Determining BJT SPICE Parameters

Size: px
Start display at page:

Download "Determining BJT SPICE Parameters"

Transcription

1 Determining BJT SPICE Parameters Background Assume one wants to use SPICE to determine the frequency response for and for the amplifier below. Figure 1. Common-collector amplifier. After creating a schematic, the next step is to provide the proper SPICE parameters for the BJT. Appendix A documents SPICE sparameters. The hybrid- model that we use to analyze circuits are different from the models SPICE uses. The and hybrid- parameters, important for frequency analysis, do not have corresponding SPICE parameters. However, SPICE computes and at the Q-point from its parameters. Thus, we need determine SPICE parameters so that when it simulates, the simulation values match the values in the problem statement. How SPICE Simulates BJTs SPICE first does a dc or Q-point ( ) analysis. SPICE then determines the junction collector-base junction capacitance ( ) and then the junction capacitance ( ) and the diffusion capacitance for the base-emitter junction. Then SPICE computes and : SPICE does the Q-point analysis first, because all the capacitances depend on the Q-point. Micro-Cap SPICE saves the values in the *.TNO file, where * represents the base name of the simulation file. It is instructive to examine this file. SPICE DC Analysis Parameters For the dc analysis, BF (= is obviously the most important. Other significant parameters are the Early voltage VAF, the built-in junction potential of the base-emitter junction, and saturation current IS (. Since the transistor part number is not specified, one can pick a generic or common part such as the 2N2222 npn BJT and modify the BF and VAF SPICE SPICE Parameters for BJTs 1 Version 2.0

2 parameters. Unless additional information on SPICE default values or typical values. or junction voltages are available, use the Data sheets usually list the built-in junction potential of the base-emitter junction. Regardless, for a Si transistor, is a reasonable choice. Data sheets list BF (= explicitly, or as. Data sheets normally do not specify the Early voltage explicitly, but one can deduce it from the output family of curves. Many transistor data sheets contain the output resistance measured at some collector current, and from this one can compute, since Alternatively, VAF =100 V is a reasonable default for most transistors. Regarding the saturation current, most transistor data sheets contain the information needed to find IS. For example, below is a plot of vs. for a transistor. Figure 2. Sample for a small BJT. From the plot, at and. Thus However, in most cases IS is not critical, and for many transistors, IS = 10 fa ( good value to use. ) is a SPICE AC Analysis Parameters: Known For an ac analysis, we need to provide SPICE with enough information so that it can compute and at the operating point. SPICE Parameters for BJTs 2 Version 2.0

3 Incorporating For SPICE determines collector-base capacitance from is the Q-point collector-base voltage that SPICE will determine during the dc analysis. We need to specify MJC, VJC, and CJC so that when SPICE runs a simulation, the resulting will match the desired value. Reasonable values for MJC and VJC are MJC = 0.5, VJC =0.7 V. Example 1 Specify MJC, VJC, and CJC for the circuit in Figure 1 so that the resulting is 4 pf. Solution Use VJC = 0.7 V, and MJC = 0.5. A dc analysis reveals that for the circuit is 11 V. Incorporating For, SPICE determines the base-emitter junction capacitance and the diffusion capacitance and add these: To incorporate, start with 1 Here is the forward transit time. We need to specify MJE, VJE, CJE, and, so that when SPICE runs a simulation, the resulting will match the desired value. As before, unless additional information is available, assume MJE = 0.5 and VJE = 0.7 V. This still leaves us with CJE and and many combinations of these will result in the desired. Unless additional information is available, there are three strategies: 1 Even though SPICE uses, this equation gives poor results when we estimate from, and generally works better for most discrete circuits that are biased at relatively large collector currents. SPICE Parameters for BJTs 3 Version 2.0

4 1. Pick a reasonable value for and the determine CJE. For example, for generalpurpose npn BJTs lie in the range ps. 2. Set and model by the junction capacitance alone. 3. Set CJE = 0 and model with the diffusion capacitance alone. Example 2 For the circuit in Figure 1, use the three different strategies and determine the SPICE parameters so that resulting is 35 pf. Solution Strategy 1: pick, then from it follows that at the operating point. Then Thus, one would provide SPICE with TF = 200 ps, CJE = 14 pf, MJE = 0.5, and VJE = 0.7 V. As a check, using these values, SPICE computed Strategy 2: set. Then Thus, one would provide SPICE with TF = 0 ps, CJE = 17 pf, MJE = 0.5, and VJE = 0.7 V. As a check, using these values, SPICE computed Strategy 3: set Thus Thus, one would provide SPICE with TF = 1.12 ns, CJE = 0 pf, and MJE, VJE does not matter with respect to. As a check, using these values, SPICE computed Simulating Small-Signal Model in SPICE One can simulate the small-signal model of the amplifier in Figure directly in SPICE. Since the small-signal parameters depend on the Q-point, the first step is to do a dc analysis. Micro-Cap SPICE s Dynamic DC Analysis reveals, and. Next determine SPICE Parameters for BJTs 4 Version 2.0

