Radio Frequency Design to Support Software Transceiver for Wireless Communications

Size: px
Start display at page:

Download "Radio Frequency Design to Support Software Transceiver for Wireless Communications"

Transcription

1 Radio Frequency Design to Support Software Transceiver for Wireless Communications Author: Cazzie Williams Western Michigan University Whirlpool Corporation Advisor/Sponsor: Dr. Frank Severance and Dr. Bradley J. Bazuin Western Michigan University, Dept. of Electrical and Computer Engineering

2 Presentation Overview Introduction Project Description Need and Application Goals and Benefits Detailed Design Receiver Transmitter Test Results/Conclusions Acknowledgments Questions 27 October, 2001 MSGC

3 27 October, 2001 MSGC Software Transceiver Overview RF to IF Receiver A to D Convert Digital Down- Converter Comm. Tower Digital Signal Processor Satellite IF to RF Transmit D to A Convert Digital Up- Converter IBM Compatible This work focused on the RF to IF Receiver and IF to RF Transmitter

4 27 October, 2001 MSGC Project Description! The complete project goals were to define, design, develop, and demonstrate a flexible, electrical and software programmable transceiver (FEAST) for wireless communications.! The receiver path collects, downconverts and filters radio frequency (RF) energy to an intermediate frequency (IF). The IF is digitally sampled, digitally filtered and downconverted, and then processed in a programmable digital signal processor (pdsp). Audio or data outputs may be provided.! The transmitter path inputs audio or digital data to the pdsp. The pdsp processes the information before it is digitally upconverted and filtered into a digital IF. The digital IF is converted into analog and then filtered and upconverted to the desired RF band for transmission.

5 27 October, 2001 MSGC Needs and Applications Provide critical radio frequency (RF) to intermediate frequency (IF) translation. RF in the Instrumentation, Scientific, and Measurement (ISM) band ( MHz) ADC/DAC IFs designed for 64 Msamples-per-sec, 16 MHz center frequency, 26 MHz bandwidth. Tested using 50 Msps, 12.5 MHz center frequency and 26 MHz (aliased) BW. Provide a useful dynamic range for signals and a low noise figure to Define and provide signal gain to load, not saturate, the ADC Define a low noise figure architecture to provide high dynamic range and high sensitivity to weak RF signals.

6 27 October, 2001 MSGC Stages of a Receiver HPF Fc = 915Mhz HPF 902Mhz to 928Mhz Synthesizer Fc = 788Mhz Fc = 140Mhz IF Filter Fc = 140Mhz Fixed Local Oscillator Fc =152.5Mhz Fc = 152.5Mhz LPF Fc = 12.5Mhz LPF Fc = 12.5Mhz Fs/2 D to A Convert

7 27 October, 2001 MSGC Input RF Waveform RF Receiver 1 Preselector IF Filter Lowpass Filter Output to ADC LO Input to RF Mixer LO Input to RF Mixer -3 dbm Attenuator RF to IF Converter Signal Generator IF Filter LO IF to BB Converter LO output to RF Mixer 10 dbm Antialiasing Chart of the Components in RF-to-IF Converter Component List Type Company Make Model or Part Number 1 High Pass Filter Mini-Curcuits SHP Low Noice lier (LNA) Mini-Curcuits ZFL 1000HLN 3 Mixer Mini-Curcuits ZFM 5X 4 IF Filter (BPF) SAWTEK lier Mini-Curcuits ZFL Mixer Mini-Curcuits ZFM 3 7 Low Pass Filter Mini-Curcuits SLP 30 8 lier Mini-Curcuits ZFL Voltage Oscillator (VCO) Mini-Circuits ZOS Signal Generator HP 8656A

8 27 October, 2001 MSGC Gain & Noise Computation Chart of the Gain & Noise of our RF to IF converter Component Assignments Gain (db) Gain (linear) Noise (db) Noise (linear) Total Gain (db) Total Gain (linear) Total Noise Figure (linear) Total Noise Figure (db)

9 27 October, 2001 MSGC Receiver Signal Power Levels Thermal Noise (kt) 26 MHz BW (ktb) Receiver NF (db(ktb)+nf) Receiver Noise Floor Minimum Detectable Signal (ktb + NF + Detection Threshold) ADC LSB < Noise Floor SNR Defines Max Input Gain Sets Max Input to ADC +10 dbm ADC Max dbm dbm Signal Power Considerations NF 6.15 db 26 MHz db Gain db ADC SNR 68 db dbm dbm dbm Noise Power Considerations -174 dbm/hz

10 27 October, 2001 MSGC Transmiter Transmitter dbm Attentua Postselector IF Filter -10 dbm Attentua Lowpass Filter Input from DAC LO Input to RF Mixer LO Input to RF Mixer -3 dbm Attenuator Filtered Preamp Signal Generator IF to RF LO IF to BB Converter LO output to RF Mixer 10 dbm Baseband Filter Chart of Components for the IF-to-RF Converter Component List Type Company Make Model or Part Number 1 lifer Mini-Curcuits ZFL High Pass Filter Mini-Curcuits SHP Mixer Mini-Curcuits ZFL 5X 4 lifer Mini-Curcuits ZFL IF Filter (BPF) SAWTEK Mixer Mini-Curcuits ZFM 3 7 Attenuator Mini-Curcuits SAT 10 8 lifer Mini-Curcuits ZFL Low Pass Filter Mini-Curcuits SLP Voltage Oscillator (VCO) Mini-Circuits ZOS Signal Generator HP 8656A

