Multiplication/Modulation Property For Continuous-Time.

Size: px
Start display at page:

Download "Multiplication/Modulation Property For Continuous-Time."

Transcription

1 Multipliation/Modulation Property For Continuous-Time. X( X(j) y(=(.( Y(j)=[C(j) X(j)]/2π )] ( )* ( [ 2 ) ( ). (. π j X j C t t T F X ( C(j) + = = = θ θ θ θ θ π d Xj j C jw Y ) ( ) ( 2 ) (

2 Multipliation/Modulation Property For Disrete-time [ n]. [ n] [n] C() [n] X() F. T X 2 π [ C( j )* X ( y[n]=[n].[n] Y(j)=[C(j) X(j)]/2π j )] Y ( jw) = C( jθ ). Xj( θ ) dθ 2π 2 π 2

3 Communiation Systems Blok Diagram of AM Carrier ( ( Modulating signal ( F. T (. ( [ X ( )* C( )] 2π pulse arrier sinusoidal arrier ( e + θ ) omple eponential = = os( t j( t+ θ ) = os( t arrier + θ ) + Modulated output y( j sin( t + θ ) 3

4 Sinusoidal Amplitude Modulation with a sinusoidal arrier Modulating signal Carrier signal Modulated signal 4

5 Amplitude Modulation 5

6 Amplitude Modulation 6

7 Amplitude Modulation With Comple Eponential Carrier We h oose, arrier The frequeny is The modulated signal is : - refered to as From the multipliation property of F. T (. ( [ X ( j)* C( j)] 2π Y ( ) = X ( jθ ) C( j( θ ) dθ 2π To get bak the original signal (, ( demodulation) multiply y( with e signal For onveniene, let θ = j t. 0, ( = e y( = j( t+ θ ) the arrier frequeny. (.( F.T. = (e j t. 7

8 Amplitude Modulation and Synhronous Demodulation using omple eponential arrier. e j t ( y( e j t y( ( 8

9 Spetra assoiated with AM with omple eponential arrier Modulation F. T ( (. ( X ( ) F. T X () [ X ( )* C( )] 2π Y () Synhronous Demodulation FT Y( ) y( M M M + M ( = e j( t+ θ ) F. T C( ) C() j 2πe θ 2π j e θ C() F. T C( ) e j( t+ θ ) F. T y( Y ( ) Y () M + M M X () FT X ( ) ( M 9

10 Representation of AM with a omple eponential arrier in terms of amplitude modulation with two sinusoidal arriers with 90 0 phase differene. arrier signal Modulating signal ( e j ( t +θ ) Modulated output y( os( + θ ) t Re{y(} ( sin( + θ ) t IM{y(} 0

11 F. T ( F. T y( M X () Y () M M + M F. T Re{ y( } /2 * [ Y ( ) +Y ( )] 2 F. T Im{ y( } /2 * [ Y ( ) Y ( )] 2

12 F. T ( X ( j) M M ( = F. T os( C( j) = π[ δ ( ) + δ ( + )] π π C( j) FT y( Y ( j) = [ X ( j)* C( j)] 2π Y ( j) /2 M + M M + M 2

13 /2 Y ( j) y( = w( = os 2 w( = ( os t, y( os t t = ( + M modulation. = ( os os 2t, 2 ( os 2t 2 2 t, π + M synhronous M demodulation. π + M C( j) W ( j) /2 /4 /4 2 M M M M 2 M M 3

14 Amplitude Modulation and Synhronous Demodulation using sinusoidal arrier. os( t + θ ) ( os( t + θ ) y( Ideal lowpass filter y( w( 0 H ( j) 2 ( 0 4

15 5 Amplitude Modulation and Synhronous Demodulation using omple eponential arrier. Problem for modulator and demodulator not synhronous in phase. ( ) ( t j e +θ y( y( ) ( t j e +φ ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( t e t e e t y e w t j t j t j t j φ θ θ φ φ = = =

16 Asynhronous Demodulation need ( to be positive all the time. To use envelope detetor for demodulation, we add A to (. If K is the maimum amplitude of (, i.e. ( <=K, we require A>K, in order to make ( positive. Modulation Inde m=k/a. 6

17 Asynhronous Amplitude Modulation using sinusoidal arrier. os( A ( + y( = [ A + ( ]os t Y (w) 7

18 8

19 Advantages Synhronous Modulation/Demodulation Effiient No wastage of power sine no arrier signal being transmitted. Good for satellite ommuniations. Asynhronous Modulation/Demodulation Simple and heap iruitry at the reeiver end for the publi. 9

20 Disadvantages Synhronous Modulation/Demodulation Diffiulty of getting eat arrier frequeny at the demodulator end. Diffiulty of getting the phase at the demodulator end to be synhronous with the phase of transmitted arrier. Elaborate and epensive iruitry needed. Asynhronous Modulation/Demodulation Wastage of power sine need to transmit the arrier power whih represent no information ontent. Ineffiient. 20