5 Then construct a small-signal model, using SPICE s IofV dependent source (see Figure below). Figure 3. Left: SPICE s IofV dependent source. Right: small-signal model of the amplifier in Figure 1. One would set the value for the IofV dependent source to the transconductance. Further,. Next, one can run the ac analysis and determine the frequency response. However, imagine one want to explore how the amplifier behaves for different values of. Every value of will give a different and thus new values for and, so that one has to recalculate the smallsignal values, update the SPICE file, and rerun the analysis. This quickly becomes impractical with circuits that contain more than one BJT. SPICE Parameters for BJTs 5 Version 2.0

6 Appendix A Junction and Diffusion Capacitances SPICE BJTs model are complex (Ebers Moll and Gummel-Poon) and capture behavior at both small- and large signals. Broadly speaking, SPICE uses-physically based BJT parameters. For example, the large-signal BJT model below shows, and that are resistances associated with the contact (and other) resistances at the base, collector, and emitter. The capacitance refers to the collector-base junction capacitance, and refers to the base-emitter junction capacitance. Figure A1. Left: BJT large signal model with junction capacitances. Right: SPICE symbols. is computed from. In SPICE, is TF. Junction capacitances depend on the (reverse) voltage across the pn junction and CJC, CJE in SPICE) are the zero-bias junction capacitances. The following describes the dependence: (or Reverse bias voltage Built-in junction voltage Zero-bias junction capacitance Junction grading coefficient (1) The parameters depend on how the BJT was manufactured. Typical values for and range between and V respectively. is the junction capacitance at zero bias. Using the SPICE notation: Collector-base junction capacitance (2) Base-emitter junction capacitance (3) SPICE Parameters for BJTs 6 Version 2.0

7 Here CJC is the zero-bias junction capacitance, VJC is the built-in junction voltage (~0.65 V), and MJC (~0.5) is the junction grading coefficient for the collector-base junction. CJE, VJE (~0.7 V), and MJE (~0.33) are the corresponding SPICE parameters for the base-emitter junction. For BJTs on a substrate (ICs) there is another set and equations for the collector-substrate junction. Assuming the BJT operates in the forward-active mode, then the base-emitter junction is forward biased and there is a diffusion capacitance associated with the base-emitter junction. In the context of BJTs, this capacitance is designated with (see Figure A.1) and depends on the current and the transit time (see equation (4)). Thermal voltage Transit time of charge carriers (4) The base-emitter diffusion- and junction capacitances are parallel and lumped together and is called the capacitance in the hybrid model. AC Parameters CJC, CJE, MJC, MJC and TF BJT data sheets normally do not list CJC, CJE, MJC, MJC, explicitly. Rather, they contain capacitances measured at some or plots of capacitances at different Q-points. Further, data sheets seldom list the forward transit time TF, but list the transition frequency instead. The collector-base junction capacitance at the Q-point in SPICE is same as the capacitance in the hybrid- model. The total capacitance of the forward-biased base-emitter junction is the sum of the junction- and diffusion capacitances. This is also the capacitance in the hybridmodel: (5a) For moderate, large (5b) where is the base-emitter junction capacitance given by equation (3), and is the baseemitter diffusion capacitance given by equation (4). The relationship between the transition frequency and, and is: Data sheets normally list, and follows from. Using this and equation (5) one can determine TF, which is what SPICE requires. SPICE Parameters for BJTs 7 Version 2.0

8 BJT data sheets often contain plots of the capacitances as a function of reverse voltage, and one can use this to determine and MJC. An example of such plots is shown below. When plots are not available, one has to make educated guesses. The junction grading coefficient MJE is 0.33, and for MJC a reasonable value is 0.5. Figure A2. Junction Capacitances for a small BJT. Some Examples Example A.1 From the plot in Figure A.2, the collector-base junction capacitance is about 10 pf at 0.1 V reverse bias, so it is reasonable to take this values as the zero-bias junction capacitance. The general relationship between the junction capacitance and reverse voltage is From the plot the collector-base voltage is 3 pf at. Thus Solving yields. Thus, one would enter and in SPICE. SPICE Parameters for BJTs 8 Version 2.0

9 Example A.2 For the same BJT as in Example 1, was measured as, measured at and. To determine the forward transit time TF, use at is identical to the collector-base junction capacitance so that which the plot shows is about 3 pf Further, ignoring the base-emitter junction capacitance Thus Thus, one would enter in SPICE. To get a better estimate, do not ignore the base-emitter junction capacitance. Rather, one would compute it from However, values computed using this is not reliable. One problem is that for forward bias, the sign of is negative and the magnitude slightly less than 1. Thus, the numerator is small which amplifies small uncertainties in calculations. A good approximation is to take. Figure A.2 shows that at zero reverse voltage is about 24 pf. Thus, we take = 24 pf, and. Now SPICE Parameters for BJTs 9 Version 2.0

