LLC resonant converter training. Roman Stuler

Size: px
Start display at page:

Download "LLC resonant converter training. Roman Stuler"

Transcription

1 LLC resonant converter training Roman Stuler LLC resonant converter training, Brno 2011

2 Introduction Agenda Switching techniques in SMPS Soft switched topologies Resonant topologies Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC with discrete resonant tank HB LLC converter modeling and gain characteristics Primary currents and resonant cap dimensioning Secondary rectification design and output cap dimensioning Resonant inductance balance Transformer winding dimensioning and transformer construction Overcurrent protection sensing Design example of 12 V / 20 A output LLC converter with SR 2

3 Introduction - Regulatory Agencies Targets Standby (no load) Power Reduction ~25% of total energy passing through power supplies is in standby mode [13] Concerted effort by worldwide regulatory agencies Active Mode Efficiency Improvement ~75% of total energy passing through power supplies is in active mode [13] Power Factor Correction (or Harmonic Reduction) Applicable with IEC [11] (Europe, Japan) Some efficiency specifications also require >0.9 PF. example: computers (ENERGY STAR rev. 4 [12] ) => Energy conversion efficiency significantly affects total power consumption! Korea e-standby program [8] China CSC [6] (ex-cecp), Japan Top Runner [9] program Japan Eco Mark [10] program Australia AGO [7] California CEC [5] Europe COC [4] ENERGY STAR [3] 3

4 Energy Efficiency Regulations Computing Desktops: ENERGY STAR 5.0 effective on Jul. 1, PLUS & Climate Savers Computing Initiative Tiered efficiency levels Laptops (More information at ENERGY STAR 2.0 for External Power Supplies) Efficiency: 87% Standby (no load) power: 500 mw PF 0.9 Solid State Lighting Luminaires ENERGY STAR 1.1 effective on Feb. 1, 2009 Off-state power: 0 Minimum efficacy (Lumen/Watt) requirements by applications (downlights, outdoor lights, etc ) PF 0.9 for Commercial 0.7 for Residential ENERGY STAR 1.2 effective in 2H2009 ENERGY STAR additional requirements for LED bulbs PF 0.7 High system efficacy high efficiency power supply Set-Top Boxes (STB) ENERGY STAR 2.0 effective on Jan 1, 2009 Europe Code of Conduct version 7 effective Jan 1, 2009 Standard is based on maximum allowable TEC (Total Energy Consumption in kwh/year) or allowance Base Allowance depends on the type of STB (Cable, Satellite, etc ) Additional functionalities allowance (DVR, etc ) Annual Energy Allowance (kwh/year) = Base Functionality Allowance + Additional Functionalities Allowance For up-to-date information on agencies and regulations, check the PSMA energy efficiency data base at: 4

5 Single-Output Regulation example - Computing Power Supplies Efficiency (%) Levels Specification 20% of rated output power 50% of rated output power 100% of rated output power Effective Date Single-Output Non-Redundant PFC 0.9 at 50% 81% 85% 81% Start June 2007 Single-Output Non-Redundant PFC 0.9 at 50% 85% 89% 85% Start June 2008 Single-Output Non-Redundant PFC 0.9 at 50% 88% 92% 88% Start June 2010 All in 1 PC Single-Output Non-Redundant PFC 0.9 at 50% 90% 94% 91% Target Sources: 80 PLUS : Climate Savers Computing Initiative: ENERGY STAR : 5

6 Summary - World consumption of energy increases year-by-year (More and more Computers, LCD and PLASMA TVs, Game consoles) - Significant portion of energy is lost during power conversion and also during standby mode - Conversion efficiency has to be increased and no-load consumption has to be minimized to assure that given power networks will be able to supply increased number of electric equipment - Energy agencies releasing various national programs that define minimum equipment efficiency and maximum no-load consumption in given category 6

7 Introduction Agenda Switching techniques in SMPS Soft switched topologies Resonant topologies Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC with discrete resonant tank HB LLC converter modeling and gain characteristics Primary currents and resonant cap dimensioning Secondary rectification design and output cap dimensioning Resonant inductance balance Transformer winding dimensioning and transformer construction Overcurrent protection sensing Design example of 12 V / 20 A output LLC converter with SR 7

8 Switch in power electronics Lower switch Upper switch Complementary switch - Power switch always composes from a switch and freewheeling path (diode or SR MOSFET in some cases) - Switch is used to deliver energy to storage element (inductor) - Freewheeling path is used to close demagnetization path 8

9 Switch in power electronics using MOSFET Lower switch Upper switch Complementary switch - Body diode can be used as a freewheeling diode in complementary switch configuration when using MOSFET 9

10 Switch in basic non-isolated topologies i 1 T u CE R L R L U 1 U D i 2,I i (U 2 ) 2 i 2,I 2 u X i D ss motor or LC filter I 2 C R Z U 2 Buck converter topology i 1 L i 2 =i D U u 1 L S S výchozí bod popisu U 2 -U 1 t = u i C C R L Z Z U 1 u X Boost converter topology U 2 i 1 i C t 1 t 2 I Magnetization phase I1 Demagnetization phase t 10

11 Switch i 3 in forward topology T u 3 D 2 u 1 i 1 u 2 L 3,N 3 L 1,N 1 L 2,N 2 T +U 1 u BE u CE i 2 D 1 D 0 u X ivýst Forward topology L C Z R Z U výst i 1 i 2 u CE zap. t 1 i 3 I 3 UCEmax vyp. t 2 I výst N 2 N 1 I max I výst t demag U 1 U 1 t t t t t u 1 U 1 S S U 1 t u 2 U 2 U 2 t max Two switch forward topology u X U 2 U výst t Magnetization phase Demagnetization phase t 11

12 Switch in buck-boost topology Forward topology Flyback topology Magnetization phase Demagnetization phase 12

13 Switch in ideal flyback converter - Minimum current and voltage overlap i.e. negligible switching losses 13

14 Real components parasitic elements Transistor Diode Transformer - Parasitic inductances and capacitances causes unwanted resonances - PCB parasitic inductances and capacitances has to be included as well 14

15 Switch in real flyback converter 15 -Ringing and more significant voltage and current overlap occurs in real application just due to parasitic elements

16 Switch in real flyback converter with snubbers - Ringing can be damped by snubbers that however uses dissipative elements the power dissipation is still here 16

17 Introduction Agenda Switch techniques in SMPS Soft switched topologies Resonant topologies Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC with discrete resonant tank HB LLC converter modeling and gain characteristics Primary currents and resonant cap dimensioning Secondary rectification design and output cap dimensioning Resonant inductance balance Transformer winding dimensioning and transformer construction Overcurrent protection sensing Design example of 12 V / 20 A output LLC converter with SR 17