21 Use of Amplitude Modulation with omple eponential arrier to implement bandpass filter with lowpass filter ( e j t y( Ideal lowpass filter H () w( 0 0 e j t f( 2

22 X() Y()W() F()

23 Frequeny-Division Multipeing 23

24 Frequeny-Division Multipeing 24

25 Frequeny-Division Multipeing 25

26 Single-Sideband Sinusoidal Amplitude Modulation 26

27 ( os t y ( t ) + Phase Shifting Proedure For Obtaining Single-sideband Signal y( H ( j) = j, > 0 = + j, < 0 p ( sin t y 2 ( p ( j) 27

28 28

29 Other Types of Modulations AM with Pulse-Train Carrier Phase Modulation. Frequeny Modulation. Pulse Amplitude Modulation. Pulse Code Modulation. (PCM). 29

30 2Hz Sinusoidal Phase Modulation with sinusoidal arrier of 00Hz. 30

31 Square Wave Phase Modulation of Sinusoidal Signal of 00Hz. 3

32 Frequeny Modulation 32

ENSC327 Communications Systems 4. Double Sideband Modulation. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 4. Double Sideband Modulation. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communiations Systems 4. Double Sideband Modulation Jie Liang Shool of Engineering Siene Simon Fraser University 1 Outline DSB: Modulator Spetrum Coherent Demodulator: Three methods Quadrature-arrier

More information

ENSC327 Communications Systems 4. Double Sideband Modulation. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 4. Double Sideband Modulation. School of Engineering Science Simon Fraser University ENSC327 Communiations Systems 4. Double Sideband Modulation Shool of Engineering Siene Simon Fraser University 1 Outline Required Bakground DSB: Modulator Spetrum Coherent Demodulator: Three methods Quadrature-arrier

More information

Analog Communications

Analog Communications 1 Analog Communiations Amplitude Modulation (AM) Frequeny Modulation (FM) 2 Radio broadasting 30-300M Hz SOURCE Soure Transmitter Transmitted signal Channel Reeived signal Reeiver User Analog baseband

More information

EE140 Introduction to Communication Systems Lecture 7

EE140 Introduction to Communication Systems Lecture 7 3/4/08 EE40 Introdution to Communiation Systems Leture 7 Instrutor: Prof. Xiliang Luo ShanghaiTeh University, Spring 08 Arhiteture of a (Digital) Communiation System Transmitter Soure A/D onverter Soure

More information

Introduction to Analog And Digital Communications

Introduction to Analog And Digital Communications Introdution to Analog And Digital Communiations Seond Edition Simon Haykin, Mihael Moher Chapter 9 Noise in Analog Communiations 9.1 Noise in Communiation Systems 9. Signal-to-Noise Ratios 9.3 Band-Pass

More information

Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET

Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET EEE 309 Communiation Theory Semester: January 06 Dr. Md. Farhad Hossain Assoiate Proessor Department o EEE, BUET Email: marhadhossain@eee.buet.a.bd Oie: ECE 33, ECE Building Part 03-3 Single-sideband Suppressed

More information

6. Amplitude Modulation

6. Amplitude Modulation 6. Amplitude Modulation Modulation is a proess by whih some parameter of a arrier signal is varied in aordane with a message signal. The message signal is alled a modulating signal. Definitions A bandpass

More information

Chapter 3 Amplitude Modulation. Wireless Information Transmission System Lab. Institute of Communications Engineering National Sun Yat-sen University

Chapter 3 Amplitude Modulation. Wireless Information Transmission System Lab. Institute of Communications Engineering National Sun Yat-sen University Chapter 3 Amplitude Modulation Wireless Information Transmission System Lab. Institute of Communiations Engineering National Sun Yat-sen University Outline 3.1 Introdution 3.2 Amplitude Modulation 3.3

More information

Chapter 3 Digital Transmission Fundamentals

Chapter 3 Digital Transmission Fundamentals Chapter 3 Digital Transmission Fundamentals Modems and Digital Modulation CSE 33, Winter Instrutor: Foroohar Foroozan Modulation of Digital Data Modulation of Digital Data Modulation proess of onverting

More information

Lecture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa

Lecture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa Leture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa Eletrial Engineering Department University of Jordan EE421: Communiations I Notation 2 1 Three Modulation Types

More information

TELE3013 Mid-session QUIZ 1

TELE3013 Mid-session QUIZ 1 TELE3013 Mid-session QUIZ 1 Week 7 10 th April, 2006 Name: Student No: Instrutions to Candidates (1) Time allowed: 90 minutes or so (2) Answer all questions. Total Marks = 90. (3) Marks are as indiated.