11 27 October, 2001 MSGC Gain & Noise of the IF to RF Converter Chart of the Gain & Noise of our IF to RF converter Component Assignments Gain (db) Gain (linear) Noise (db) Noise (linear) Total Gain (db) Total Gain (linear) Total Noise Figure (linear) Total Noise Figure (db)

12 27 October, 2001 MSGC Test Plan In order to test the validity of the system, it is planned to execute a series of operational tests based on the following capabilities: Continuous Wave (CW) Tests litude Demodulation (AM) Frequency Demodulation (FM)

13 27 October, 2001 MSGC Continuous Wave Tests Test 1: Input to ADC Input Signal 140 MHz Lowpass Filter Output 0 dbm LO Input to RF M ixer -3 dbm Attenuator LO IF to BB Converter LO output to RF Mixer 10 dbm Antialiasing Gain/Loss to Power chart to determine I/P power Component Number Gain/Loss (db) Power (dbm) ignored 6-5 Power I/P by signal generator -14

14 27 October, 2001 MSGC Continuous Wave Tests Mixing (with high-side injection) Frequency needed from the VCO: ( ) 140 = Voltage needed to produce MHz (constant fixed voltage) MHz = 7.7 MHz (V 1) MHz V = 7.82 VDC (constant fixed voltage) Mixing Products MHz = 12.5 MHz MHz = MHz Low Pass Filter Only 12.5MHz passes to the ADC

15 27 October, 2001 MSGC Test 1 Results Spectral Analysis of 140MHz Demodulated Signal Frequency (Hz)

16 27 October, 2001 MSGC Test 2 (IF Receiver Test) Continuous Wave Tests Input Signal 140 MHz 4 IF Filter Lowpass Filter Output 0 dbm LO Input to RF Mixer -3 dbm Attenuator IF Filter LO IF to BB Converter LO output to RF Mixer 10 dbm Antialiasing Gain/Loss to Power chart to determine I/P power Component Number Gain/Loss (db) Power (dbm) ignored Power I/P by signal generator -21.7

17 27 October, 2001 MSGC Continuous Wave Tests Mixing (with high-side injection) Frequency needed from the VCO: ( ) 140 = Voltage needed to produce MHz (constant fixed voltage) MHz = 7.7 MHz (V 1) MHz V = 7.82 VDC (constant fixed voltage) Mixing Products MHz = 12.5 MHz MHz = MHz With a Low Pass Filter Only 12.5MHz pass to the ADC

18 27 October, 2001 MSGC Test 2 Results Spectral Analysis of IF Receiver Test Frequency (Hz)

19 27 October, 2001 MSGC AM Demodulation Test Input RF Waveform Radio tower 1 Preselector IF Filter Lowpass Filter Output to ADC LO Input to RF Mixer LO Input to RF Mixer -3 dbm Attenuator Signal Generator LO LO output to RF Mixer 10 dbm RF to IF Converter IF Filter IF to BB Converter Antialiasing

20 27 October, 2001 MSGC FM Demodulation Test Input RF Waveform Radio tower 1 Preselector IF Filter Lowpass Filter Output to ADC LO Input to RF Mixer LO Input to RF Mixer -3 dbm Attenuator RF to IF Converter Signal Generator IF Filter LO IF to BB Converter LO output to RF Mixer 10 dbm Antialiasing

21 ISM Band 27 October, 2001 MSGC

22 27 October, 2001 MSGC Project Results:ISM Transmitting & Receiving Receiver Preselector IF Filter Lowpass Filter Output to ADC LO Input to RF Mixer LO Input to RF Mixer -3 dbm Attenuator RF to IF Converter Signal Generator IF Filter LO IF to BB Converter LO output to RF Mixer 10 dbm Antialiasing Transmiter -20 dbm Attentua 1 2 Postselector IF Filter dbm Attentua 9 Lowpass Filter Input Signal from DUC to 2 MHz LO Input to RF Mixer LO Input to RF Mixer -3 dbm Attenuator Filtered Preamp Signal Generator IF to RF LO IF to BB Converter LO output to RF Mixer 10 dbm Baseband Filter

23 27 October, 2001 MSGC Project Results Specification Meet Yes (Y) No (N) Partially (P) 1 Real time data collection and storage for post-processing evaluation P 2 Snap shot data analysis capabilities performing spectral analysis and signal correlation P 3 Digital filtering for both general spectrum, pre-demodulation and post-demodulation filters Y 4 5 Simple demodulation processing of AM, FM-narrowband, FMwideband, FSK, and ASK Need to use AD6620,AD6622, AD6640 and DSP Receive and Transmit P P Receive and Transmit signals in the FM, and AM bandwidth ranges 6 Y Receive and Transmit signals in the CDMA bandwidth range 7 N Transmitter and receiver need to be software programmable 8 P

24 27 October, 2001 MSGC RF Design Project Results Specification Meet Yes (Y) No (N) Partially (P) 1 Transmitting and receiving radio signals at the ISM band range of 900MHz to 920MHz Y 2 Receiver must have a Noise Factor (F) of 4 to 7dB Y 3 Receiver must have a Gain (G) of 34dB Y 4 Intermediate frequency must have a bandwidth of 20 to 28MHz Y 5 Transmitter must have a Gain (G) of 0dB Y