10 Now one can determine the transition time Example A.3 Below are the measured parameters for a BJT. Determine the main SPICE parameters. Parameter Value Measurement Conditions 1 SPICE Parameters for BJTs 10 Version 2.0

11 For the capacitances we need and. Since no other information is available, estimate. Further, assume For the transit time, use Strictly speaking, one should recompute at, the bias voltage when was measured. However, given that we estimated, this does not make much sense, and we use. Now, at, Estimate at forward bias: and Finally, SPICE Parameters for BJTs 11 Version 2.0

12 Appendix B Static Parameters Parameter 2N2222 BF Forward or 36.6 pf VAF Forward Early voltage 42.4 pf IS Saturation current in 0 RB Zero-bias base resistance 0 Zero-Bias Junction Capacitances Parameter 2N2222 CJC Collector-base 36.6 pf CJE Emitter-base 42.4 pf CJS Collector-substrate 0 pf Grading Coefficients Parameter 2N2222 MJC Collector-base 0.56 MJE Emitter-base 0.64 MJS Collector-substrate 0 Built-In Potentials Parameter 2N2222 VJE Base-emitter 0.7 V VJC Collector-base 0.7 V VJS Collector substrate 0.75 Relating Junction Capacitances and Hybrid-π Parameters SPICE Parameters for BJTs 12 Version 2.0

13 Forward Transit Time TF When determining at a given, one would use the following. However, this does not give good results for (strongly) forward-biased junctions and a better estimate when determining transit time is to use. SPICE Parameters for BJTs 13 Version 2.0

University of Southern C alifornia School Of Engineering Department Of Electrical Engineering

University of Southern C alifornia School Of Engineering Department Of Electrical Engineering University of Southern C alifornia School Of Engineering Department Of Electrical Engineering EE 348: Homework Assignment #05 Spring, 2002 (Due 03/05/2002) Choma Problem #18: The biasing circuit in Fig.

More information

University of Southern C alifornia School Of Engineering Department Of Electrical Engineering

University of Southern C alifornia School Of Engineering Department Of Electrical Engineering University of Southern C alifornia School Of Engineering Department Of Electrical Engineering EE 348: Homework Assignment #04 Spring, 2001 (Due 02/27/2001) Choma Problem #16: n monolithic circuits, diodes

More information

dc Bias Point Calculations

dc Bias Point Calculations dc Bias Point Calculations Find all of the node voltages assuming infinite current gains 9V 9V 10kΩ 9V 100kΩ 1kΩ β = 270kΩ 10kΩ β = 1kΩ 1 dc Bias Point Calculations Find all of the node voltages assuming

More information

EBERS Moll Model. Presented by K.Pandiaraj Assistant Professor ECE Department Kalasalingam University

EBERS Moll Model. Presented by K.Pandiaraj Assistant Professor ECE Department Kalasalingam University EBERS Moll Model Presented by K.Pandiaraj Assistant Professor ECE Department Kalasalingam University BJT Device Models The primary function of a model is to predict the behaviour of a device in particular

More information

Type Marking Pin Configuration Package BFP450 ANs 1 = B 2 = E 3 = C 4 = E SOT343

Type Marking Pin Configuration Package BFP450 ANs 1 = B 2 = E 3 = C 4 = E SOT343 NPN Silicon RF Transistor For medium power amplifiers Compression point P = +9 m at. GHz maximum available gain G ma = 5.5 at. GHz Noise figure F =.5 at. GHz Transition frequency f T = GHz Gold metallization

More information

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

ESD (Electrostatic discharge) sensitive device, observe handling precaution! NPN Silicon RF Transistor* For low current applications Smallest Package 1.4 x 0.8 x 0.59 mm Noise figure F = 1.25 db at 1.8 GHz outstanding G ms = 23 db at 1.8 GHz Transition frequency f T = 25 GHz Gold

More information

BFP420. NPN Silicon RF Transistor

BFP420. NPN Silicon RF Transistor BFP NPN Silicon RF Transistor For high gain low noise amplifiers For oscillators up to GHz Noise figure F =. db at. GHz outstanding G ms = db at. GHz Transition frequency f T = 5 GHz Gold metallization

More information

NPN SILICON RF TWIN TRANSISTOR

NPN SILICON RF TWIN TRANSISTOR FEATURES LOW VOLTAGE, LOW CURRENT OPERATION SMALL PACKAGE OUTLINE:. mm x.8 mm LOW HEIGHT PROFILE: Just. mm high TWO LOW NOISE OSCILLATOR TRANSISTORS: NE8 IDEAL FOR - GHz OSCILLATORS DESCRIPTION The contains

More information

NPN SILICON HIGH FREQUENCY TRANSISTOR

NPN SILICON HIGH FREQUENCY TRANSISTOR NPN SILICON HIGH FREQUENCY TRANSISTOR UPA806T FEATURES SMALL PACKAGE STYLE: NE685 Die in a mm x 1.5 mm package LOW NOISE FIGURE: NF = 1.5 db TYP at GHz HIGH GAIN: S1E = 8.5 db TYP at GHz HIGH GAIN BANDWIDTH:

More information

PRELIMINARY DATA SHEET PACKAGE OUTLINE

PRELIMINARY DATA SHEET PACKAGE OUTLINE PRELIMINARY DATA SHEET NPN SILICON EPITAXIAL TWIN TRANSISTOR FEATURES LOW NOISE: :NF = 1.7 db TYP at f = GHz,, lc = 3 ma :NF = 1.5 db TYP at f = GHz, VCE = 3 V, lc = 3 ma HIGH GAIN: : S1E = 3.5 db TYP

More information

BFP405. NPN Silicon RF Transistor

BFP405. NPN Silicon RF Transistor BFP5 NPN Silicon RF Transistor For low current applications For oscillators up to GHz Noise figure F =.5 db at. GHz outstanding G ms = db at. GHz Transition frequency f T = 5 GHz Gold metallization for

More information

NEC's NPN SILICON TRAN SIS TOR PACKAGE OUTLINE M03

NEC's NPN SILICON TRAN SIS TOR PACKAGE OUTLINE M03 FEATURES MINIATURE M PACKAGE: Small tran sis tor outline Low profile /.9 mm package height Flat lead style for better RF performance IDEAL FOR > GHz OSCILLATORS LOW NOISE, HIGH GAIN LOW Cre UHSO GHz PROCESS

More information

BGB420, Aug BGB420. Active Biased Transistor MMIC. Wireless Silicon Discretes. Never stop thinking.

BGB420, Aug BGB420. Active Biased Transistor MMIC. Wireless Silicon Discretes. Never stop thinking. , Aug. 2001 BGB420 Active Biased Transistor MMIC Wireless Silicon Discretes Never stop thinking. Edition 2001-08-10 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München Infineon

More information

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier High Frequency BJT Model & Cascode BJT Amplifier 1 Gain of 10 Amplifier Non-ideal Transistor C in R 1 V CC R 2 v s Gain starts dropping at > 1MHz. Why! Because of internal transistor capacitances that

More information

SIEGET 25 BFP420. NPN Silicon RF Transistor

SIEGET 25 BFP420. NPN Silicon RF Transistor NPN Silicon RF Transistor For High Gain Low Noise Amplifiers For Oscillators up to GHz Noise Figure F = 1.05 at 1.8 GHz Outstanding G ms = 20 at 1.8 GHz Transition Frequency f T = 25 GHz Gold metalization

More information

Bipolar Junction Transistors (BJTs) Overview

Bipolar Junction Transistors (BJTs) Overview 1 Bipolar Junction Transistors (BJTs) Asst. Prof. MONTREE SIRIPRUCHYANUN, D. Eng. Dept. of Teacher Training in Electrical Engineering, Faculty of Technical Education King Mongkut s Institute of Technology

More information

Homework Assignment 05

Homework Assignment 05 Homework Assignment 05 Question (2 points each unless otherwise indicated)(20 points). Estimate the parallel parasitic capacitance of a mh inductor with an SRF of 220 khz. Answer: (2π)(220 0 3 ) = ( 0

More information

Dr.R.Seyezhai/ International Journal of Engineering Research and Applications (IJERA)

Dr.R.Seyezhai/ International Journal of Engineering Research and Applications (IJERA) Dr.R.Seyezhai/ International Journal of Engineering Research and Applications (IJERA) Modeling and Simulation of Silicon Carbide (SiC) Based Bipolar Junction Transistor Dr.R.Seyezhai * *Associate Professor,

More information

Chapter 3 Bipolar Junction Transistors (BJT)

Chapter 3 Bipolar Junction Transistors (BJT) Chapter 3 Bipolar Junction Transistors (BJT) Transistors In analog circuits, transistors are used in amplifiers and linear regulated power supplies. In digital circuits they function as electrical switches,

More information

NPN 7 GHz wideband transistor IMPORTANT NOTICE. use

NPN 7 GHz wideband transistor IMPORTANT NOTICE.  use Rev. 4 October 7 Product data sheet IMPORTANT NOTICE Dear customer, As from October 1st, 6 Philips Semiconductors has a new trade name - NXP Semiconductors, which will be used in future data sheets together

More information

Application Note No. 014

Application Note No. 014 Application Note, Rev. 2.0, Nov. 2006 Application Note No. 014 Application Considerations for the Integrated Bias Control Circuits BCR400R and BCR400W RF & Protection Devices Edition 2006-11-23 Published

More information

Experiment 9 Bipolar Junction Transistor Characteristics

Experiment 9 Bipolar Junction Transistor Characteristics Experiment 9 Bipolar Junction Transistor Characteristics W.T. Yeung, W.Y. Leung, and R.T. Howe UC Berkeley EE 105 Fall 2005 1.0 Objective In this lab, you will determine the I C - V CE characteristics