More information

AMPLITUDE MODULATION AND DEMODULATION

AMPLITUDE MODULATION AND DEMODULATION Modulation is a tehnique to transit inforation via radio arrier wavefor. It is a non-linear proess that generates additional frequenies, as we will see. Aplitude Modulation (AM) works by varying the aplitude

More information

Lecture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa

Lecture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa Leture 4: Amplitude Modulation (Double Sideband Suppressed Carrier, DSB-SC) Dr. Mohammed Hawa Eletrial Engineering Department University of Jordan EE421: Communiations I Notation 2 1 Three Modulation Types

More information

Fatih University Electrical and Electronics Engineering Department EEE Communications I EXPERIMENT 4 AM DEMODULATORS

Fatih University Electrical and Electronics Engineering Department EEE Communications I EXPERIMENT 4 AM DEMODULATORS Fatih University Eletrial and Eletronis Engineering Departent EEE 316 - Couniations I EXPERIMENT 4 AM DEMODULATORS 4.1 OBJECTIVES 1. Understanding the priniple of aplitude odulation and deodulation.. Ipleenting

More information

Single Sideband (SSB) AM

Single Sideband (SSB) AM Single Sideband (SSB) AM Leture 7 Why SSB-AM? Spetral eiieny is o great importane. Conventional & DSB-SC oupy twie the message bandwidth. All the inormation is ontained in either hal the other is redundant.

More information

Module 5 Carrier Modulation. Version 2 ECE IIT, Kharagpur

Module 5 Carrier Modulation. Version 2 ECE IIT, Kharagpur Module 5 Carrier Modulation Version ECE II, Kharagpur Lesson 5 Quaternary Phase Shift Keying (QPSK) Modulation Version ECE II, Kharagpur After reading this lesson, you will learn about Quaternary Phase

More information

ANALOG COMMUNICATIONS IV Sem. Prepared by Mr. T. Nagarjuna ECE Department

ANALOG COMMUNICATIONS IV Sem. Prepared by Mr. T. Nagarjuna ECE Department ANALOG COMMUNICAIONS IV Sem Prepared by Mr.. Nagaruna ECE Department UNI I SIGNAL ANALYSIS AND LI SYSEMS Classifiation of Signals Deterministi & Non Deterministi Signals Periodi & A periodi Signals Even

More information

ELEC 350 Communications Theory and Systems: I. Analog Signal Transmission and Reception. ELEC 350 Fall

ELEC 350 Communications Theory and Systems: I. Analog Signal Transmission and Reception. ELEC 350 Fall ELEC 350 Communiations Theory and Systems: I Analog Signal Transmission and Reeption ELEC 350 Fall 2007 1 ELEC 350 Fall 2007 2 Analog Modulation A large number o signals are analog speeh musi video These

More information

EKT358 Communication Systems

EKT358 Communication Systems EKT358 Communiation Systems Chapter 2 Amplitude Modulation Topis Covered in Chapter 2 2-1: AM Conepts 2-2: Modulation Index and Perentage of Modulation 2-3: Sidebands and the Frequeny Domain 2-4: Single-Sideband

More information

Analog Transmission of Digital Data: ASK, FSK, PSK, QAM

Analog Transmission of Digital Data: ASK, FSK, PSK, QAM Analog Transmission of Digital Data: ASK, FSK, PSK, QAM Required reading: Forouzan 5. Garia 3.7 CSE 33, Fall 6 Instrutor: N. Vlaji Why Do We Need Digital-to-Analog Conversion?! ) The transmission medium

More information

ELG3175 Introduction to Communication Systems. Conventional AM

ELG3175 Introduction to Communication Systems. Conventional AM ELG317 Introdution to Communiation Systems Conventional AM Disadvantages o DSB-SC The reeiver must generate a replia o the arrier in order to demodulate a DSB-SC signal. Any phase and/or requeny error

More information

ANALOG COMMUNICATION (9)

ANALOG COMMUNICATION (9) 11/5/013 DEARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING ANALOG COMMUNICATION (9) Fall 013 Original slides by Yrd. Doç. Dr. Burak Kellei Modified by Yrd. Doç. Dr. Didem Kivan Tureli OUTLINE Noise in Analog

More information

BPSK so that we have a discrete set of RF signals. t)cos(

BPSK so that we have a discrete set of RF signals. t)cos( BPSK. BPSK Introdution Reall that the most general modulation has the form s( t) a( t)os[ t ( t)]. We remared earlier that phase modulation was not an effetive way to implement analog ommuniation, one

More information

17. Delta Modulation

17. Delta Modulation 7. Delta Modulation Introduction So far, we have seen that the pulse-code-modulation (PCM) technique converts analogue signals to digital format for transmission. For speech signals of 3.2kHz bandwidth,