18 Need for soft switched topologies - High turn-on and turn-off losses occur during hard switching - Coss energy (1/2*Coss*Vds^2) is burnt during each turn-on - Llk energy (1/2*Llk*Id^2) is burnt during each turn-off - Diode is commutated under high current => Qrr related losses - Various parasitic resonances are present causing voltage spikes that may exceed maximum ratings of used components - Passive and thus dissipative snubber networks are usually needed to damp system - Application EMI signature is affected by parasitic oscillations and capacitive currents (Coss discharge) 18

19 Soft switching basic principles - Using application parasitic and/or adding some additional energy storage devices (L or C) to implement two basic soft switching principles: ZVS Zero Voltage Switching: Switch is turned ON when there is low or ideally zero voltage across its terminals - Ideal switching technique for MOSFETs because it eliminates Coss related losses ZCS Zero Current Switching: Switch is turned OFF when there is low or ideally zero current flowing though its terminals - Ideal switching technique for diodes, BJTs or IGBTs because eliminates trr and storage time related losses Note: ZVS/ZCS techniques eliminates switching losses however, usually increases conduction losses due to higher RMS current in the switch 19

20 Zero voltage switching QR converters - Example: Half wave mode ZVS QR buck 20

21 Zero current switching QR converters - Example: Full wave mode ZCS QR buck 21

22 Quasi resonant AC/DC topologies - Uses portion of the resonant cycle to prepare nearly ZVS or ZCS condition - Typical example is flyback quasi resonant topology - Drawback of DCM operation => high primary and secondary rms current - Vin and Pout are dependent parameters 22

23 Introduction Agenda Switch techniques in SMPS Soft switched topologies Resonant topologies Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC with discrete resonant tank HB LLC converter modeling and gain characteristics Primary currents and resonant cap dimensioning Secondary rectification design and output cap dimensioning Resonant inductance balance Transformer winding dimensioning and transformer construction Overcurrent protection sensing Design example of 12 V / 20 A output LLC converter with SR 23

24 Resonant and Multi-resonant topologies -The primary current has sinusoidal wave shape for nominal load and line conditions - ZVS and ZCS conditions are prepared for power semiconductors -Some resonant converters are called multi resonant because the resonant frequency changes during one switching cycle - Two main resonant converter topologies can be identified: Series resonant converter Parallel resonant converter Came out from well known half bridge topology by its power stage modification. Disadvantage of these converters is relatively low regulation range => the line and load changes are limited. 24

25 Classical HB to resonant topology transition Classical HB topology LLC resonant topology 25

26 Series resonant converter - Lr, Cr and load resistance forms series resonant circuit. - Resonant tank impedance is frequency dependent - Regulation can be done by the operating frequency modification - Maximum gain of this converter is equal to transformer turns ratio for: f sw f s 2 1 L r C r 26

27 Series resonant converter - Drawback: Operating frequency is too wide when one wants to keep the output regulated under light loads 27

28 Series resonant converter -The circulating energy is to high when operates under full load and nominal input voltage i.e. 400 VDC. 28

29 Parallel resonant converter - Lr and Cr forms the series resonant circuit again - Load resistance is now connected in parallel with resonant capacitor thus called parallel RC. 29

30 Parallel resonant converter - Operating frequency region is reduced compare to SRC - The gain of the the PRC increases to excessive values for light loads 30

31 Parallel resonant converter - Circulating energy is much higher then for SRC 31

32 Series parallel resonant converter (LCC) - Contains three resonant components Lr, Csr and Cpr - Combines advantages of SRC and PRC - The light or even no load regulation is not problem. 32

33 Series parallel resonant converter -Operating frequency region is narrow however for high input voltage it is still far away from series resonant frequency fs. 33

34 Series parallel resonant converter - The circulating energy is reduced in comparison to the PRC but still high - Requires two additional components (Lf and Cpr) - Forbids to use parasitic component as a part of the resonant tank 34

35 Transition to the LLC resonant converter -The LCC converter has still many disadvantages => other topology is desirable for high density and efficiency SMPS - LCC resonant tank can be changed to the LLC resonant tank 35

36 Gain characteristics of the LLC converter - Operation at fs is possible for nominal load and line conditions 36

37 Benefits of an LLC series resonant converter Type of serial resonant converter that allows operation in relatively wide input voltage and output load range when compared to the other resonant topologies Limited number of components: resonant tank elements can be integrated to a single transformer only one magnetic component needed Zero Voltage Switching (ZVS) condition for the primary switches under all normal load conditions Zero Current Switching (ZCS) for secondary diodes, no reverse recovery losses Cost effective, highly efficient and EMI friendly solution for high and medium output voltage converters 37

38 Classical HB and LLC topology differences Topology Advantages Disadvantages Classical HB LLC resonant Low ripple current on the secondary Wide regulation range Constant frequency operation ZVS condition is assured for whole load range Primary current is harmonic for heavy loads =>EMI ZCS condition for secondary rectifier for heavy loads Switching under high currents (primary and secondary) ZVS conditions for primary switches can be assured only for limited loads Higher ripple current on the secondary => lower ESR capacitors needed Operating frequency isn't constant Lower regulation range 38

39 Introduction Agenda Switching techniques in SMPS Soft switched topologies Resonant topologies Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC with discrete resonant tank HB LLC converter modeling and gain characteristics Primary currents and resonant cap dimensioning Secondary rectification design and output cap dimensioning Resonant inductance balance Transformer winding dimensioning and transformer construction Overcurrent protection sensing Design example of 12 V / 20 A output LLC converter with SR 39

40 Configurations of an HB LLC single res. cap - Higher input current ripple and RMS value - Higher RMS current through the resonant capacitor - Lower cost - Small size / easy layout 40

41 Configurations of an HB LLC split res. cap Compared to the single capacitor solution this connection offers: - Lower input current ripple and RMS value by 30 % - Resonant capacitors handle half RMS current - Capacitors with half capacitance are used 41

42 Resonant tank configurations discrete solution Resonant inductance is located outside of the transformer Advantages: - Greater design flexibility (designer can setup any L s and L m value) - Lower radiated EMI emission Disadvantages of this solution are: - Complicated insulation between primary and secondary windings - Worse cooling conditions for the windings - More components to be assembled 42

43 Resonant tank configurations integrated solution Leakage inductance of the transformer is used as a resonant inductance. Advantages: - Low cost, only one magnetic component is needed - Usually smaller size of the SMPS -Insulation between primary and secondary side is easily achieved - Better cooling conditions for transformer windings Disadvantages: - Less flexibility (achievable Ls inductance range is limited) - Higher radiated EMI emission - LLC with integrated resonant tank operates in a slightly different way than the solution with discrete L s, different modeling has to be used - Strong proximity effect in the primary and secondary windings 43