More information

Extracting SPICE Model Parameters From Semiconductor Characteristic Curves

Extracting SPICE Model Parameters From Semiconductor Characteristic Curves Extracting SPICE Model Parameters From Semiconductor Characteristic Curves Mark Sitkowski Design Simulation Systems Ltd http://www.designsim.com.au Overview Vmodel2 is a tool which extracts Berkeley SPICE

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing BJT Structure the BJT is formed by doping three semiconductor regions (emitter, base, and collector)

More information

BFP520. NPN Silicon RF Transistor

BFP520. NPN Silicon RF Transistor NPN Silicon RF Transistor For highest gain low noise amplifier at. GHz and ma / V Outstanding Gms =.5 Noise Figure F =.95 For oscillators up to 5 GHz Transition frequency f T = 5 GHz Gold metallisation

More information

NPN SILICON TRANSISTOR

NPN SILICON TRANSISTOR TK NPN SILICON TRANSISTOR FEATURES OUTLINE DIMENSIONS (Units in mm) NEW M03 PACKAGE: Smallest transistor outline package available Low profile/0.59 mm package height Flat lead style for better RF performance

More information

NSVF4020SG4/D. RF Transistor for Low Noise Amplifier

NSVF4020SG4/D. RF Transistor for Low Noise Amplifier RF Transistor for Low Noise Amplifier This RF transistor is designed for low noise amplifier applications. MCPH package is suitable for use under high temperature environment because it has superior heat

More information

The Bipolar Junction Transistor- Small Signal Characteristics

The Bipolar Junction Transistor- Small Signal Characteristics The Bipolar Junction Transistor- Small Signal Characteristics Debapratim Ghosh deba21pratim@gmail.com Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay

More information

SPICE Model Creation from User Data

SPICE Model Creation from User Data SPICE Model Creation from User Data Old Content - visit altium.com/documentation Modified by on 13-Sep-2017 In order to simulate a circuit design using Altium Designer's Mixed-Signal Circuit Simulator,

More information

High Frequency Amplifiers

High Frequency Amplifiers EECS 142 Laboratory #3 High Frequency Amplifiers A. M. Niknejad Berkeley Wireless Research Center University of California, Berkeley 2108 Allston Way, Suite 200 Berkeley, CA 94704-1302 October 27, 2008

More information

SPICE Model Creation from User Data

SPICE Model Creation from User Data SPICE Model Creation from User Data Summary Application Note AP0141 (v1.0) April 06, 2006 This application note provides detailed information on creating and automatically linking a SPICE simulation model

More information

ECE321 Electronics I Fall 2006

ECE321 Electronics I Fall 2006 ECE321 Electronics I Fall 2006 Professor James E. Morris Lecture 11 31 st October, 2006 Bipolar Junction Transistors (BJTs) 5.1 Device Structure & Physics 5.2 I-V Characteristics Convert 5.1 information

More information

NEC's L TO S BAND LOW NOISE AMPLIFIER NPN GaAs HBT 2.0 ± 0.2

NEC's L TO S BAND LOW NOISE AMPLIFIER NPN GaAs HBT 2.0 ± 0.2 FEATURES NEC's L TO S BAND LOW NOISE AMPLIFIER NPN GaAs HBT HIGH POWER GAIN: GA = 6 db TYP, MSG = 8 db TYP at f = 2 GHZ, VCE = 2 V, IC = 3 ma, ZS = ZL = 50 Ω LOW NOISE: NF =.0 db TYP at f = 2 GHZ, VCE

More information

VBIC MODEL REFERENCE FOR SIMULATIONS IN SPECTRE

VBIC MODEL REFERENCE FOR SIMULATIONS IN SPECTRE VBIC MODEL REFERENCE FOR SIMULATIONS IN SPECTRE Compiled by Siddharth Nashiney This section includes: Review of the VBIC Model 1 Thermal Modeling 2 VBIC Model Instantiation 3 Conversion of Gummel-Poon

More information

ANALYSIS OF A C-DUMP CONVERTER FOR SWITCHED RELUCTANCE MOTOR DRIVE USING PSPICE Souvik Ganguli 1*

ANALYSIS OF A C-DUMP CONVERTER FOR SWITCHED RELUCTANCE MOTOR DRIVE USING PSPICE Souvik Ganguli 1* Research Article ANALYSIS OF A C-DUMP CONVERTER FOR SWITCHED RELUCTANCE MOTOR DRIVE USING PSPICE Souvik Ganguli 1* Address for Correspondence 1* Assistant Professor, Department of Electrical & Instrumentation

More information

BFP620. NPN Silicon Germanium RF Transistor

BFP620. NPN Silicon Germanium RF Transistor NPN Silicon Germanium RF Transistor High gain low noise RF transistor Provides outstanding performance for a wide range of wireless applications Ideal for CDMA and WLAN applications Outstanding noise figure

More information

Journal of Engineering Research and Studies

Journal of Engineering Research and Studies Research Article PSPICE ANALYSIS OF A VARIABLE DC-LINK VOLTAGE WITH BUCK-BOOST CONVERTER TOPOLOGY FOR SWITCHED RELUCTANCE MOTOR DRIVE Souvik Ganguli * Address for Correspondence * Assistant Professor,

