT SYSTEMS. Index , ISSN METROLOGY AND MEASUREMENT SYSTEMS Index 330930, ISSN 0860-8229 www.metrology.pg.gda.pl DAC TESTING USING MODULATED SIGNALS Pavel Fexa, Josef Vedral, Jakub Svatoš CTU Prague, Faulty of Eletrial Engineering

More information

DT Filters 2/19. Atousa Hajshirmohammadi, SFU

DT Filters 2/19. Atousa Hajshirmohammadi, SFU 1/19 ENSC380 Lecture 23 Objectives: Signals and Systems Fourier Analysis: Discrete Time Filters Analog Communication Systems Double Sideband, Sub-pressed Carrier Modulation (DSBSC) Amplitude Modulation

More information

Communication Channels

Communication Channels Communication Channels wires (PCB trace or conductor on IC) optical fiber (attenuation 4dB/km) broadcast TV (50 kw transmit) voice telephone line (under -9 dbm or 110 µw) walkie-talkie: 500 mw, 467 MHz

More information

3.1 Introduction to Modulation

3.1 Introduction to Modulation Haberlesme Sistemlerine Giris (ELE 361) 9 Eylul 2017 TOBB Ekonomi ve Teknoloji Universitesi, Guz 2017-18 Dr. A. Melda Yuksel Turgut & Tolga Girici Lecture Notes Chapter 3 Amplitude Modulation Speech, music,

More information

A 24 GHz Band FM-CW Radar System for Detecting Closed Multiple Targets with Small Displacement

A 24 GHz Band FM-CW Radar System for Detecting Closed Multiple Targets with Small Displacement A 24 GHz Band FM-CW Radar System for Deteting Closed Multiple Targets with Small Displaement Kazuhiro Yamaguhi, Mitsumasa Saito, Takuya Akiyama, Tomohiro Kobayashi and Hideaki Matsue Tokyo University of

More information

ANALOG (DE)MODULATION

ANALOG (DE)MODULATION ANALOG (DE)MODULATION Amplitude Modulation with Large Carrier Amplitude Modulation with Suppressed Carrier Quadrature Modulation Injection to Intermediate Frequency idealized system Software Receiver Design

More information

Parameters of the radio channels that affect digital signal transmissions Propagation Environment Attenuation Index, γ

Parameters of the radio channels that affect digital signal transmissions Propagation Environment Attenuation Index, γ Parameters of the radio hannels that affet digital signal transmissions 1.Free spae attenuation - the signal undergoes an average attenuation that depends on the length of the path and signal s frequeny

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE3723 : Digital Communications Week 8-9: Bandpass Modulation MPSK MASK, OOK MFSK 04-May-15 Muhammad Ali Jinnah University, Islamabad - Digital Communications - EE3723 1 In-phase and Quadrature (I&Q) Representation

More information

Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. A. Introduction. A. Introduction

Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. A. Introduction. A. Introduction 1. In AM modulation we impart the information of a message signal m(t) on to a sinusoidal carrier c(t). This results in the translation of the message signal to a new frequency range. The motivation for

More information

Layered Space-Time Codes for Wireless Communications Using Multiple Transmit Antennas

Layered Space-Time Codes for Wireless Communications Using Multiple Transmit Antennas Layered Spae-Time Codes for Wireless Communiations Using Multiple Transmit Antennas Da-shan Shiu and Joseph M. Kahn University of California at Bereley Abstrat Multiple-antenna systems provide very high

More information

Parallel Interference Cancellation in Multicarrier DS-CDMA Systems

Parallel Interference Cancellation in Multicarrier DS-CDMA Systems N Parallel Interferene Canellation in ultiarrier D-CD ystems K. R. hankar kumar and. Chokalingam Department of ECE Indian Institute of iene Bangalore 50012 INDI bstrat In this paper we present and analyze

More information

ECE5713 : Advanced Digital Communications

ECE5713 : Advanced Digital Communications ECE5713 : Advanced Digital Communications Bandpass Modulation MPSK MASK, OOK MFSK 04-May-15 Advanced Digital Communications, Spring-2015, Week-8 1 In-phase and Quadrature (I&Q) Representation Any bandpass

More information

Calculating the input-output dynamic characteristics. Analyzing dynamic systems and designing controllers.