44 Introduction Agenda Switching techniques in SMPS Soft switched topologies Resonant topologies Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC with discrete resonant tank HB LLC converter modeling and gain characteristics Primary currents and resonant cap dimensioning Secondary rectification design and output cap dimensioning Resonant inductance balance Transformer winding dimensioning and transformer construction Overcurrent protection sensing Design example of 12 V / 20 A output LLC converter with SR 44

45 Operating states of the LLC converter F s 2 1 Discrete resonant tank solution Two resonant frequencies can be defined: C s L s F min 2 C s 1 ( L LLC converter can operate: a) between F min and F s c) above F s b) direct in F s d) between F min and F s - overload e) below F min s L m ) 45

46 Operating states of the LLC converter a) Operating waveforms for f min < f op < f s A B C D E F G H 46

47 Operating states of the LLC converter b) Operating waveforms for f op = f s A B C D E F 47

48 Operating states of the LLC converter c) Operating waveforms for F op > F s Discrete resonant tank solution A B C D E F 48

49 Operating states of the LLC converter d) Operating waveforms for fmin < fop < fs strong overload A B C D E F G H 49

50 Operating states of the LLC converter Integrated resonant tank solution - Integrated resonant tank behaves differently than the discrete resonant tank - leakage inductance is given by the transformer coupling - L lk participates only if there is a energy transfer between primary and secondary - Once the secondary diodes are closed under ZCS, L lk has no energy M 1 L L lk m Secondary diodes are always turned OFF under ZCS condition in HB LLC. The resonant inductance L s and magnetizing inductance L m do not participate in the resonance together as for discrete resonant tank solution when secondary diodes are closed! 50

51 Operating states of the LLC converter Integrated resonant tank solution Two resonant frequencies can be defined: F s 2 1 C s L s F min 2 1 C s L m LLC converter can again operate: a) between Fmin and Fs c) above Fs b) direct in Fs d) between Fmin and Fs overload e) below Fmin 51

52 Introduction Agenda Switching techniques in SMPS Soft switched topologies Resonant topologies Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC with discrete resonant tank HB LLC converter modeling and gain characteristics Primary currents and resonant cap dimensioning Secondary rectification design and output cap dimensioning Resonant inductance balance Transformer winding dimensioning and transformer construction Overcurrent protection sensing Design example of 12 V / 20 A output LLC converter with SR 52

53 LLC converter modeling equivalent circuit LLC converter can be described using firs fundamental approximation. Only approximation accuracy is limited!! Best accuracy is reached around F s. Transfer function of equivalent circuit: G ac nv V in out Z 1 Z 2 Z 2 Z 1, Z 2 are frequency dependent => LLC converter behaves like frequency dependent divider. The higher load, the L m gets to be more clamped by R ac. Resonant frequency of LLC resonant tank thus changes between F s and F min. 53

54 LLC converter modeling equivalent circuit Real load resistance has to be modified when using fundamental approximation to convert non linear circuitry to linear model. In a full-wave bridge circuit the RMS current is: I ac I _ RMS O 2 2 Considering the fundamental component of the square wave, the RMS voltage is: 2 2 V ac V _ RMS O Ip Vo ac_ RMS 8 O 8 Rac 2 2 Iac I _ RMS O Iac (rms) The AC resistance R ac ca be expressed as: V E R L Ip Io Vo 54

55 Resonant tank equations Quality factor: 2 n RL Q Z 0 Load dependent! Characteristic impedance: Z 0 L C s s Lm/Ls ratio: m L L m s Gain of the converter: G 2( V V out V in f ) Series resonant frequency: F s 2 1 C s L s F min Minimum resonant frequency: 2 C s 1 ( L s L m ) 55

56 voltage gain Normalized gain characteristic Lm/Ls=6 Q=200 Light load Region 2 ZVS Q=0.05 Q=0.5 Q=1 Q=2 Q=3 Q=4 Q=5 Q= Region 1 Q=20 Q=50 Q=100 Q= ZCS Region Q=0.05 Heavy load f / fs Region3: ZCS region Region 1 and 2: ZVS operating regions 56

57 Gain characteristic discussion - The desired operating region is on the right side of the gain characteristic (negative slope means ZVS mode for primary MOSFETs). -Gain of the LLC converter, which operates in the f s is 1 (for discrete resonant tank solution) - i.e. is given by the transformer turns ratio. This operating point is the most attractive from the efficiency and EMI point of view sinusoidal primary current, MOSFETs and secondary diodes optimally used. This operating point can be reached only for specific input voltage and load (usually full load and nominal V bulk ). Gain characteristics shape and also needed operating frequency range is given by these parameters: - L m /L s ratio - Characteristic impedance of the resonant tank - Load value 57

58 How to obtain gain characteristics? Use fundamental approximation and AC simulation in any simulation software like PSpice, Icap4 etc.. Direct gain plot for given R ac 1 V amplitude AC supply 58

59 Discrete and integrated tank gain differences Simulation schematic for discrete solution Simulation schematic for integrated solution 59

60 Gain [-] Discrete and integrated tank gain differences (the same Ls, Lm values and transformer turn ratio) Gain = 0, Gain = 0,125 Gain = 109 khz i.e. out from f s for integrated version and same turns ratio!!!!! f s Ls and Lm separated Ls and Lm integrated E E E+06 Frequency [Hz] 60

61 Discrete and integrated tank gain differences - Integrated solution provides higher gain in comparison to the discrete solution and the same transformer turn ratio! - The leakage inductance boost the transformer gain - Gain difference increases with L s /L m ratio i.e. higher L s causes higher gain difference as the L m gets to be less clamped by the secondary load - Turns ratio correction has to be done when designing integrated solution based on the discrete solution model. n int n k disc n disc L 1 L lk m Where: n int n disc k is turns ratio of the integrated solution is turns ratio of the discrete solution is transformer coupling coefficient Note: Leakage inductance is usually very small in comparison to the magnetizing inductance for discrete solution => its impact to the gain characteristic can be neglected but in fact the discrete solution is always combination of both solutions as ideal transformer doesn t exist. 61

62 Gain [-] Discrete and integrated tank gain differences (the same Ls, Lm values after turn ratio correction) Gain = f s for both versions when correction of turns ratio is used for integrated version!!!! f s Ls and Lm separated Ls and Lm integrated E E E+06 Frequency [Hz] 62

63 Basic transformer model As mentioned in previous slides, there exist differences in gain characteristic and power stage operation when comparing discrete and integrated resonant tank solutions. These differences are related to the leakage inductance existence. Generic transformer model reflects the reality and can be used without any problems: Thanks to the transformer reciprocity the M 12 =M 21 =M one can then derive: di1 ( t) di2( t) u1( t) L1 M dt dt di1 ( t) u2 ( t) M L2 dt di2 ( t) dt k M L 1 L 2 How to get coupling coefficient k?: k L 1 L 1s 1 1 L L Where: L 1s is primary inductance when secondary is shorted L 1 is primary inductance when secondary is opened L 2s is secondary inductance when primary is shorted L 2 is secondary inductance when primary is opened 2s 2 63