More information

BFG10; BFG10/X. NPN 2 GHz RF power transistor IMPORTANT NOTICE. use

BFG10; BFG10/X. NPN 2 GHz RF power transistor IMPORTANT NOTICE.   use Rev. 5 22 November 27 Product data sheet IMPORTANT NOTICE Dear customer, As from October 1st, 26 Philips Semiconductors has a new trade name - NXP Semiconductors, which will be used in future data sheets

More information

5.25Chapter V Problem Set

5.25Chapter V Problem Set 5.25Chapter V Problem Set P5.1 Analyze the circuits in Fig. P5.1 and determine the base, collector, and emitter currents of the BJTs as well as the voltages at the base, collector, and emitter terminals.

More information

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 12 Lecture Title: Analog Circuits

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

PSPICE ANALYSIS OF A SPLIT DC SUPPLY CONVERTER FOR SWITCHED RELUCTANCE MOTOR DRIVES Souvik Ganguli *

PSPICE ANALYSIS OF A SPLIT DC SUPPLY CONVERTER FOR SWITCHED RELUCTANCE MOTOR DRIVES Souvik Ganguli * Research Article PSPICE ANALYSIS OF A SPLIT DC SUPPLY CONVERTER FOR SWITCHED RELUCTANCE MOTOR DRIVES Souvik Ganguli * Address for Correspondence * Assistant Professor, Department of Electrical & Instrumentation

More information

Laboratory 5. Transistor and Photoelectric Circuits

Laboratory 5. Transistor and Photoelectric Circuits Laboratory 5 Transistor and Photoelectric Circuits Required Components: 1 330 resistor 2 1 k resistors 1 10k resistor 1 2N3904 small signal transistor 1 TIP31C power transistor 1 1N4001 power diode 1 Radio

More information

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

More information

Chapter 4 Bipolar Junction Transistors (BJTs)

Chapter 4 Bipolar Junction Transistors (BJTs) Chapter 4 Bipolar Junction Transistors (BJTs) Introduction http://engr.calvin.edu/pribeiro_webpage/courses/engr311/311_frames.html Physical Structure and Modes of Operation A simplified structure of the

More information

MCH4009. RF Transistor 3.5V, 40mA, ft=25ghz, NPN Single MCPH4. Features. Specifications

MCH4009. RF Transistor 3.5V, 40mA, ft=25ghz, NPN Single MCPH4. Features. Specifications Ordering number : ENA089A MCH4009 RF Transistor.5V, 40mA, ft=25ghz, NPN Single MCPH4 http://onsemi.com Features Low-noise use : NF=1.1dB typ (f=2ghz) High cut-off frequency : ft=25ghz typ (VCE=V) Low operating

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment 11 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester WK 5 Reg. No. : Question Paper Code : 27184 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Electronics and Communication Engineering EC 6201 ELECTRONIC DEVICES

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 4 0 Bipolar Junction Transistors (BJT) Small Signal Analysis Graphical Analysis / Biasing Amplifier, Switch and Logic

More information

ECEN 325 Lab 7: Characterization and DC Biasing of the BJT

ECEN 325 Lab 7: Characterization and DC Biasing of the BJT ECEN 325 Lab 7: Characterization and DC Biasing of the BJT 1 Objectives The purpose of this lab is to characterize NPN and PNP bipolar junction transistors (BJT), and to analyze and design DC biasing circuits

More information

ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS)

ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS) SOLUTIONS ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS) Problem 1 (20 points) We know that a pn junction diode has an exponential I-V behavior when forward biased. The diode equation relating

More information

Lab 3: BJT I-V Characteristics

Lab 3: BJT I-V Characteristics 1. Learning Outcomes Lab 3: BJT I-V Characteristics At the end of this lab, students should know how to theoretically determine the I-V (Current-Voltage) characteristics of both NPN and PNP Bipolar Junction

More information

I E I C since I B is very small

I E I C since I B is very small Figure 2: Symbols and nomenclature of a (a) npn and (b) pnp transistor. The BJT consists of three regions, emitter, base, and collector. The emitter and collector are usually of one type of doping, while

More information

BFG520W; BFG520W/X. NPN 9 GHz wideband transistors IMPORTANT NOTICE. use

BFG520W; BFG520W/X. NPN 9 GHz wideband transistors IMPORTANT NOTICE.  use BFGW; BFGW/X Rev. 4 November 7 Product data sheet IMPORTANT NOTICE Dear customer, As from October st, 6 Philips Semiconductors has a new trade name - NXP Semiconductors, which will be used in future data

More information

NPN 14 GHz wideband transistor. High power gain Low noise figure High transition frequency Gold metallization ensures excellent reliability

NPN 14 GHz wideband transistor. High power gain Low noise figure High transition frequency Gold metallization ensures excellent reliability Rev. 2 15 September 211 Product data sheet 1. Product profile 1.1 General description NPN silicon planar epitaxial transistor in a 4-pin dual-emitter SOT143R plastic package. 1.2 Features and benefits

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BFG410W NPN 22 GHz wideband transistor. Product specification Supersedes data of 1997 Oct 29.