25 Acknowledgments ECE 481/482 Project Team Members: Garett Spalo and Jonathan Barber WMU Department of Electrical and Computer Engineering Michigan Space Grant Consortium Seed and Fellowship Grants BAE Systems donation of a Spectrum Analyzer and Synthesized Signal Generator Dr. Bradley J. Bazuin Advisor/Sponsor Dr. Frank Severance- MSGC Board Member Dr. John Gesink Senior Design Coordinator Dr. S. H. Mousavinezhad Chair of the Department of ECE Dr. I. Abdel-Qader providing support with DSP David F. Florida II, CNE Lab Supervisor 27 October, 2001 MSGC

26 27 October, 2001 MSGC RF Design to Support Software Transceiver for Wireless Communications

Michigan Space Grant Consortium Seed Grant Final Report 1 June, 2001

Michigan Space Grant Consortium Seed Grant Final Report 1 June, 2001 Michigan Space Grant Consortium Seed Grant Final Report 1 June, 2001 Flexible Electrical and Software Programmable Transceivers (FEAST) for Wireless Communications Dr. Bradley J. Bazuin Assistant Professor

More information

ELEN 701 RF & Microwave Systems Engineering. Lecture 2 September 27, 2006 Dr. Michael Thorburn Santa Clara University

ELEN 701 RF & Microwave Systems Engineering. Lecture 2 September 27, 2006 Dr. Michael Thorburn Santa Clara University ELEN 701 RF & Microwave Systems Engineering Lecture 2 September 27, 2006 Dr. Michael Thorburn Santa Clara University Lecture 2 Radio Architecture and Design Considerations, Part I Architecture Superheterodyne

More information

Wireless Communication Systems:

Wireless Communication Systems: Wireless Communication Systems: Software Radio Architecture and Advanced Signal Formats Dr. Bradley J. Bazuin Assistant Professor Western Michigan University Dept. Of Electrical and Computer Engineering

More information

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS FUNCTIONS OF A RADIO RECEIVER The main functions of a radio receiver are: 1. To intercept the RF signal by using the receiver antenna 2. Select the

More information

ECE 4600 Communication Systems

ECE 4600 Communication Systems ECE 4600 Communication Systems Dr. Bradley J. Bazuin Associate Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Course Topics Course Introduction

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference Large dynamic range required Many receivers must be capable

More information

Technician License Course Chapter 3 Types of Radios and Radio Circuits. Module 7

Technician License Course Chapter 3 Types of Radios and Radio Circuits. Module 7 Technician License Course Chapter 3 Types of Radios and Radio Circuits Module 7 Radio Block Diagrams Radio Circuits can be shown as functional blocks connected together. Knowing the description of common

More information

EE470 Electronic Communication Theory Exam II

EE470 Electronic Communication Theory Exam II EE470 Electronic Communication Theory Exam II Open text, closed notes. For partial credit, you must show all formulas in symbolic form and you must work neatly!!! Date: November 6, 2013 Name: 1. [16%]

More information

ELT Receiver Architectures and Signal Processing Exam Requirements and Model Questions 2018

ELT Receiver Architectures and Signal Processing Exam Requirements and Model Questions 2018 TUT/ICE 1 ELT-44006 Receiver Architectures and Signal Processing Exam Requirements and Model Questions 2018 General idea of these Model Questions is to highlight the central knowledge expected to be known

More information

Case Study: and Test Wireless Receivers

Case Study: and Test Wireless Receivers Case Study: Using New Technologies to Design and Test Wireless Receivers Agenda Architecture of a receiver Basic GPS Receiver Measurements Case Study 1: GPS Simulation How Testing Works Simulation vs.

More information

System-Level Time-Domain Behavioral Modeling for A Mobile WiMax Transceiver

System-Level Time-Domain Behavioral Modeling for A Mobile WiMax Transceiver System-Level Time-Domain Behavioral Modeling for A Mobile WiMax Transceiver Jie He, Jun Seo Yang, Yongsup Kim, and Austin S. Kim HIDS Lab, Telecommunication R&D Center, Samsung Electronics jie.he@samung.com,

More information

RF Receiver Hardware Design

RF Receiver Hardware Design RF Receiver Hardware Design Bill Sward bsward@rtlogic.com February 18, 2011 Topics Customer Requirements Communication link environment Performance Parameters/Metrics Frequency Conversion Architectures

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

Software Defined Radio in Ham Radio Dennis Silage K3DS TS EPA Section ARRL

Software Defined Radio in Ham Radio Dennis Silage K3DS TS EPA Section ARRL Software Defined Radio in Ham Radio Dennis Silage K3DS silage@arrl.net TS EPA Section ARRL TUARC K3TU SDR in HR The crystal radio was once a simple introduction to radio electronics and Amateur Radio.