64 Impedance transformer model parameters derivation from Ls and k and Gnom Inputs from res. tank deign: L s G m - required resonant inductance - nominal gain Lm L nom f s s at - Inductance ratio L 1 L m m L s k 1 1 m L 2 2 Ls ( m 1) Gnom Basic model parameters can be easily derived from resonant inductance, required nominal gain and primary to resonant inductances ratio 64

65 APR transformer model Inputs from real transformer: L 1, L 2, k L Lm _ eq L1 Llk1 n s L lk1 APR 1 G nom k n k L L - FHA can be easily applied to APR model => suitable for analysis 1 2 Where: Gnom nominal gain at fs n primary and secondary transformer ratio - Ideal trf. in APR model transfers sec. impedance to primary by 1/G nom - Real transformer inductance ratio n is affected by coupling coefficient Integrated LLC stage can be also modeled using T or transf. model 65

66 T model of the transformer Inputs from real transformer: L 1, L 2, k, n n L L 1 2 L lk 1 _ e ( 1 k) L1 L m 1_ e k L1 L lk 2_ e L lk1_ e - The equivalent magnetizing inductance cannot be clamped by output load - Model components values cannot be measured physically - This model uses ideal transformer with turns ratio that is equal to inductance turns ratio 66

67 model of the transformer Inputs from real transformer: L 1, L 2, k n L L 1 2 Lm1= - The left equivalent magnetizing inductance cannot be clamped by load - Model components values cannot be measured physically - This model uses ideal transformer with turns ratio that is equal to inductance turns ratio - Magnetizing inductance is not fully clamped by load in integrated res. tank designs due to leakage inductance 67

68 Gain characteristics - multiple output design 68

69 Gain characteristics - multiple output design Use fundamental approximation with AC simulation and recalculate AC resistances to only one output i.e. parallel combination of recalculated AC resistances. R ac _ total Rac Rac 1 1 Rac 2 Rac 2 n n 2 3 n n

70 Full load Q and m factors optimization Proper selection of these two factors is the key point for the LLC resonant converter design! Their selection will impact these converter characteristics: - Needed operating frequency range for output voltage regulation - Line and load regulation ranges - Value of circulating energy in the resonant tank - Efficiency of the converter The efficiency, line and load regulation ranges are usually the most important criteria for optimization. Quality factor Q directly depends on the load. It is given by the L s and C s components values for full load conditions: Q n 2 R L C s s L 70

71 Gain [-] Full load Q and m factors optimization n=8, L s /L m =6, Q=parameter, Rload=2.4W Gmax Needed gains band for full load regulation Gmin f@q=4 f@q= E E E+06 Frequency [Hz] Q=2 Q=3 Q=4 - Higher Q factor results in larger F op range - Characteristic impedance has to be lower for higher Q and given load => higher C s - Low Q factor can cause the loss of regulation capability! - LLC gain characteristics are degraded to the SRC for very low Q values. 71

72 Gain [-] Full load Q and m factors optimization n=8, C s =33nF, L s =100uH, L m =parameter, Rload=2.4W Gmax Needed gains band for full load regulation Gmin f@k=2 f@k= E E E+06 Frequency [Hz] k=2 k=4 k=6 k=8 k=10 - The m=l m /L s ratio dictates how much energy is stored in the L m. - Higher m will result in the lover magnetizing current and gain of the converter. - Needed regulation frequency range is higher for larger m factor. 72

73 Full load Q and k factors optimization Practically, the L s (i.e. leakage inductance of the integrated transformer version) has only limited range of values and is given by the transformer construction (for needed power level) and turns ratio. The Q factor calculation is then given by the wanted nominal operating frequency f s. The m factor has to be calculated to assure gains needed for the output voltage regulation (with line and load changes). The m factor can be set in such a way that converter wont be able to maintain regulation at light loads skip mode can be easily implemented to lover no load consumption. The higher Z 0 i.e. L s /C s ratio is used the lower freq range is needed to maintain Regulation. If to low C s is used the voltage grows to excessive values and gain doesn t have to be high enough for regulation. 73

74 Introduction Agenda Switching techniques in SMPS Soft switched topologies Resonant topologies Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC with discrete resonant tank HB LLC converter modeling and gain characteristics Primary currents and resonant cap dimensioning Secondary rectification design and output cap dimensioning Resonant inductance balance Transformer winding dimensioning and transformer construction Overcurrent protection sensing Design example of 12 V / 20 A output LLC converter with SR 74

75 2.0A 1.0A -0.0A -1.0A -2.0A ms ms ms ms ms ms ms ms -I(IDM2) Time ms 400V 300V 200V 100V 2.0A 1.0A -0.0A -1.0A -2.0A ms ms ms ms ms ms ms ms -I(IDM1) Time ms 0V 2.780ms 2.782ms 2.784ms 2.786ms 2.788ms 2.790ms 2.792ms 2.794ms 2.796ms 2.798ms V(Cs2:2) Time Primary currents single resonant cap I IN, I DM1 F sw = F s I DM2 1.0A 2.0A V Cs I Cs -0.0A -1.0A -2.0A ms ms ms ms ms ms ms I(Cs2) I(L5) -I(TX1) Time I C I primary I n sec s L m I IC s _ RMS Iout Vbulk n 24 Lm fsw 75

76 2.54A 2.00A 1.00A 0A -1.00A -1.49A ms -I(V1) ms ms ms ms ms ms Time 2.0A 1.0A -0.0A -1.0A -2.0A ms ms ms ms ms ms ms ms -I(IDM2) Time 2.0A 1.0A -0.0A -1.0A -2.0A ms ms ms ms ms ms ms ms -I(IDM1) Time ms 400V 300V 200V 100V ms 0V 1.320ms 1.325ms 1.330ms 1.335ms 1.340ms 1.345ms 1.350ms V(Cs2:2) Time 2.0A 1.0A -0.0A -1.0A -2.0A ms ms ms ms ms ms ms ms I(Cs) Time 2.0A 1.0A -0.0A -1.0A -2.0A ms ms ms ms ms ms ms ms I(Cs2) Time Primary currents split resonant cap I DM1 I Cs1 Fsw=Fs I DM2 I IN V Cs2 I Cs2 76

77 Comparison of Primary Currents Single and split resonant capacitor solutions - 24 V / 10 A application Parameter Single Cap Split Caps I Cs_Pk 2.16 A 1.08 A I Cs_RMS 1.52 A 0.76 A I IN_Pk 2.16 A 1.08 A I IN_RMS 1.07 A 0.76 A Split solution offers 50% reduction in resonant capacitor current and 30% reduction in input rms current Select resonant capacitor(s) for current and voltage ratings 77