More information

Digitally Demodulating Binary Phase Shift Keyed Data Signals

Digitally Demodulating Binary Phase Shift Keyed Data Signals Digitally Demodulating Binary Phase Shift Keyed Signals Cornelis J. Kikkert, Craig Blakburn Eletrial and Computer Engineering James Cook University Townsville, Qld, Australia, 4811. E-mail: Keith.Kikkert@ju.edu.au,

More information

Communication Systems Lecture 7. Dong In Kim School of Info/Comm Engineering Sungkyunkwan University

Communication Systems Lecture 7. Dong In Kim School of Info/Comm Engineering Sungkyunkwan University Communiation Systems Leture 7 Dong In Kim Shool o Ino/Comm Engineering Sungkyunkwan University 1 Outline Expression o SSB signals Waveorm o SSB signals Modulators or SSB: Frequeny disrimination Phase disrimination

More information

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is a process of mixing a signal with a sinusoid to produce

More information

Figure 4.11: Double conversion FM receiver

Figure 4.11: Double conversion FM receiver 74 4.8 FM Reeivers FM reeivers, like their AM ounterparts, are superheterodyne reeivers. Figure 4.11 shows a simplified blok diagram for a double onversion superheterodyne FM reeiver Figure 4.11: Double

More information

Outline : Wireless Networks Lecture 6: Physical Layer Coding and Modulation 1. Basic Modulation Techniques. From Signals to Packets.

Outline : Wireless Networks Lecture 6: Physical Layer Coding and Modulation 1. Basic Modulation Techniques. From Signals to Packets. Outline 18-759 : Wireless Networks Leure 6: Physial Layer Coding and Modulation 1 Peter Steenkiste Departments of Computer Siene and Elerial and Computer Engineering Spring Semester 2016 http://www.s.mu.edu/~prs/wirelesss16/

More information

Lecture 10. Digital Modulation

Lecture 10. Digital Modulation Digital Modulation Lecture 10 On-Off keying (OOK), or amplitude shift keying (ASK) Phase shift keying (PSK), particularly binary PSK (BPSK) Frequency shift keying Typical spectra Modulation/demodulation

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

AM Limitations. Amplitude Modulation II. DSB-SC Modulation. AM Modifications

AM Limitations. Amplitude Modulation II. DSB-SC Modulation. AM Modifications Lecture 6: Amplitude Modulation II EE 3770: Communication Systems AM Limitations AM Limitations DSB-SC Modulation SSB Modulation VSB Modulation Lecture 6 Amplitude Modulation II Amplitude modulation is

More information

Lecture 22: Digital Transmission Fundamentals

Lecture 22: Digital Transmission Fundamentals EE 400: Communiation Networks (0) Ref: A. Leon Garia and I. Widjaja, Communiation Networks, 2 nd Ed. MGraw Hill, 2006 Latest update of this leture was on 30 200 Leture 22: Digital Transmission Fundamentals

More information

Amplitude Modulation II

Amplitude Modulation II Lecture 6: Amplitude Modulation II EE 3770: Communication Systems Lecture 6 Amplitude Modulation II AM Limitations DSB-SC Modulation SSB Modulation VSB Modulation Multiplexing Mojtaba Vaezi 6-1 Contents

More information

Amplitude Modulation Chapter 2. Modulation process

Amplitude Modulation Chapter 2. Modulation process Question 1 Modulation process Modulation is the process of translation the baseband message signal to bandpass (modulated carrier) signal at frequencies that are very high compared to the baseband frequencies.

More information

Objectives. Presentation Outline. Digital Modulation Lecture 04

Objectives. Presentation Outline. Digital Modulation Lecture 04 Digital Modulation Leture 04 Filters Digital Modulation Tehniques Rihard Harris Objetives To be able to disuss the purpose of filtering and determine the properties of well known filters. You will be able

More information

Outline. EECS 3213 Fall Sebastian Magierowski York University. Review Passband Modulation. Constellations ASK, FSK, PSK.

Outline. EECS 3213 Fall Sebastian Magierowski York University. Review Passband Modulation. Constellations ASK, FSK, PSK. EECS 3213 Fall 2014 L12: Modulation Sebastian Magierowski York University 1 Outline Review Passband Modulation ASK, FSK, PSK Constellations 2 1 Underlying Idea Attempting to send a sequence of digits through

More information

Modulation Technique:

Modulation Technique: Modulation Tehnique: There are two basi failies of ontinuous-wave odulation tehniques: 1. Aplitude odulation, in whih the aplitude of a sinusoidal arrier is varied in aordane with an inoing essage signal.