Calculating the input-output dynamic characteristics. Analyzing dynamic systems and designing controllers. CHAPTER : REVIEW OF FREQUENCY DOMAIN ANALYSIS The long-term response of a proess is nown as the frequeny response whih is obtained from the response of a omplex-domain transfer funtion. The frequeny response

More information

Incompatibility Of Trellis-Based NonCoherent SOQPSK Demodulators For Use In FEC Applications. Erik Perrins

Incompatibility Of Trellis-Based NonCoherent SOQPSK Demodulators For Use In FEC Applications. Erik Perrins AFFTC-PA-12071 Inompatibility Of Trellis-Based NonCoherent SOQPSK Demodulators For Use In FEC Appliations A F F T C Erik Perrins AIR FORCE FLIGHT TEST CENTER EDWARDS AFB, CA 12 MARCH 2012 Approved for

More information

Amplitude Modulation. Ahmad Bilal

Amplitude Modulation. Ahmad Bilal Amplitude Modulation Ahmad Bilal 5-2 ANALOG AND DIGITAL Analog-to-analog conversion is the representation of analog information by an analog signal. Topics discussed in this section: Amplitude Modulation

More information

Research on Blanket Jamming to Beidou Navigation Signals Based on BOC Modulation

Research on Blanket Jamming to Beidou Navigation Signals Based on BOC Modulation Int. J. Communiations, Network and System Sienes, 6, 9, 35-44 Published Online May 6 in SiRes. http://www.sirp.org/ournal/ins http://dx.doi.org/.436/ins.6.95 Researh on Blanket Jamming to Beidou Navigation

More information

COMMUNICATION SYSTEMS-II (In continuation with Part-I)

COMMUNICATION SYSTEMS-II (In continuation with Part-I) MODULATING A SIGNAL COMMUNICATION SYSTEMS-II (In continuation with Part-I) TRANSMITTING SIGNALS : In order to transmit the original low frequency baseband message efficiently over long distances, the signal

More information

UNIT-I AMPLITUDE MODULATION (2 Marks Questions and Answers)

UNIT-I AMPLITUDE MODULATION (2 Marks Questions and Answers) UNIT-I AMPLITUDE MODULATION (2 Marks Questions and Answers) 1. Define modulation? Modulation is a process by which some characteristics of high frequency carrier Signal is varied in accordance with the

More information

ELEC 350 Communications Theory and Systems: I. Review. ELEC 350 Fall

ELEC 350 Communications Theory and Systems: I. Review. ELEC 350 Fall ELEC 350 Communications Theory and Systems: I Review ELEC 350 Fall 007 1 Final Examination Saturday, December 15-3 hours Two pages of notes allowed Calculator Tables provided Fourier transforms Table.1

More information

3.1 Introduction 3.2 Amplitude Modulation 3.3 Double Sideband-Suppressed Carrier Modulation 3.4 Quadrature-Carrier Multiplexing 3.

3.1 Introduction 3.2 Amplitude Modulation 3.3 Double Sideband-Suppressed Carrier Modulation 3.4 Quadrature-Carrier Multiplexing 3. Chapter 3 Amplitude Modulation Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Outline 3.1 Introduction 3. Amplitude Modulation 3.3

More information

Distributed Beamforming for Information Transfer in Sensor Networks

Distributed Beamforming for Information Transfer in Sensor Networks Distributed Beamforming for Information Transfer in Sensor etworks G. Barria Dept. of Eletrial and Computer Engineering University of California Santa Barbara, CA 936, USA barria@engineering. usb.edu R.

More information

Basic Encoding Techniques

Basic Encoding Techniques Bai Enoding Tehnique Signal Enoding, Spread Spetrum Chapter 7 Digital data to analog ignal Amplitude-hift keying (ASK) Amplitude differene of arrier frequeny Frequeny-hift keying (FSK) Frequeny differene

More information

A Study on The Performance of Multiple-beam Antenna Satellite Receiving System Dezhi Li, Bo Zeng, Qun Wu*

A Study on The Performance of Multiple-beam Antenna Satellite Receiving System Dezhi Li, Bo Zeng, Qun Wu* 16 nd International Conferene on Mehanial, Eletroni and Information Tehnology Engineering (ICMITE 16) ISBN: 978-1-6595-34-3 A Study on The Performane of Multiple-beam Antenna Satellite Reeiving System

More information

Communications. AM, DSBSC, VSB, SSB, FM, PM, Narrow band FM, PLL Demodulators, and FLL Loops Sampling Systems