DISCRETE SEMICONDUCTORS DATA SHEET. BFG410W NPN 22 GHz wideband transistor. Product specification Supersedes data of 1997 Oct 29. DISCRETE SEMICONDUCTORS DATA SHEET BFG41W Supersedes data of 1997 Oct 29 1998 Mar 11 BFG41W FEATURES Very high power gain Low noise figure High transition frequency Emitter is thermal lead Low feedback

More information

EEE118: Electronic Devices and Circuits

EEE118: Electronic Devices and Circuits EEE118: Electronic Devices and Circuits Lecture XI James E Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk Review Review Introduced the idea of a dynamic resistance

More information

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1 BJT Bipolar Junction Transistor Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com The Bipolar Junction Transistor is a semiconductor device which

More information

Bipolar Junction Transistor

Bipolar Junction Transistor ESE 211 / Spring 2011 / Lecture 10 Bipolar Junction Transistor Let us first consider general transconductance amplifier loaded with short circuit Transconductance Obviously, power supplies are needed for

More information

Laboratory Experiment 8 EE348L. Spring 2005

Laboratory Experiment 8 EE348L. Spring 2005 Laboratory Experiment 8 EE348L Spring 2005 B. Madhavan Spring 2005 B. Madhavan Page 1 of 1 EE348L, Spring 2005 B. Madhavan - 2 of 2- EE348L, Spring 2005 Table of Contents 8 Experiment #8: Introduction

More information

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices EIE209 Basic Electronics Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Physics of Bipolar Transistor

Physics of Bipolar Transistor Physics of Bipolar Transistor Motivations - In many electronic applications, amplifier is the most fundamental building block. Ex Audio amplifier: amplifies electric signal to drive a speaker RF Power

More information

Electronic Circuits - Tutorial 07 BJT transistor 1

Electronic Circuits - Tutorial 07 BJT transistor 1 Electronic Circuits - Tutorial 07 BJT transistor 1-1 / 20 - T & F # Question 1 A bipolar junction transistor has three terminals. T 2 For operation in the linear or active region, the base-emitter junction

More information

START499ETR. NPN RF silicon transistor. Features. Applications. Description

START499ETR. NPN RF silicon transistor. Features. Applications. Description NPN RF silicon transistor Features High efficiency High gain Linear and non linear operation Transition frequency 42 GHz Ultra miniature SOT-343 (SC70) lead free package SOT-343 Applications PA for dect

More information

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER Issued 10/27/2008 Report due in Lecture 11/10/2008 Introduction In this lab you will characterize a 2N3904 NPN

More information

Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product

Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product Physics116A,12/4/06 Draft Rev. 1, 12/12/06 D. Pellett 2 Negative Feedback and Voltage Amplifier AB

More information

PSPICE SIMULATION OF A RESONANT CONVERTER CIRCUIT FOR SWITCHED RELUCTANCE MOTOR DRIVES Souvik Ganguli 1*

PSPICE SIMULATION OF A RESONANT CONVERTER CIRCUIT FOR SWITCHED RELUCTANCE MOTOR DRIVES Souvik Ganguli 1* Research Article PSPICE SIMULATION OF A RESONANT CONVERTER CIRCUIT FOR SWITCHED RELUCTANCE MOTOR DRIVES Souvik Ganguli 1* Address for Correspondence 1* Assistant Professor, Department of Electrical & Instrumentation

More information

Three Terminal Devices

Three Terminal Devices Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

More information

Section 2.3 Bipolar junction transistors - BJTs

Section 2.3 Bipolar junction transistors - BJTs Section 2.3 Bipolar junction transistors - BJTs Single junction devices, such as p-n and Schottkty diodes can be used to obtain rectifying I-V characteristics, and to form electronic switching circuits

More information

Lab 3: BJT Digital Switch

Lab 3: BJT Digital Switch Lab 3: BJT Digital Switch Objectives The purpose of this lab is to acquaint you with the basic operation of bipolar junction transistor (BJT) and to demonstrate its functionality in digital switching circuits.