More information

DT Filters 2/19. Atousa Hajshirmohammadi, SFU

DT Filters 2/19. Atousa Hajshirmohammadi, SFU 1/19 ENSC380 Lecture 23 Objectives: Signals and Systems Fourier Analysis: Discrete Time Filters Analog Communication Systems Double Sideband, Sub-pressed Carrier Modulation (DSBSC) Amplitude Modulation

More information

DIGITAL CPFSK TRANSMITTER AND NONCOHERENT RECEIVER/DEMODULATOR IMPLEMENTATION 1

DIGITAL CPFSK TRANSMITTER AND NONCOHERENT RECEIVER/DEMODULATOR IMPLEMENTATION 1 DIGIAL CPFSK RANSMIER AND NONCOHEREN RECEIVER/DEMODULAOR IMPLEMENAION 1 Eric S. Otto and Phillip L. De León New Meico State University Center for Space elemetry and elecommunications ABSRAC As radio frequency

More information

Real and Complex Modulation

Real and Complex Modulation Real and Complex Modulation TIPL 4708 Presented by Matt Guibord Prepared by Matt Guibord 1 What is modulation? Modulation is the act of changing a carrier signal s properties (amplitude, phase, frequency)

More information

CHAPTER 2. AMPLITUDE MODULATION (AM) 2.3 AM Single Side Band Communications

CHAPTER 2. AMPLITUDE MODULATION (AM) 2.3 AM Single Side Band Communications CHAPTER AMPLITUDE MODULATION (AM).3 AM Single Side Band Couniations OBJECTIVES To define and desribe AM single sideband To opare single sideband transission to onventional double sideband AM The explain

More information

Principles of Communications ECS 332

Principles of Communications ECS 332 Principles of Communications ECS 332 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5. Angle Modulation Office Hours: BKD, 6th floor of Sirindhralai building Wednesday 4:3-5:3 Friday 4:3-5:3 Example

More information

Digital communication

Digital communication Chapter 4 Digital communication A digital is a discrete-time binary m : Integers Bin = {0, 1}. To transmit such a it must first be transformed into a analog. The is then transmitted as such or modulated

More information

Principles of Communications

Principles of Communications Priniples of Communiations Meixia Tao Dept. of Eletroni Engineering Shanghai Jiao Tong University Chapter 3: Analog Modulation Seleted from Ch 3, Ch 4.-4.4, Ch 6.-6. of of Fundamentals of Communiations

More information

A 24 GHz Band FM-CW Radar System for Detecting Closed Multiple Targets with Small Displacement

A 24 GHz Band FM-CW Radar System for Detecting Closed Multiple Targets with Small Displacement A 24 GHz Band FM-CW Radar System for Deteting Closed Multiple Targets with Small Displaement Kazuhiro Yamaguhi, Mitsumasa Saito, Takuya Akiyama, Tomohiro Kobayashi and Hideaki Matsue Tokyo University of

More information

EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation

EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation Chapter 6 Analog Modulation and Demodulation Chapter 6 Analog Modulation and Demodulation Amplitude Modulation Pages 306-309 309 The analytical signal for double sideband, large carrier amplitude modulation

More information

EE (082) Chapter IV: Angle Modulation Lecture 21 Dr. Wajih Abu-Al-Saud

EE (082) Chapter IV: Angle Modulation Lecture 21 Dr. Wajih Abu-Al-Saud EE 70- (08) Chapter IV: Angle Modulation Leture Dr. Wajih Abu-Al-Saud Effet of Non Linearity on AM and FM signals Sometimes, the modulated signal after transmission gets distorted due to non linearities

More information

ECE5713 : Advanced Digital Communications

ECE5713 : Advanced Digital Communications ECE5713 : Advanced Digital Communications Bandpass Modulation MPSK MASK, OOK MFSK 04-May-15 Advanced Digital Communications, Spring-2015, Week-8 1 In-phase and Quadrature (I&Q) Representation Any bandpass

More information

Pulse Code Modulation (PCM)

Pulse Code Modulation (PCM) Project Title: e-laboratories for Physics and Engineering Education Tempus Project: contract # 517102-TEMPUS-1-2011-1-SE-TEMPUS-JPCR 1. Experiment Category: Electrical Engineering >> Communications 2.

More information

Columbia University. Principles of Communication Systems ELEN E3701. Spring Semester May Final Examination

Columbia University. Principles of Communication Systems ELEN E3701. Spring Semester May Final Examination 1 Columbia University Principles of Communication Systems ELEN E3701 Spring Semester- 2006 9 May 2006 Final Examination Length of Examination- 3 hours Answer All Questions Good Luck!!! I. Kalet 2 Problem

More information

Amplitude Modulation. Ahmad Bilal

Amplitude Modulation. Ahmad Bilal Amplitude Modulation Ahmad Bilal 5-2 ANALOG AND DIGITAL Analog-to-analog conversion is the representation of analog information by an analog signal. Topics discussed in this section: Amplitude Modulation