More information

IC-756 Pro III vs. Pro II

IC-756 Pro III vs. Pro II IC-756 Pro III vs. Pro II Improvements in the Pro III vs. the Pro II Adam Farson VA7OJ IC-756Pro3 Information & Links Copyright 2006 North Shore Amateur Radio Club NSARC HF Operators 756Pro3 vs. Pro2 1

More information

A Candidate RF Architecture for a Multiband Public Safety Radio

A Candidate RF Architecture for a Multiband Public Safety Radio Chameleonic Radio Technical Memo No. 10 A Candidate RF Architecture for a Multiband Public Safety Radio S.M. Shajedul Hasan and S.W. Ellingson September 28, 2006 Bradley Dept. of Electrical & Computer

More information

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand Advanced PXI Technologies Signal Recording, FPGA s, and Synchronization Outline Introduction to the PXI Architecture

More information

SAMPLING FREQUENCY SELECTION SCHEME FOR A MULTIPLE SIGNAL RECEIVER USING UNDERSAMPLING

SAMPLING FREQUENCY SELECTION SCHEME FOR A MULTIPLE SIGNAL RECEIVER USING UNDERSAMPLING SAMPLING FREQUENCY SELECTION SCHEME FOR A MULTIPLE SIGNAL RECEIVER USING UNDERSAMPLING Yoshio Kunisawa (KDDI R&D Laboratories, yokosuka, kanagawa, JAPAN; kuni@kddilabs.jp) ABSTRACT A multi-mode terminal

More information

PTX-0350 RF UPCONVERTER, MHz

PTX-0350 RF UPCONVERTER, MHz PTX-0350 RF UPCONVERTER, 300 5000 MHz OPERATING MODES I/Q upconverter RF = LO + IF upconverter RF = LO - IF upconverter Synthesizer 10 MHz REFERENCE INPUT/OUTPUT EXTERNAL LOCAL OSCILLATOR INPUT I/Q BASEBAND

More information

Recap of Last 2 Classes

Recap of Last 2 Classes Recap of Last 2 Classes Transmission Media Analog versus Digital Signals Bandwidth Considerations Attentuation, Delay Distortion and Noise Nyquist and Shannon Analog Modulation Digital Modulation What

More information

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver Farbod Behbahani John Leete Alexandre Kral Shahrzad Tadjpour Karapet Khanoyan Paul J. Chang Hooman Darabi Maryam Rofougaran

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

ECE 6560 Multirate Signal Processing Chapter 13

ECE 6560 Multirate Signal Processing Chapter 13 Multirate Signal Processing Chapter 13 Dr. Bradley J. Bazuin Western Michigan University College of Engineering and Applied Sciences Department of Electrical and Computer Engineering 1903 W. Michigan Ave.

More information

A Modular Approach to Teaching Wireless Communications and Systems for ECET Students

A Modular Approach to Teaching Wireless Communications and Systems for ECET Students A Modular Approach to Teaching Wireless Communications and Systems for ECET Students James Z. Zhang, Robert Adams, Kenneth Burbank Department of Engineering and Technology Western Carolina University,

More information

Technical Data. Digital VXI VHF/UHF Receiver WJ-8629 WATKINS-JOHNSON

Technical Data. Digital VXI VHF/UHF Receiver WJ-8629 WATKINS-JOHNSON Technical Data WATKINS-JOHNSON January 1997 Digital VXI VHF/UHF Receiver WJ-8629 The WJ-8629 is a general-purpose VHF/UHF receiver covering a 20 to 2700 MHz frequency range that utilizes Digital Signal

More information

Twelve voice signals, each band-limited to 3 khz, are frequency -multiplexed using 1 khz guard bands between channels and between the main carrier

Twelve voice signals, each band-limited to 3 khz, are frequency -multiplexed using 1 khz guard bands between channels and between the main carrier Twelve voice signals, each band-limited to 3 khz, are frequency -multiplexed using 1 khz guard bands between channels and between the main carrier and the first channel. The modulation of the main carrier

More information

LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz

LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz Datasheet The LNS is an easy to use 18 GHz synthesizer that exhibits outstanding phase noise and jitter performance in a 3U rack mountable chassis.

More information

HY448 Sample Problems

HY448 Sample Problems HY448 Sample Problems 10 November 2014 These sample problems include the material in the lectures and the guided lab exercises. 1 Part 1 1.1 Combining logarithmic quantities A carrier signal with power

More information

Wideband Receiver for Communications Receiver or Spectrum Analysis Usage: A Comparison of Superheterodyne to Quadrature Down Conversion

Wideband Receiver for Communications Receiver or Spectrum Analysis Usage: A Comparison of Superheterodyne to Quadrature Down Conversion A Comparison of Superheterodyne to Quadrature Down Conversion Tony Manicone, Vanteon Corporation There are many different system architectures which can be used in the design of High Frequency wideband

More information

TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design

TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design Ted Johansson, ISY ted.johansson@liu.se 2 Outline of lecture 3 Introduction RF TRX architectures (3) Superheterodyne architecture

More information

Tunable Wideband & Ultra-Wideband Multi- Antenna Transceivers with Integrated Recording, Playback & Processing

Tunable Wideband & Ultra-Wideband Multi- Antenna Transceivers with Integrated Recording, Playback & Processing 2016 Multi-Antenna Transceiver Systems Tunable Wideband & Ultra-Wideband Multi- Antenna Transceivers with Integrated Recording, Playback & Processing --- For ES, DF, COMS & EA 1 Multi-Antenna Systems D-TA