78 Primary switches dimensioning 2.0A 1.0A 0A A B -1.0A ms ms ms ms ms ms -I(IDM1) (V(M1:g)- V(bridge))/10 V(M2:g)/10 Time ms - Body diode is conducting during the dead time only (A) - MOSFET is conducting for the rest of the period (B) - Turn ON losses are given by Q g (burned in the driver not in MOSFET) - MOSFET turns OFF under non-zero current => turn OFF losses 78

79 Primary switches dimensioning MOSFET RMS current calculation - The body diode conduction time is negligible - Assume that the MOSFET current has half sinusoid waveform I switch_ RMS 1 I out Vbulk n 24 Lm fsw Turn OFF current calculation - Assume that the magnetizing current increases linearly I OFF V 8 L bulk m f sw -Turn OFF losses (E I OFF ) can be find in the MOSFET datasheet or calculated Total switch loses: P switch_ total I 2 switch_ RMS R dson P OFF 79

80 Introduction Agenda Switching techniques in SMPS Soft switched topologies Resonant topologies Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC with discrete resonant tank HB LLC converter modeling and gain characteristics Primary currents and resonant cap dimensioning Secondary rectification design and output cap dimensioning Resonant inductance balance Transformer winding dimensioning and transformer construction Overcurrent protection sensing Design example of 12 V / 20 A output LLC converter with SR 80

81 Secondary Rectifier Design Secondary rectifiers work in ZCS Possible configurations: Push-Pull Configuration Advantages: - Half the diode drops compared to bridge - Single package, dual diode can be used - Space efficient a) Push-Pull configuration for low voltage / high current output b) Bridge configuration for high voltage / low current output c) Bridge configuration with two secondary windings for complementary output voltages Disadvantages: - Need additional winding - Higher rectifier breakdown voltage - Need good matching between windings 81

82 Secondary Rectifier Design Rectifier waveforms for different operating states a) F op < F s b) F op = F s - rectifier current - rectifier voltage c)f op > F s Simplification by analyzing the operating state in the series resonant frequency F s is used thereafter. Another simplification is done assume that the secondary current has sinusoidal shape. 82

83 Secondary Current Calculations Push-Pull Equations RMS diode current I D I I _ RMS D _ AVG _ PK out I D I I 2 out out 4 AVG diode current Peak diode current 2 24 V/10 A output ID_ RMS 7. 85A I I D_ AVG 5 D_ PK A A 12 V/20 A output I ID_ AVG 10A I D_ RMS D_ PK A A To simplify calculations, assume sinusoidal current and F op =F s 83

84 Rectifier Losses Push-Pull Equations Losses due to forward drop: P P DFW DRd V R d F I 2 OUT Losses due to dynamic resistance: I 16 OUT V/10 A Vf=0.8 V, Rd=0.01 Ohm P DFW P DRd 4.0 W 0.62 W 12 V/20 A Vf=0.5 V, Rd=0.01 Ohm P DFW P DRd 5.0 W 2.48 W Equation 24 V/10 A 12 V/20 A P Rect _ total ( P P ) n DFW DRd rect P Rect _ total 9.24 W P Rect _ total 15 W 84

85 Secondary Rectifier - Bridge Configuration Advantages: - Lower voltage rating - Needs only one winding - No matching needed for windings Disadvantages: - Higher diode drops - Need four rectifiers 85

86 Secondary Rectifier Complementary outputs Bridge configuration complementary output Advantages: - Needs only two windings - Low power looses (one Vf only) Disadvantages: - Rectifiers with higher breakdown voltage (Vbr>2*Vout) - Matching between secondary windings needed 86

87 1. Select appropriate topology (push-pull or bridge) 2. Calculate rectifier peak, AVG and RMS current 3. Select rectifier based on the needed current and voltage ratings 4. Measure the diode voltage waveform in the application and design snubber to limit diode voltage overshoot and improve EMI signature (for LLC weak snubber is needed since diodes operate in ZCS mode) Notes: Secondary Rectifier Design Procedure - The current ripple increases for f op <f s, the current waveform is still half sinusoidal but with dead times between each half period - The peak current is very high for low voltage and high current LLC applications example 12 V/20 A output: I peak = 31.4 A and I RMS = 9.7 A!! Each mw becomes critical - PCB layout. The secondary rectification paths should be as symmetrical as possible to assure same parameters for each switching half cycle. 87

88 Output Capacitor Dimensioning Output capacitor is the only energy storage device Higher peak/rms ripple current and energy Ripple current leads to: Voltage ripple created by the ESR of output capacitor (dominant) Voltage ripple created by the capacitance (less critical) 88

89 ESR Component of Output Ripple In phase with the current ripple and frequency independent Low ESR capacitors needed to keep ripple acceptable Cost/performance trade-off (efficiency impact) V Equations: I rect I out_ ripple_ pk pk Peak rectifier current _ peak out 2 Output voltage ripple peak to peak ESR I rect _ peak 24 V/10 A example: Cf=5000 uf, ESR=6 mw I rect _ peak V out _ ripple_ pk pk A 94 mv Capacitor RMS current: P ESR I Cf I _ RMS out ESR power losses I 2 Cf _ RMS 2 8 ESR 1 I Cf P ESR _ RMS 4.83 A 140 mw 89

90 ESR Component of Output Ripple ms ms ms ms ms ms I(rect) I(Iout) -I(Cf) (V(Iout:+)-24)*10 Time ESR component of the output voltage ripple is in phase with current ripple and is frequency independent. 90

91 Capacitive Component of Output Ripple Out of phase with current and frequency dependent Actual ripple negligible due to high value of capacitance chosen Equation: 24 V/10 A output example: Cf=5000 uf, Fop=100 khz V out_ ripple_ cap_ pk pk 2 I out 3 f op C f ( 2) V out _ ripple_ cap 2.1mV 24 V/10 A output example: Cf=100 uf, Fop=100 khz V out _ ripple_ cap 104 mv 91

92 Capacitive Component of Output Ripple us 416.0us 420.0us 424.0us 428.0us 432.0us I(rect) I(Iout) -I(Cf) (V(Iout:+)-23.98)*1000 Time Capacitive component of the output voltage ripple is out of phase with current ripple and is frequency dependent. 92

93 Filter Capacitor Design Procedure 1. Calculate peak and rms rectifier and capacitor currents based on Io and Vout 2. Calculate needed ESR value that will assure that the output ripple will be lower than maximum specification 3. Select appropriate capacitor(s) to handle the calculated rms current and having calculated ESR or lower 4. Factor in price, physical dimensions and transient response 5. Check the capacitive component value of the ripple (usually negligible for high enough C f ) Notes: The secondary rectification paths should be as symmetrical as possible to assure same parameters for each switching half cycle 93