Communications. AM, DSBSC, VSB, SSB, FM, PM, Narrow band FM, PLL Demodulators, and FLL Loops Sampling Systems Couniations Contents Introdution to Couniation Systes Analogue Modulation AM, DSBSC, SB, SSB, FM, PM, Narrow band FM, PLL Deodulators, and FLL Loops Sapling Systes Tie and Frequeny Division ultiplexing

More information

Charan Langton, Editor

Charan Langton, Editor Charan Langton, Editor SIGNAL PROCESSING & SIMULATION NEWSLETTER Baseband, Passband Signals and Amplitude Modulation The most salient feature of information signals is that they are generally low frequency.

More information

EXPERIMENT WISE VIVA QUESTIONS

EXPERIMENT WISE VIVA QUESTIONS EXPERIMENT WISE VIVA QUESTIONS Pulse Code Modulation: 1. Draw the block diagram of basic digital communication system. How it is different from analog communication system. 2. What are the advantages of

More information

Abstract. 1. Introduction. 2. Fading

Abstract. 1. Introduction. 2. Fading An Interative Simulation for Flat Fading P.Marihamy*, J.Senthilkumar and V.Vijayarangan ECE Dept., National Engineering College Kovilpatti -68 503, India. * Nizwa College of Tehnology, Sultanate of Oman

More information

Second Edition Simon Haykin, Michael Moher

Second Edition Simon Haykin, Michael Moher Introdution to Analog And Digital Communiations Seond Edition Simon Haykin, Mihael Moher Chapter 6 Baseband Delta Transmission 6. Baseband Transmission o Digital Data 6.2 The Intersymbol Intererene Problem

More information

CS311: Data Communication. Transmission of Analog Signal - I

CS311: Data Communication. Transmission of Analog Signal - I CS311: Data Communication Transmission of Analog Signal - I by Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Web: http://home.iitj.ac.in/~manaskhatua http://manaskhatua.github.io/

More information

CHAPTER 2. AMPLITUDE MODULATION (AM) 2.3 AM Single Side Band Communications

CHAPTER 2. AMPLITUDE MODULATION (AM) 2.3 AM Single Side Band Communications CHAPTER AMPLITUDE MODULATION (AM).3 AM Single Side Band Couniations OBJECTIVES To define and desribe AM single sideband To opare single sideband transission to onventional double sideband AM The explain

More information

Lecture 10. Digital Modulation

Lecture 10. Digital Modulation Digital Modulation Lecture 10 On-Off keying (OOK), or amplitude shift keying (ASK) Phase shift keying (PSK), particularly binary PSK (BPSK) Frequency shift keying Typical spectra Modulation/demodulation

More information

Amplitude Modulation Chapter 2. Modulation process

Amplitude Modulation Chapter 2. Modulation process Question 1 Modulation process Modulation is the process of translation the baseband message signal to bandpass (modulated carrier) signal at frequencies that are very high compared to the baseband frequencies.

More information

4- Single Side Band (SSB)

4- Single Side Band (SSB) 4- Single Side Band (SSB) It can be shown that: s(t) S.S.B = m(t) cos ω c t ± m h (t) sin ω c t -: USB ; +: LSB m(t) X m(t) cos ω c t -π/ cos ω c t -π/ + s S.S.B m h (t) X m h (t) ± sin ω c t 1 Tone Modulation:

More information

Acoustic Transmissions for Wireless Communications and Power Supply in Biomedical Devices

Acoustic Transmissions for Wireless Communications and Power Supply in Biomedical Devices roeedings of th International ongress on Aoustis, IA 1 3-7 August 1, Sydney, Australia Aousti Transmissions for Wireless ommuniations and ower Supply in Biomedial Devies Graham Wild and Steven Hinkley

More information

3. Spread Spectrum Systems

3. Spread Spectrum Systems 3. Spread Spetrum Systems Jan Šimša Institute of Radio Engineering and Eletronis, Aademy of Sienes of CR Spread spetrum signals are signals arrying digital modulation as a rule. What signal has a spread

More information

Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation

Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation Contents Slide 1 Single-Sideband Modulation Slide 2 SSB by DSBSC-AM and Filtering Slide 3 SSB by DSBSC-AM and Filtering (cont.) Slide

More information

Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad

Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad EXPERIMENT #5 DSB-SC AND SSB MODULATOR Theory The amplitude-modulated signal is

More information