More information

VHF/UHF Wideband ViXIceptor WJ-8621

VHF/UHF Wideband ViXIceptor WJ-8621 Developmental Specification WATKINS-JOHNSON May 1997 VHF/UHF Wideband ViXIceptor WJ-8621 The WJ-8621 is a general-purpose VHF/UHF receiver covering a 20 to 2700 MHz frequency range. WJ packages the unit

More information

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti Lecture 6 SIGNAL PROCESSING Signal Reception Receiver Bandwidth Pulse Shape Power Relation Beam Width Pulse Repetition Frequency Antenna Gain Radar Cross Section of Target. Signal-to-noise ratio Receiver

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board Page 1 of 16 ========================================================================================= TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board =========================================================================================

More information

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN 5.4: A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN David Su, Masoud Zargari, Patrick Yue, Shahriar Rabii, David Weber, Brian Kaczynski, Srenik Mehta, Kalwant Singh, Sunetra Mendis, and Bruce Wooley

More information

Wavedancer A new ultra low power ISM band transceiver RFIC

Wavedancer A new ultra low power ISM band transceiver RFIC Wavedancer 400 - A new ultra low power ISM band transceiver RFIC R.W.S. Harrison, Dr. M. Hickson Roke Manor Research Ltd, Old Salisbury Lane, Romsey, Hampshire, SO51 0ZN. e-mail: roscoe.harrison@roke.co.uk

More information

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 Full Duplex Radios Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 It is generally not possible for radios to receive and transmit on the same frequency band because of the interference that

More information

Advances in RF and Microwave Measurement Technology

Advances in RF and Microwave Measurement Technology 1 Advances in RF and Microwave Measurement Technology Chi Xu Certified LabVIEW Architect Certified TestStand Architect New Demands in Modern RF and Microwave Test In semiconductor and wireless, technologies

More information

Some Radio Implementation Challenges in 3G-LTE Context

Some Radio Implementation Challenges in 3G-LTE Context 1 (12) Dirty-RF Theme Some Radio Implementation Challenges in 3G-LTE Context Dr. Mikko Valkama Tampere University of Technology Institute of Communications Engineering mikko.e.valkama@tut.fi 2 (21) General

More information

Hardware Architecture of Software Defined Radio (SDR)

Hardware Architecture of Software Defined Radio (SDR) Hardware Architecture of Software Defined Radio (SDR) Tassadaq Hussain Assistant Professor: Riphah International University Research Collaborations: Microsoft Barcelona Supercomputing Center University

More information

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection Maxim > Design Support > Technical Documents > Application Notes > Communications Circuits > APP 3942 Maxim > Design Support > Technical Documents > Application Notes > High-Speed Interconnect > APP 3942

More information

PROPAGATION CHANNEL EMULATOR : ECP

PROPAGATION CHANNEL EMULATOR : ECP PROPAGATION CHANNEL EMULATOR : ECP The ECP (Propagation Channel Emulator) synthesizes the principal phenomena of propagation occurring on RF signal links between earth and space. Developed by the R&D laboratory,

More information

Keywords: GPS, receiver, GPS receiver, MAX2769, 2769, 1575MHz, Integrated GPS Receiver, Global Positioning System

Keywords: GPS, receiver, GPS receiver, MAX2769, 2769, 1575MHz, Integrated GPS Receiver, Global Positioning System Maxim > Design Support > Technical Documents > User Guides > APP 3910 Keywords: GPS, receiver, GPS receiver, MAX2769, 2769, 1575MHz, Integrated GPS Receiver, Global Positioning System USER GUIDE 3910 User's

More information

6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication

6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication 6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott

More information

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Radio Research Directions Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Outline Introduction Millimeter-Wave Transceivers - Applications

More information

Radioelectronics RF CMOS Transceiver Design

Radioelectronics RF CMOS Transceiver Design Radioelectronics RF CMOS Transceiver Design http://www.ek.isy.liu.se/ courses/tsek26/ Jerzy Dąbrowski Division of Electronic Devices Department of Electrical Engineering (ISY) Linköping University e-mail:

More information

Interference Issues between UMTS & WLAN in a Multi-Standard RF Receiver

Interference Issues between UMTS & WLAN in a Multi-Standard RF Receiver Interference Issues between UMTS & WLAN in a Multi-Standard RF Receiver Nastaran Behjou, Basuki E. Priyanto, Ole Kiel Jensen, and Torben Larsen RISC Division, Department of Communication Technology, Aalborg

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY 2 RX Nonlinearity Issues, Demodulation RX nonlinearities (parts of 2.2) System Nonlinearity Sensitivity

More information

PXIe Contents SPECIFICATIONS. 14 GHz and 26.5 GHz Vector Signal Analyzer

PXIe Contents SPECIFICATIONS. 14 GHz and 26.5 GHz Vector Signal Analyzer SPECIFICATIONS PXIe-5668 14 GHz and 26.5 GHz Vector Signal Analyzer These specifications apply to the PXIe-5668 (14 GHz) Vector Signal Analyzer and the PXIe-5668 (26.5 GHz) Vector Signal Analyzer with

More information

RF Integrated Circuits

RF Integrated Circuits Introduction and Motivation RF Integrated Circuits The recent explosion in the radio frequency (RF) and wireless market has caught the semiconductor industry by surprise. The increasing demand for affordable

More information

Digitally-Controlled RF Self- Interference Canceller for Full-Duplex Radios

Digitally-Controlled RF Self- Interference Canceller for Full-Duplex Radios Digitally-Controlled RF Self- nterference Canceller for Full-Duplex Radios Joose Tamminen 1, Matias Turunen 1, Dani Korpi 1, Timo Huusari 2, Yang-Seok Choi 2, Shilpa Talwar 2, and Mikko Valkama 1 1 Dept.