More information

Analog Communication (10EC53) Unit 3 Quadrature Carrier Multiplexing

Analog Communication (10EC53) Unit 3 Quadrature Carrier Multiplexing Analog Couniation (0EC53) Unit 3 Quadrature Carrier Multiplexing A Quadrature Carrier Multiplexing (QCM) or Quadrature Aplitude Modulation (QAM) ethod enables two DSBSC odulated waves, resulting ro two

More information

Introductory Notions

Introductory Notions Introdutory Notions - he blok diagram of a transmission link, whih onveys information by means of eletromagneti signals, is depited in the figure below. Message Signal aqusition blok Information ransmitter

More information

Chapter 3: Analog Modulation Cengage Learning Engineering. All Rights Reserved.

Chapter 3: Analog Modulation Cengage Learning Engineering. All Rights Reserved. Contemporary Communication Systems using MATLAB Chapter 3: Analog Modulation 2013 Cengage Learning Engineering. All Rights Reserved. 3.1 Preview In this chapter we study analog modulation & demodulation,

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE3723 : Digital Communications Week 8-9: Bandpass Modulation MPSK MASK, OOK MFSK 04-May-15 Muhammad Ali Jinnah University, Islamabad - Digital Communications - EE3723 1 In-phase and Quadrature (I&Q) Representation

More information

Angle Modulated Systems

Angle Modulated Systems Angle Modulated Systems Angle of carrier signal is changed in accordance with instantaneous amplitude of modulating signal. Two types Frequency Modulation (FM) Phase Modulation (PM) Use Commercial radio

More information

Sinusoids. Lecture #2 Chapter 2. BME 310 Biomedical Computing - J.Schesser

Sinusoids. Lecture #2 Chapter 2. BME 310 Biomedical Computing - J.Schesser Sinusoids Lecture # Chapter BME 30 Biomedical Computing - 8 What Is this Course All About? To Gain an Appreciation of the Various Types of Signals and Systems To Analyze The Various Types of Systems To

More information

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3]

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3] Code No: RR220401 Set No. 1 1. (a) The antenna current of an AM Broadcast transmitter is 10A, if modulated to a depth of 50% by an audio sine wave. It increases to 12A as a result of simultaneous modulation

More information

Solution of ECE 342 Test 3 S12

Solution of ECE 342 Test 3 S12 Solution of ECE 34 Test 3 S1 1 A random power signal has a mean of three and a standard deviation of five Find its numerical total average signal power Signal Power P = 3 + 5 = 34 A random energy signal

More information

Amplitude Modulation, II

Amplitude Modulation, II Amplitude Modulation, II Single sideband modulation (SSB) Vestigial sideband modulation (VSB) VSB spectrum Modulator and demodulator NTSC TV signsals Quadrature modulation Spectral efficiency Modulator

More information

Modulations Analog Modulations Amplitude modulation (AM) Linear modulation Frequency modulation (FM) Phase modulation (PM) cos Angle modulation FM PM Digital Modulations ASK FSK PSK MSK MFSK QAM PAM Etc.

More information

Wireless Communication Fading Modulation

Wireless Communication Fading Modulation EC744 Wireless Communication Fall 2008 Mohamed Essam Khedr Department of Electronics and Communications Wireless Communication Fading Modulation Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220405 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 ANALOG COMMUNICATIONS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours

More information

ENSC327 Communication Systems 27: Digital Bandpass Modulation. (Ch. 7) Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communication Systems 27: Digital Bandpass Modulation. (Ch. 7) Jie Liang School of Engineering Science Simon Fraser University ENSC37 Communication Systems 7: Digital Bandpass Modulation (Ch. 7) Jie Liang School of Engineering Science Simon Fraser University 1 Outline 7.1 Preliminaries 7. Binary Amplitude-Shift Keying (BASK) 7.3

More information

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Code: 13A04404 R13 B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 70 PART A

More information

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c An inormation signal x( t) 5cos( 1000πt) LSSB modulates a carrier with amplitude A c 1. This signal is transmitted through a channel with 30 db loss. It is demodulated using a synchronous demodulator.

More information

= 36 M symbols/second

= 36 M symbols/second Tutorial (3) Solution Problem 1: Suppose a CATV system uses coaxial cable to carry 100 channels, each of 6 MHz bandwidth. Suppose that QAM modulation is used. What is the symbol rate/channel if a four-point

More information

Noise Robust AM-FM Demodulation using Least- Squares Truncated Power Series Approximation

Noise Robust AM-FM Demodulation using Least- Squares Truncated Power Series Approximation oise Robust AM-FM Demodulation using Least- Squares Trunated ower Series Approximation Wooi-Boon Goh Shool of Computer Engineering, anyang Tehnologial University, Singapore 639798 aswbgoh@ntu.edu.sg ABSTRACT