More information

I C I E =I B = I C 1 V BE 0.7 V

I C I E =I B = I C 1 V BE 0.7 V Guide to NPN Amplifier Analysis Jason Woytowich 1. Transistor characteristics A BJT has three operating modes cutoff, active, and saturation. For applications, like amplifiers, where linear characteristics

More information

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics BJT Structure The BJT has three regions called the emitter, base, and collector. Between the regions are junctions as indicated. The base is a thin lightly doped region compared to the

More information

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT AIM: 1) To study different BJT DC biasing circuits 2) To design voltage divider bias circuit using NPN BJT SOFTWARE TOOL: PC

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

NEC's NPN SILICON TRANSISTOR

NEC's NPN SILICON TRANSISTOR NEC's NPN SILICON TRANSISTOR NE81M1 FEATURES OUTLINE DIMENSIONS (Units in mm) NEW MINIATURE M1 PACKAGE: Small transistor outline 1. X. X. mm Low profile /. mm package height Flat lead style for better

More information

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 12 Bipolar Junction Transistor (BJT) BJT 1-1 Course Info Lecture hours: 4 Two Lectures weekly (Saturdays and Wednesdays) Location: K2 Time: 1:40 pm Tutorial hours: 2 One tutorial class every week

More information

Single-Stage BJT Amplifiers and BJT High-Frequency Model. Single-Stage BJT Amplifier Configurations

Single-Stage BJT Amplifiers and BJT High-Frequency Model. Single-Stage BJT Amplifier Configurations 1 Single-Stage BJT Amplifiers and BJT High-Frequency Model Asst. Prof. MONTREE SIRIPRUCHYANUN, D. Eng. Dept. of Teacher Training in Electrical Engineering, Faculty of Technical Education King Mongkut s

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline:

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: Narrow-Base Diode BJT Fundamentals BJT Amplification Things you should know when you leave Key Questions How does the narrow-base diode multiply

More information

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

ESD (Electrostatic discharge) sensitive device, observe handling precaution! NPN Silicon Germanium RF Transistor High gain ultra low noise RF transistor Provides outstanding performance for a wide range of wireless applications up to GHz and more Ideal for CDMA and WLAN applications

More information

Chapter 8. Field Effect Transistor

Chapter 8. Field Effect Transistor Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There

More information

Alternate Class AB Amplifier Design

Alternate Class AB Amplifier Design L - Alternate Class AB Amplifier Design.., This Class AB amplifier (Figure 1) has an integral common emitter bipolar amplifier (see Q4). The CE amplifier replaces the bipolar main amplifier in the previous

More information

L - Alternate Class AB Amplifier Design.., This Class AB amplifier (Figure 1) has an integral common emitter bipolar amplifier (see Q4). The CE amplifier replaces the bipolar main amplifier in the previous

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-1 Transistor

More information

ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source

ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source Output from Collector Start with bias DC analysis make sure BJT is in FA, then calculate small signal parameters for AC analysis.

More information

Mini Project 2 Single Transistor Amplifiers. ELEC 301 University of British Columbia

Mini Project 2 Single Transistor Amplifiers. ELEC 301 University of British Columbia Mini Project 2 Single Transistor Amplifiers ELEC 301 University of British Columbia 44638154 October 27, 2017 Contents 1 Introduction 1 2 Investigation 1 2.1 Part 1.................................................

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Prof. Paolo olantonio a.a. 2011 12 ipolar transistors are one of the main building blocks in electronic systems They are used in both analogue and digital circuits They incorporate two pn junctions and

More information

BJT Differential Amplifiers

BJT Differential Amplifiers Instituto Tecnológico y de Estudios Superiores de Occidente (), OBJECTIVES The general objective of this experiment is to contrast the practical behavior of a real differential pair with its theoretical

More information

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016)

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Page1 Name ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Problem 1 (15 points) You are given an NMOS amplifier with drain load resistor R D = 20 k. The DC voltage (V RD

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

14. Transistor Characteristics Lab

14. Transistor Characteristics Lab 1 14. Transistor Characteristics Lab Introduction Transistors are the active component in various devices like amplifiers and oscillators. They are called active devices since transistors are capable of

More information

PHYS225 Lecture 6. Electronic Circuits

PHYS225 Lecture 6. Electronic Circuits PHYS225 Lecture 6 Electronic Circuits Transistors History Basic physics of operation Ebers-Moll model Small signal equivalent Last lecture Introduction to Transistors A transistor is a device with three

More information

Figure1: Basic BJT construction.

Figure1: Basic BJT construction. Chapter 4: Bipolar Junction Transistors (BJTs) Bipolar Junction Transistor (BJT) Structure The BJT is constructed with three doped semiconductor regions separated by two pn junctions, as in Figure 1(a).

More information

Electronics EECE2412 Spring 2017 Exam #2

Electronics EECE2412 Spring 2017 Exam #2 Electronics EECE2412 Spring 2017 Exam #2 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 30 March 2017 File:12198/exams/exam2 Name: : General Rules:

More information

Two Stage Amplifier Design

Two Stage Amplifier Design Two Stage Amplifier Design ENGI 242 ELEC 222 HYBRID MODEL PI January 2004 ENGI 242/ELEC 222 2 Multistage Amplifier Design 1 HYBRID MODEL PI PARAMETERS Parasitic Resistances rb = rb b = ohmic resistance

More information

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Faculty of Engineering ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Agenda I & V Notations BJT Devices & Symbols BJT Large Signal Model 2 I, V Notations (1) It is critical to understand

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6201 ELECTRONIC DEVICES SEM / YEAR: II / I year B.E.ECE

More information