More information

CLOUDSDR RFSPACE #CONNECTED SOFTWARE DEFINED RADIO. final design might vary without notice

CLOUDSDR RFSPACE #CONNECTED SOFTWARE DEFINED RADIO. final design might vary without notice CLOUDSDR #CONNECTED SOFTWARE DEFINED RADIO final design might vary without notice 1 - PRELIMINARY SPECIFICATIONS http://www.rfspace.com v0.1 RFSPACE CloudSDR CLOUDSDR INTRODUCTION The RFSPACE CloudSDR

More information

Spectral Monitoring/ SigInt

Spectral Monitoring/ SigInt RF Test & Measurement Spectral Monitoring/ SigInt Radio Prototyping Horizontal Technologies LabVIEW RIO for RF (FPGA-based processing) PXI Platform (Chassis, controllers, baseband modules) RF hardware

More information

DC VI R 1 31D92t. e~~~ nr 71. !llll!llllllli1111ll QStanford

DC VI R 1 31D92t. e~~~ nr 71. !llll!llllllli1111ll QStanford L. G. Kazovsky, J. C. Fan: "Coherent analog FM-SCM video.. 10 Coherent analog FM-SCM video transmission using S -direct frequency modulation of semiconductor lasers N L. G. Kazovsky, J. C. Fan Department

More information

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation Tong Zhang, Ali Najafi, Chenxin Su, Jacques C. Rudell University of Washington, Seattle Feb. 8, 2017 International

More information

RF Communications : Systems & Circuits

RF Communications : Systems & Circuits ELEN 665 RF Communications : Systems & Circuits Edgar Sánchez-Sinencio sanchez@ece.tamu.edu Analog and Mixed-Signal Center,Texas A&M University Fall 2009 1 WHAT ARE THE MAIN TOPICS INVOLVED TO FULLY UNDERSTAND

More information

R&S FPC-Z10 Teaching Kit Getting Started

R&S FPC-Z10 Teaching Kit Getting Started R&S FPC-Z10 Teaching Kit Getting Started 1178843602 Getting Started Version 04 This manual describes the following products: R&S FPC-Z10 Teaching Kit (1328.7338.02) 2018 Rohde & Schwarz GmbH & Co. KG Mühldorfstr.

More information

SETTING UP A WIRELESS LINK USING ME1000 RF TRAINER KIT

SETTING UP A WIRELESS LINK USING ME1000 RF TRAINER KIT SETTING UP A WIRELESS LINK USING ME1000 RF TRAINER KIT Introduction S Kumar Reddy Naru ME Signal Processing S. R. No - 05812 The aim of the project was to try and set up a point to point wireless link.

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY RX Nonlinearity Issues: 2.2, 2.4 Demodulation: not in the book 2 RX nonlinearities System Nonlinearity

More information

Microwave Metrology -ECE 684 Spring Lab Exercise I&Q.v3: I&Q Time and Frequency Domain Measurements

Microwave Metrology -ECE 684 Spring Lab Exercise I&Q.v3: I&Q Time and Frequency Domain Measurements Lab Exercise I&Q.v3: I&Q Time and Frequency Domain Measurements In this lab exercise you will perform measurements both in time and in frequency to establish the relationship between these two dimension

More information

RF Interference Cancellation - a Key Technology to support an Integrated Communications Environment

RF Interference Cancellation - a Key Technology to support an Integrated Communications Environment RF Interference Cancellation - a Key Technology to support an Integrated Communications Environment Abstract Steve Nightingale, Giles Capps, Craig Winter and George Woloszczuk Cobham Technical Services,

More information

EECS 142/242A Course Overview. Prof. Ali M. Niknejad University of California, Berkeley

EECS 142/242A Course Overview. Prof. Ali M. Niknejad University of California, Berkeley EECS 142/242A Course Overview Prof. Ali M. Niknejad University of California, Berkeley Course Logistics Instructor: Ali Niknejad (niknejad@berkeley.edu) Graduate Student Instructors: Nai-Chung Kuo and

More information

A New Look at SDR Testing

A New Look at SDR Testing A New Look at SDR Testing (presented at SDR Academy 2016, Friedrichshafen, Germany) Adam Farson VA7OJ/AB4OJ Copyright 2016 A. Farson VA7OJ/AB4OJ 25-Dec-17 SDR Academy 2016 - SDR Testing 1 Performance issues

More information

Advances in RF and Microwave Measurement Technology

Advances in RF and Microwave Measurement Technology 1 Advances in RF and Microwave Measurement Technology Rejwan Ali Marketing Engineer NI Africa and Oceania New Demands in Modern RF and Microwave Test In semiconductor and wireless, technologies such as

More information

GPS receivers built for various

GPS receivers built for various GNSS Solutions: Measuring GNSS Signal Strength angelo joseph GNSS Solutions is a regular column featuring questions and answers about technical aspects of GNSS. Readers are invited to send their questions