More information

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 Purdue University: ECE438 - Digital Signal Processing with Applications 1 ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 1 Introduction

More information

Fourier Transform Analysis of Signals and Systems

Fourier Transform Analysis of Signals and Systems Fourier Transform Analysis of Signals and Systems Ideal Filters Filters separate what is desired from what is not desired In the signals and systems context a filter separates signals in one frequency

More information

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM)

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) April 11, 2008 Today s Topics 1. Frequency-division multiplexing 2. Frequency modulation

More information

5.1. Amplitude Modula1on

5.1. Amplitude Modula1on 5.1. Amplitude Modula1on The complex envelope of an AM signal is given by g(t) = A c [1+ m(t)] where the constant A c has been included to specify the power level and m(t) is the modula

More information

Reasons for Choosing Encoding Techniques. Signal Encoding Techniques. Reasons for Choosing Encoding Techniques. Signal Encoding Criteria

Reasons for Choosing Encoding Techniques. Signal Encoding Techniques. Reasons for Choosing Encoding Techniques. Signal Encoding Criteria Reaon for Chooing Enoding Tehnique Signal Enoding Tehnique Chapter 6 Digital data, digital ignal Equipment le omplex and expenive than digital-to-analog modulation equipment Analog data, digital ignal

More information

EE 464 Band-Pass Sampling Example Fall 2018

EE 464 Band-Pass Sampling Example Fall 2018 EE 464 Band-Pass Sampling Example Fall 2018 Summary This example demonstrates the use of band-pass sampling. First, a band-pass signal is onstruted as a osine modulated speeh signal. This is a double sideband

More information

Communication Systems, 5e

Communication Systems, 5e Communiation Systems, 5e Chapter 7: Analog Communiation Systems A. Brue Carlson Paul B. Crilly 010 The Mraw-Hill Companies Chapter 7: Analog Communiation Systems Reeiver blok diagram design Image requeny

More information

Chapter 7 Multiple Division Techniques for Traffic Channels

Chapter 7 Multiple Division Techniques for Traffic Channels Introduction to Wireless & Mobile Systems Chapter 7 Multiple Division Techniques for Traffic Channels Outline Introduction Concepts and Models for Multiple Divisions Frequency Division Multiple Access

More information

Coherent Detection Method with Compensation at Transmitter in Time Division Duplex System

Coherent Detection Method with Compensation at Transmitter in Time Division Duplex System Coherent Detetion Method with Compensation at Transmitter in Time Division Duplex System Young An Kim 1, Choong Seon Hong 1 1 Department o Eletronis and Inormation, Kyung Hee University, 1 Seoheon, Giheung,

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

2. Continuous-wave modulation

2. Continuous-wave modulation . Continuous-wave odulation 1. Appliation goal We study representations in tie and frequeny doain for two types of ontinuous wave odulation: aplitude odulation (AM) and frequeny odulation (FM).. Continuous-wave

More information

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time.

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time. END-OF-YEAR EXAMINATIONS 2005 Unit: Day and Time: Time Allowed: ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time. Total Number of Questions:

More information

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Friday, 19 November 2004, 9:20 a.m. Three hours plus 10 minutes reading time.

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Friday, 19 November 2004, 9:20 a.m. Three hours plus 10 minutes reading time. END-OF-YEAR EXAMINATIONS 2004 Uni: Day and Time: Time Allowed: ELEC32 Communiaion Sysems (D2) Friday, 9 November 2004, 9:20 a.m. Three hours plus 0 minues reading ime. Toal Number of Quesions: SIX (6)

More information

EEM 306 Introduction to Communications

EEM 306 Introduction to Communications EEM 306 Introduction to Communications Lecture 5 Department o Electrical and Electronics Engineering Anadolu University April 8, 2014 Lecture 5 1/20 Last Time Bandpass Systems Phase and Group Delay Introduction

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, 2006 6.082 Introduction to EECS 2 Modulation and Demodulation Introduction A communication system

More information

Chapter 4. Part 2(a) Digital Modulation Techniques

Chapter 4. Part 2(a) Digital Modulation Techniques Chapter 4 Part 2(a) Digital Modulation Techniques Overview Digital Modulation techniques Bandpass data transmission Amplitude Shift Keying (ASK) Phase Shift Keying (PSK) Frequency Shift Keying (FSK) Quadrature

More information

EXPLORATIONS IN COMMUNICATION SYSTEMS USING A VIRTUAL TOOLKIT

EXPLORATIONS IN COMMUNICATION SYSTEMS USING A VIRTUAL TOOLKIT EXPLORATIONS IN COMMUNICATION SYSTEMS USING A VIRTUAL TOOLKIT Murat Tanyel Dordt College Session 2320 Abstrat A typial ommuniation systems ourse is rih with proesses that are best desribed by blok diagrams.