94 Introduction Agenda Switching techniques in SMPS Soft switched topologies Resonant topologies Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC with discrete resonant tank HB LLC converter modeling and gain characteristics Primary currents and resonant cap dimensioning Secondary rectification design and output cap dimensioning Resonant inductance balance Transformer winding dimensioning and transformer construction Overcurrent protection sensing Design example of 12 V / 20 A output LLC converter with SR 94

95 Resonant inductance balance Transformer leakage inductance - Total L s is always affected by the transformer leakage inductance - Special case for transformer with integrated leakage inductance - L s =L lk - Push pull and mult. output app. are sensitive to the leakage inductance balance Example:L lk(p-s1) = 105 uh L lk(p-s2) = 115 uh L lk = 10 uh L lk(total) = 100 uh L m = 600 uh C s = 33 nf 95 Parameter f s1 = 85.5 khz f s2 = 81.7 khz Measured between pins Secondary pins configuration L lk(p-s1) A-B C-D short D-E open L lk(p-s2) A-B C-D open D-E short L lk(total) A-B C-D short D-E short L m A-B C-D open D-E open 5 % difference

96 Resonant inductance balance Series resonant frequency differs for each switching half-cycle that results in primary and mainly secondary current imbalance. 16A 12A 8A 4A 0A us us us us us us us us I(D6) I(D3) Time 3 A difference in the peak secondary current the power dissipation is different for each rectifier from pair as well as for the secondary windings. 96

97 Resonant inductance balance I primary Converter works below series resonant frequency F s for the one half of the switching cycle and in the F s for the second half of the switching cycle. 97

98 Resonant inductance balance For high power app. it is beneficial to connect primary windings in series and secondary windings in parallel. There is possibility to compensate transformer leakage imbalance by appropriate connection of the secondary windings: L lk_total = 2* L lk L lk_total = 0 98

99 Resonant inductance balance The secondary leakage inductance is transformed to the primary and increases the total resonant inductance value. Situation becomes critical for the LLC applications with high turns ratios. 12 V / 20 A application example: N p = 35 turns L lk_s1 = 100 nh N s = 2x2 turns L lk_s2 = 150 nh n = N p /N s = 17.5 L s = 110 uh L m = 630 uh L lk_s = 50 nh L s L lk _ s n H 50 nh difference on the secondary causes 14 % difference of L s!!! 99

100 Resonant inductance balance Transformer construction and secondary layout considerations: - Resonant tank parameters can change each switching half cycle when push pull configuration is used. This can cause the primary and secondary currents imbalance. - For the transformer with integrated resonant inductance, it has to be checked how the transformer manufacturer specifies the leakage inductance. Specification for all secondary windings shorted is irrelevant. The particular leakage inductance values can differ. - When using more transformers with primary windings in series and secondary windings in parallel the leakage inductance asymmetry can be compensated by appropriate secondary windings connection. - Secondary leakage inductance can cause significant resonant inductance imbalance in applications with high transformer turns ratio. Layout on the secondary side of the LLC resonant converter is critical in that case. 100

101 Introduction Agenda Switching techniques in SMPS Soft switched topologies Resonant topologies Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC with discrete resonant tank HB LLC converter modeling and gain characteristics Primary currents and resonant cap dimensioning Secondary rectification design and output cap dimensioning Resonant inductance balance Transformer winding dimensioning and transformer construction Overcurrent protection sensing Design example of 12 V / 20 A output LLC converter with SR 101

102 Transformer winding dimensioning The primary current is sinusoidal for F op = F s. The secondary current is almost sinusoidal too there is slight distortion that is given by the magnetizing current. I primary_ RMS Iout Vbulk n 24 Lm fsw I secondary_ RMS I out 2 2 (single winding solution) - The skin effect and mainly proximity effect decreases effective cooper area. - Proximity effect can be overcome by the interleaved winding construction (for discrete resonant tank solution) - The proximity effect becomes critical for the transformer with integrated leakage - Wires that are located to the center of the bobbin feels much higher current density than the rest of the windings even when litz wire used! 102

103 Transformer with integrated leakage - For the standard transformer with good coupling (L lk <0.1*L m ) is the leakage inductance independent on the air gap thickness and position M 1 L L lk m - Transformer with divided bobbin exhibits high leakage inductance - Significant energy is related to the stray flux - The L lk is dependent on air gap thickness and position 103

104 Transformer with integrated leakage - A ferrite core with air gap on the center leg is used to allow for primary inductance adjustment. - The air gap stores most of the magnetizing current energy related to the primary winding. Thus it is beneficial to place the air gap below the primary winding to minimize additional stray flux and reduce the proximity effect. Primary winding Secondary winding Ferrite core Air gap 104

105 Transformer with integrated leakage -The air gap position within the bobbin affects primary and secondary inductance - Inductance inductor with gapped ferrite core is lower when the gap is located below the coil winding rather than outside of the winding - The difference between both cases is due to the magnetic flux bulging out from the gap and coil Ferrite core Air gap Ferrite core Air gap Winding Winding - Same coil features higher inductance when gap is not shielded!! 105

106 Transformer with integrated leakage - Gap is shielded by primary winding only - The magnetic conductivity for the primary winding primary is lower than magnetic conductivity for the secondary winding secondary L primary secondary primary 2 secondary 2 N N p s primary secondary L Primary winding Ferrite core Secondary winding Air gap - Thanks to this core non-homogeneity, the physical turns ratio (N) is not equal to the electrical turns ratio (n) that is given by the primary and secondary inductances: N N p s L primary secondary => It makes no sense to specify transformer turn number before we know real primary and secondary magnetic conductivities L N p is the primary winding turns number N s is the secondary winding turns 106

107 Introduction Agenda Switching techniques in SMPS Soft switched topologies Resonant topologies Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC with discrete resonant tank HB LLC converter modeling and gain characteristics Primary currents and resonant cap dimensioning Secondary rectification design and output cap dimensioning Resonant inductance balance Transformer winding dimensioning and transformer construction Overcurrent protection sensing Design example of 12 V / 20 A output LLC converter with SR 107

108 Overcurrent protection techniques for the LLC series resonant converters Impedance of the resonant tank reaches very low values when LLC converter operates near the resonant frequency. Fast over current protection has thus be used to protect the primary switches in case of overload or short circuit. There are few solutions how to protect the LLC power stage from over current: A) Use current sense transformer in the primary path B) Use charge pump to monitor resonant capacitor voltage C) Use split resonant capacitor with clamping diodes D) Prepare design which will work always above fs (not very good solution from the efficiency point of view) Operating frequency of the converter is pushed up by the current control loop in cases A) and B). Primary current is thus limited to the desired value. 108

109 A) Using current sense transformer to prepare OCP feature Advantages: - Easy to implement - Immediate reaction to the primary current changes - Good accuracy of the output current limit when bulk voltage is stable (with PFC front stage) Disadvantages: - High component count - CST transformer needed => higher cost 109