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN60: Network Theory Broadband Circuit Design Fall 014 Lecture 13: Frequency Synthesizer Examples Sam Palermo Analog & Mixed-Signal Center Texas A&M University Agenda Frequency Synthesizer Examples Design

More information

Keysight Technologies

Keysight Technologies Keysight Technologies Generating Signals Basic CW signal Block diagram Applications Analog Modulation Types of analog modulation Block diagram Applications Digital Modulation Overview of IQ modulation

More information

Roofing Filters, Transmitted BW and Receiver Performance

Roofing Filters, Transmitted BW and Receiver Performance Roofing Filters, Transmitted BW and Receiver Performance Rob Sherwood NCØ B What s important when it comes to choosing a radio? Sherwood Engineering Why Did I Start Testing Radios? Purchased a new Drake

More information

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 Receiver Design Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 MW & RF Design / Prof. T. -L. Wu 1 The receiver mush be very sensitive to -110dBm

More information

Digitally Enhanced Inter-modulation Distortion Compensation in Wideband Spectrum Sensing. Han Yan and Prof. Danijela Cabric Nov.

Digitally Enhanced Inter-modulation Distortion Compensation in Wideband Spectrum Sensing. Han Yan and Prof. Danijela Cabric Nov. Digitally Enhanced Inter-modulation Distortion Compensation in Wideband Spectrum Sensing Han Yan and Prof. Danijela Cabric Nov.9 th 016 1 Challenges of Wideband Spectrum Sensing Rx Signal LNA LO Front-end

More information

IC-R8500 Test Report. By Adam Farson VA7OJ/AB4OJ

IC-R8500 Test Report. By Adam Farson VA7OJ/AB4OJ IC-R8500 Test Report By Adam Farson VA7OJ/AB4OJ Iss. 1, Dec. 14, 2015. Figure 1: The Icom IC-R8500. Introduction: This report presents results of an RF lab test suite performed on the IC- R8500 receiver.

More information

FEATURES DESCRIPTION BENEFITS APPLICATIONS. Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver

FEATURES DESCRIPTION BENEFITS APPLICATIONS. Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver DESCRIPTION The PT4501 is a highly integrated wideband FSK multi-channel half-duplex transceiver operating in sub-1 GHz license-free ISM bands. The

More information

WiNRADiO. Scandinavia. G3 HF RECEIVERS. G313 e/i G31DDC Excalibur G33DDC Excalibur Pro G35DDC Excalibur Ultra

WiNRADiO. Scandinavia.  G3 HF RECEIVERS. G313 e/i G31DDC Excalibur G33DDC Excalibur Pro G35DDC Excalibur Ultra WiNRADiO Scandinavia G3 HF RECEIVERS G313 e/i G31DDC Excalibur G33DDC Excalibur Pro G35DDC Excalibur Ultra 9 khz - 30 MHz (180 MHz) 9 khz - 49,995 MHz 9 khz - 49,995 MHz 1 khz - 45 MHz Malmö - Sweden Phone

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

Exercise 1: RF Stage, Mixer, and IF Filter

Exercise 1: RF Stage, Mixer, and IF Filter SSB Reception Analog Communications Exercise 1: RF Stage, Mixer, and IF Filter EXERCISE OBJECTIVE DISCUSSION On the circuit board, you will set up the SSB transmitter to transmit a 1000 khz SSB signal

More information

Communication Systems, 5e

Communication Systems, 5e Communiation Systems, 5e Chapter 7: Analog Communiation Systems A. Brue Carlson Paul B. Crilly 010 The Mraw-Hill Companies Chapter 7: Analog Communiation Systems Reeiver blok diagram design Image requeny

More information

1 Introduction to Highly Integrated and Tunable RF Receiver Front Ends

1 Introduction to Highly Integrated and Tunable RF Receiver Front Ends 1 Introduction to Highly Integrated and Tunable RF Receiver Front Ends 1.1 Introduction With the ever-increasing demand for instant access to data over wideband communication channels, the quest for a

More information

High Linearity Wideband RF-to-Digital Transceiver

High Linearity Wideband RF-to-Digital Transceiver High Linearity Wideband RFtoDigital Transceiver RF4102 3U cpci Features Integrated RF and Digital IF Processing in a single 3U cpci slot High linearity, wideband RF Transceiver, 20 MHz to 2.7 GHz 14bit

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v01.05.00 HMC141/142 MIXER OPERATION

More information

RFID Systems: Radio Architecture

RFID Systems: Radio Architecture RFID Systems: Radio Architecture 1 A discussion of radio architecture and RFID. What are the critical pieces? Familiarity with how radio and especially RFID radios are designed will allow you to make correct

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

Gert Veale / Christo Nel Grintek Ewation

Gert Veale / Christo Nel Grintek Ewation Phase noise in RF synthesizers Gert Veale / Christo Nel Grintek Ewation Introduction & Overview Where are RF synthesizers used? What is phase noise? Phase noise eects Classic RF synthesizer architecture

More information

Data Sheet SC5317 & SC5318A. 6 GHz to 26.5 GHz RF Downconverter SignalCore, Inc. All Rights Reserved

Data Sheet SC5317 & SC5318A. 6 GHz to 26.5 GHz RF Downconverter SignalCore, Inc. All Rights Reserved Data Sheet SC5317 & SC5318A 6 GHz to 26.5 GHz RF Downconverter www.signalcore.com 2018 SignalCore, Inc. All Rights Reserved Definition of Terms 1 Table of Contents 1. Definition of Terms... 2 2. Description...