More information

Abstract. 1. Introduction. 2. Fading

Abstract. 1. Introduction. 2. Fading An Interative Simulation for Flat Fading P.Marihamy*, J.Senthilkumar and V.Vijayarangan ECE Dept., National Engineering College Kovilpatti -68 503, India. * Nizwa College of Tehnology, Sultanate of Oman

More information

CS311: Data Communication. Transmission of Analog Signal - I

CS311: Data Communication. Transmission of Analog Signal - I CS311: Data Communication Transmission of Analog Signal - I by Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Web: http://home.iitj.ac.in/~manaskhatua http://manaskhatua.github.io/

More information

Chapter 3. Amplitude Modulation Fundamentals

Chapter 3. Amplitude Modulation Fundamentals Chapter 3 Amplitude Modulation Fundamentals Topics Covered 3-1: AM Concepts 3-2: Modulation Index and Percentage of Modulation 3-3: Sidebands and the Frequency Domain 3-4: AM Power 3-5: Single-Sideband

More information

ANALYSIS OF THE IONOSPHERIC INFLUENCE ON SIGNAL PROPAGATION AND TRACKING OF BINARY OFFSET CARRIER (BOC) SIGNALS FOR GALILEO AND GPS

ANALYSIS OF THE IONOSPHERIC INFLUENCE ON SIGNAL PROPAGATION AND TRACKING OF BINARY OFFSET CARRIER (BOC) SIGNALS FOR GALILEO AND GPS ANALYSIS OF THE IONOSPHERIC INFLUENCE ON SIGNAL PROPAGATION AND TRACKING OF BINARY OFFSET CARRIER (BOC) SIGNALS FOR GALILEO AND GPS Thomas Pany (1), Bernd Eissfeller (2), Jón Winkel (3) (1) University

More information

13 Continuous-Time Modulation

13 Continuous-Time Modulation 13 Continuous-Time Modulation In this lecture, we begin the discussion of modulation. This is an important concept in communication systems and, as we will see in Lecture 15, also provides the basis for

More information

EE470 Electronic Communication Theory Exam II

EE470 Electronic Communication Theory Exam II EE470 Electronic Communication Theory Exam II Open text, closed notes. For partial credit, you must show all formulas in symbolic form and you must work neatly!!! Date: November 6, 2013 Name: 1. [16%]

More information

Communication Systems Lecture-12: Delta Modulation and PTM

Communication Systems Lecture-12: Delta Modulation and PTM Communication Systems Lecture-12: Delta Modulation and PTM Department of Electrical and Computer Engineering Lebanese American University chadi.abourjeily@lau.edu.lb October 26, 2017 Delta Modulation (1)

More information

Problem Sheet for Amplitude Modulation

Problem Sheet for Amplitude Modulation Problem heet for Amplitude Modulation Q1: For the sinusoidaly modulated DB/LC waveform shown in Fig. below. a Find the modulation index. b ketch a line spectrum. c Calculated the ratio of average power

More information

ANALOG (DE)MODULATION

ANALOG (DE)MODULATION ANALOG (DE)MODULATION Amplitude Modulation with Large Carrier Amplitude Modulation with Suppressed Carrier Quadrature Modulation Injection to Intermediate Frequency idealized system Software Receiver Design

More information

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the nature of the signal. For instance, in the case of audio

More information

COMMUNICATION SYSTEMS-II (In continuation with Part-I)

COMMUNICATION SYSTEMS-II (In continuation with Part-I) MODULATING A SIGNAL COMMUNICATION SYSTEMS-II (In continuation with Part-I) TRANSMITTING SIGNALS : In order to transmit the original low frequency baseband message efficiently over long distances, the signal

More information

Frequency modulation Fourier transform spectroscopy

Frequency modulation Fourier transform spectroscopy Frequeny modulation Fourier transform spetrosopy Julien Mandon, Guy Guelahvili, Nathalie Piqué To ite this version: Julien Mandon, Guy Guelahvili, Nathalie Piqué. Frequeny modulation Fourier transform

More information

6.02 Practice Problems: Modulation & Demodulation

6.02 Practice Problems: Modulation & Demodulation 1 of 12 6.02 Practice Problems: Modulation & Demodulation Problem 1. Here's our "standard" modulation-demodulation system diagram: at the transmitter, signal x[n] is modulated by signal mod[n] and the

More information

Design and Performance of a 24 GHz Band FM-CW Radar System and Its Application

Design and Performance of a 24 GHz Band FM-CW Radar System and Its Application Frequeny Design and Performane of a 24 GHz Band FM-CW Radar System and Its Appliation Kazuhiro Yamaguhi, Mitsumasa Saito, Kohei Miyasaka and Hideaki Matsue Tokyo University of Siene, Suwa CQ-S net In.,

More information