110 B) OCP with resonant capacitor voltage monitoring using charge pump Advantages: - Easy to implement - Good accuracy of the output current limit when bulk voltage is stable (with PFC front stage) Disadvantages: - Another HV capacitor (C1) needed - One half period delay in response 110

111 C) Use two resonant capacitors with voltage clamps Advantages: - Resonant capacitors voltage cannot go above bulk voltage, primary current and output power are thus limited automatically no need for other control loop - Converter will never enter ZCS region - Input current ripple is lower in comparison to the one cap solution - Resonant capacitors with lower voltage ratings can be used - Can be also used in single resonant capacitor solution Disadvantages: - Output current limit has pure accuracy => can be used only as short circuit protection - Limits the resonant capacitor value - Is bulk voltage dependent 111

112 Introduction Agenda Switching techniques in SMPS Soft switched topologies Resonant topologies Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC with discrete resonant tank HB LLC converter modeling and gain characteristics Primary currents and resonant cap dimensioning Secondary rectification design and output cap dimensioning Resonant inductance balance Transformer winding dimensioning and transformer construction Overcurrent protection sensing Design example of 12 V / 20 A output LLC converter with SR 112

113 Design Example 12 V / 20 A LLC converter with synchronous rectification - AND

114 LLC stage requirements Requirement Min Nom Max Unit Input voltage (dc) V Output voltage (dc) V Output current 0-20 A Total output power W Consumption a 500 mw output load in STBY mode W Consumption a 100 mw output load in STBY mode W No load consumption SR operating mw No load consumption SR turned off W Load regulation mv Average Efficiency % -High efficiency is required => secondary SR is needed to fulfill this requirement 114

115 SMPS block diagram EMI Filter NCP4303B SR controller Synchronous Rectification for improved efficiency 90V 265Vac NCP1605 PFC Controller NCP1397B Resonant Controller with built-in Half Bridge Driver 12V / 20A Frequency Clamped Critical Conduction Mode Power Factor Controller Resonant Technology for Increased Efficiency and Lower EMI Bias circuitry NCP4303B SR controller TL431 - Bulk voltage is provided by PFC stage driven by NCP NCP1397B is used to implement latched OCP protection - NCP4303 control SR MOSFETs to maximize efficiency - TL431 regulates output voltage by modulating LLC stage operating frequency via optocoupler and NCP1397B 115

116 Resonant tank design Selection of some design parameters: - Resonant tank type: Integrated resonant inductance (cost constrains) - Nominal operating frequency: 80 khz (Efficiency constrains) - Resonant frequency: same as nominal operating frequency 80 khz - Minimum operating frequency: > 60 khz (transformer size constrains) - Maximum full load operating frequency: < 100 khz - Maximum light load operating frequency: 110 khz (then skip) - Nominal resonant capacitor voltage: < 350 V pk 116

117 Step 1 calculate Rac needed for FHA analysis - Small signal AC analysis is desirable for accurate resonant tank design - Equivalent load resistance (Rac) has to be used for FHA: R ac 8 Vout W 2 2 I out_ nom 117

118 Step 2 calculate needed LLC stage gain - Calculate needed converter gain for maximum bulk voltage: G min 2( V V out V bulk_ max f _ SR ) 2(12 0.2) Calculate needed converter gain for nominal bulk voltage: G nom 2( V V out V bulk_ nom f _ SR ) 2(12 0.2) Calculate needed converter gain for minimum bulk voltage: G max 2( V V out V bulk_ min f _ SR ) 2(12 0.2)

119 Step 3 Cs value selection/calculation - Optimization criterion has to be selected - Maximum efficiency is required for this design Z 0 L C s s f s 2 1 L s C s Q n 2 R Z 0 ac Several facts can be considered from above equations: - The lower Cs is, the higher characteristic impedance and lower quality factor are - The lower Cs is the higher Ls needs to be used to keep required res. frequency - The higher Ls is used the lower frequency range is needed for regulation - The higher Ls is used the higher Lm will be and thus lower magnetizing current Design with minimized Cs brings two main advantages - low operating frequency range for regulation - high efficiency 119

120 Step 3 Cs value selection/calculation - Resonant capacitor voltage reaches too high level if low capacitance is used - It is beneficial to keep Vcs below Vbulk for nominal operating conditions because: - Low voltage caps. handle higher RMS current with small dimensions, lower cost and good reliability - Lower voltage stress occurs to the PCB and transformer primary Step 3 with regards to above considerations is finally as follows: Calculate ICs_RMS_nom based on load current value: ICs_ RMS _ nom Isec_ RMS _ mon Gnom Iout_ nomgnom A Calculated Cs value based on the Ics_RMS_mon and selected Vcs_peak_nom: ICs_ RMS _ nom Cs 31.6nF 2* 15nF Vbulk_ nom fop nom V _ Cs_ peak_ nom 2 2 Note: Some error is induced because we did not included magnetizing current component into calculation as it is not know yet. 120

121 Step 4 Ls calculation - Resonant inductor value can be calculated based on selected resonant frequency and previously calculated resonant capacitor value using modified Thompson law: L s C s 1 (2 f s H 130H ) 3010 ( ) Step 5 maximum Lm calculation -The maximum Lm value is given by total bridge parasitic capacitance (Coss of MOSFETs and stray capacitance). Magnetizing inductance has to provide enough energy to overcharge bridge parasitic capacitance and prepare ZVS condition within selected deadtime. L DT C f 1 m _ max op_ max HB _ total mh Future transformer magnetizing inductance should not be higher than this value. 121

122 Step 6 Ls/Lm ratio selection -The most appropriate Ls/Lm ratio can be selected based on application gain characteristics simulation. Simulation schematic for gain characteristics analysis: - Use Lm = k*ls as a parameter we will get several gain characteristics 122

123 Step 6 Ls/Lm ratio selection -It is evident that k = 5.5 provides optimum performance + some gain margin => Lm = Lprimary = 130u * 5.5 = 715 uh 123

124 Step 7 Integrated resonant tank turns ratio - The turns ration for discrete resonant tank solution that uses transformer with negligible leakage is inverse of nominal gain at resonant frequency n discrete G 1 primary bulk_ nom nom L L secondary V 2( V out V f ) (12 0.2) - The gain is boosted when using integrated resonant tank solution because the leakage inductance is not located just only before Lm like in used model G nom_ integrated discrete - The higher leakage inductance is the higher gain boost will occur.the integrated resonant tank turns ratio can be then calculated as: n integrated n discrete L 1 L s m n

125 Step 8 Secondary inductance calculation - The secondary inductance Lsec can be calculated using nint. and Lprimary L secondary L n secondary 2 integrated H Step 9 Final resonant tank gain simulation Calculated components of future integrated resonant tank: Cs = 30 nf (2 x 15 nf) Lprimary= 715 uh Llk_primary = 130 uh Lsecondary= 2.23 uh 125