More information

A 1.9GHz Single-Chip CMOS PHS Cellphone

A 1.9GHz Single-Chip CMOS PHS Cellphone A 1.9GHz Single-Chip CMOS PHS Cellphone IEEE JSSC, Vol. 41, No.12, December 2006 William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin

More information

Cognitive Radio: Fundamentals and Opportunities

Cognitive Radio: Fundamentals and Opportunities San Jose State University From the SelectedWorks of Robert Henry Morelos-Zaragoza Fall August 24, 2007 Cognitive Radio: Fundamentals and Opportunities Robert H Morelos-Zaragoza, San Jose State University

More information

THE UNIVERSITY OF NAIROBI

THE UNIVERSITY OF NAIROBI THE UNIVERSITY OF NAIROBI ELECTRICAL AND INFORMATION ENGINEERING DEPARTMENT FINAL YEAR PROJECT. PROJECT NO. 085. TITLE: A PHASE-LOCKED LOOP FREQUENCY SYNTHESIZER BY: TUNDULI W. MICHAEL F17/2143/2004. SUPERVISOR:

More information

THE BASICS OF RADIO SYSTEM DESIGN

THE BASICS OF RADIO SYSTEM DESIGN THE BASICS OF RADIO SYSTEM DESIGN Mark Hunter * Abstract This paper is intended to give an overview of the design of radio transceivers to the engineer new to the field. It is shown how the requirements

More information

1. Clearly circle one answer for each part.

1. Clearly circle one answer for each part. TB 1-9 / Exam Style Questions 1 EXAM STYLE QUESTIONS Covering Chapters 1-9 of Telecommunication Breakdown 1. Clearly circle one answer for each part. (a) TRUE or FALSE: Absolute bandwidth is never less

More information

Challenges in Designing CMOS Wireless System-on-a-chip

Challenges in Designing CMOS Wireless System-on-a-chip Challenges in Designing CMOS Wireless System-on-a-chip David Su Atheros Communications Santa Clara, California IEEE Fort Collins, March 2008 Introduction Outline Analog/RF: CMOS Transceiver Building Blocks

More information

Production Test and Spectral Monitoring

Production Test and Spectral Monitoring 1 Production Test and Spectral Monitoring Stephen Plumb Key RF Building Blocks Symbol Name Types Function Amplifier (2 port) Power Amplifier Low Noise Amplifier Amplify signal before transmission (high

More information

SIR-4011 MICROWAVE WIDEBAND DSP RECEIVER. WIDE FREQUENCY RANGE: GHz

SIR-4011 MICROWAVE WIDEBAND DSP RECEIVER. WIDE FREQUENCY RANGE: GHz SIR-4011 MICROWAVE WIDEBAND DSP RECEIVER WIDE FREQUENCY RANGE: 0.5 18.0 GHz FEATURES Advanced Front Panel Graphics Display High Dynamic Range: In band Input IP3 > 0 dbm, NF< 15 db DSP Based AM, FM Video

More information

Project in Wireless Communication Lecture 7: Software Defined Radio

Project in Wireless Communication Lecture 7: Software Defined Radio Project in Wireless Communication Lecture 7: Software Defined Radio FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Tufvesson, EITN21, PWC lecture 7, Nov. 2018 1 Project overview, part one: the

More information

RF SYSTEMS Jan-Geralt Bij de Vaate ASTRON

RF SYSTEMS Jan-Geralt Bij de Vaate ASTRON RF SYSTEMS Jan-Geralt Bij de Vaate ASTRON 1 Content: Introduction RF design Basic principles Non linearity Noise Sensitivity Dynamic range RF building blocks PLL Oscillators Mixers Amplifiers De-modulators

More information

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Course Introduction

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Course Introduction TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Course Introduction Ted Johansson, ISY ted.johansson@liu.se RFIC Main Objectives Advanced continuation of TSEK02 Radio Electronics Main focus

More information

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC Hussein Fakhoury and Hervé Petit C²S Research Group Presentation Outline Introduction Basic concepts

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino Electronic Eng. Master Degree Analog and Telecommunication Electronics C5 - Synchronous demodulation» AM and FM demodulation» Coherent demodulation» Tone decoders AY 2015-16 19/03/2016-1

More information

A DISCUSSION ON QAM SNARE SENSITIVITY

A DISCUSSION ON QAM SNARE SENSITIVITY ADVANCED TECHNOLOGY A DISCUSSION ON QAM SNARE SENSITIVITY HOW PROCESSING GAIN DELIVERS BEST SENSITIVITY IN THE CATEGORY 185 AINSLEY DRIVE SYRACUSE, NY 13210 800.448.1655 / WWW.ARCOMDIGITAL.COM ADVANCED

More information

Agilent AN 1275 Automatic Frequency Settling Time Measurement Speeds Time-to-Market for RF Designs

Agilent AN 1275 Automatic Frequency Settling Time Measurement Speeds Time-to-Market for RF Designs Agilent AN 1275 Automatic Frequency Settling Time Measurement Speeds Time-to-Market for RF Designs Application Note Fast, accurate synthesizer switching and settling are key performance requirements in

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT EE247 Term Project Eddie Ng Mounir Bohsali Professor

More information