126 Step 10 Final gain characteristic review - Integrated resonant tank provides higher peak gain margin (~12 % above Gmax) 126

127 Step 11 Transient simulation - Simple model for transient simulation using elementary simulator libraries 127

128 Step 11 Transient simulation - Proposed resonant tank operates at fs for full load and nominal Vbulk conditions - Ics_rms = 1.57 A can be measured more precisely 128

129 Step 11 Transient simulation - Operating frequency has to drop to 66.6 khz to maintain full load regulation for Vbulk = 350 Vdc 129

130 Step 11 Transient simulation - Operating frequency has to increase to 90 khz to maintain full load regulation for Vbulk = 425 Vdc 130

131 LLC stage primary side components design - Typical NCP1397B connection with minimum component count 131

132 OCP network design - Charge pump OCP sensing is used in consumer electronics due to cost reasons - AC voltage on the resonant capacitor causes AC current through C29 - Current goes through D14 and causes voltage drop on R60 when upslope occurs on the Vcs voltage i.e. each half period only - Charge pump sensor features natural delay as it delivers current information only during one switching half period 132

133 I Pr OCP network design - Calculate or simulate primary RMS current during overload: 2 1 V bulk_ nom imary_ rms Iout Gnom 1. 68A _ max Lm f op_ ovld - Calculate resonant capacitor AC voltage during overload: IPrimary_ rms 1.68 VCs_ ac 114Vac f C op_ ovld 3 VCs_ peak 110 Rs 50kW 3 I f _ limit - Calculate filtering capacitor value and check power loss : s - Calculate series limiting resistors and OCP charge pump capacitor value: C fop_ ovld R C 68nF f op_ ovld V 2 V Cs_ ac ref _ faul 1 R R 60 R 2 64 R 42 R Vref _ fault 0.9 PRs Rs W 2 R pf 133

134 Fault timer components selection - NCP1397 uses cumulative fault timer that allows for fault and also auto-recovery periods adjustment Ctimer 4u7 150k - Time to fault confirmation: Vtimer ( on) T R C56 ln ln1 3 6 R103 I timer fault Time to auto-recovery time: V T R C56 ln V 4 timer ( on) 3 6 off ln 977 timer ( off ) 1 ms ms 134

135 DT, Fmin, Fmax resistor values - Use NCP1397 DT, Fmin and Fmax nomograms from DS or calculate based on below equations: - Deadtime calculation 8 T DT RDT Fmin calculation based on Rdt and Rt f min R t R DT R t 7 - Fmax calculation based on Rdt, Rt and Rfmax f max R Note: Excel sheet available t 11 R f max R R t f max R DT 810 => Values for our design: Rdt = 13 kw, Rfmin = 30 kw Rfmax = 27 kw R 7 f max 135

136 Soft Start and frequency shift components - R97 is used to slow down the frequency shift slope in order to overcome oscillations during slight overloading - Startup frequency is given by the total resistance connected to Rt pin during application start: R Rt _ start R R ( R R R R ) - RRrt_start value can be calculated from above equations or find in the Fmin vs. Rfmin nomogram. The value of R100 can be then calculated as: R 100 R Rt _ start R 104 R R 104 Rt _ start R R Rt _ start 104 R 97 R kW - Soft Start capacitor value C55 = 1 uf has been used to provide SS time constant of ~ 6 ms (C55 - R100). 136

137 FB pin and skip mode components - R84 and R94 values has been used as compromise between optocoupler pole position and light load consumption. R84 limits max. voltage on FB pin. - FB pin voltage overshoot above 5.1 V during skip is given by FB loop response and Skip pin divider R101, R105. The higher overshoot is the longer time SMPS stays in skip mode reducing switching losses. 137

138 Secondary side design - SR with parasitic inductance compensation is used to maximize efficiency when SR MOSFETs in TO220 package are used 138

139 SR design Vds Id SR MOSFET losses: - Conduction losses P Iout 4 COND R ds _ on@ Vgs _ clamp => Rds_on selection 2 - Gate drive losses P Vcc V C DRV clamp g _ ZVS SW _ max => gate charge selection f SR controllers consumption and gate drive losses in standby will affect light load efficiency - Body diode losses P body I 2 out V f out R => Affected by diode Vf and dynamic resistance I 2 4 dyn 139

140 SR design MOSFET selection SR MOSFET works under ZVS conditions => Gate charge is given by Ciss capacitance (Cgs+Cgd) and gate voltage MOSFET type 5 V [nc] 12 V [nc] 5V [mw] 12V [mw] IPP015N04N FDP047AN IRFB

141 Total SR MOSFETs power losses (conduction+driving) [W] Lpar compensation Vclamp= 6 V Vclamp= 12 V Output current [A] 141

142 NCP4303 Zero Current Detection - The Vcs_off threshold is 0 mv in case no resistor is used in CS - Maximum conduction period of SR MOSFET is desirable for max efficiency 142

143 SR MOSFET parasitic inductance impact - The SR MOSFET conduction time is shortened when MOSFET in TO220 package is used 143

144 SR MOSFET parasitic inductance impact TO220 package is mostly used due to cost and also simple soldering process Parasitic inductances L drain and L source create voltage drop that is proportional to the secondary current I sec(t) derivative. The V ds voltage reaches zero level prior secondary current SR controller detects zero voltage in the time the secondary current has still significant level => efficiency degradation Higher frequency or di sec(t) /dt is, higher efficiency drop will be 144

145 NCP4303 parasitic inductance compensation L comp can be done on PCB or using ferrite bead Secondary current SR MOSFET gate voltage SR MOSFET conduction period is maximized when NCP4303 implemented with compensation Inductance 145

146 SR MOSFET driver power dissipation - Vcc related power dissipation PIcc Vcc Icc 35mW - Driving losses related power dissipation 1 R drv low eq 1 R 2 2 drv_ high_ eq PDRV _ IC Cg _ ZVS Vclamp fsw Cg _ ZVS Vclamp fsw ( Vcc Vclamp) Cg _ ZVS Vclamp fsw 76mW 2 Rdrv_ low_ eq R g _int 2 Rdrv_ high_ eq R g _int - DIE temperature related to above losses TDIE ( PDRV _ IC PIcc ) R J A TA ( ) o C 146

147 SR MOSFET snubbers - Snubber is needed to suppress voltage ringing R snubber L sec, leak C oss C 3 4 snubber C oss Minimum Ton and Toff blanking times Ton_ min RT _ on_ min 11kW Toff _ min RT _ off _ min 39kW

148 Secondary filtering capacitor - Filtering capacitor RMS current in LLC: 2 ICf _ RMS Iout_ nom A 8 3 VCf _ ripple_ pk pk ESR Irect _ peak mV 2 V = > 8 x 1mF/35 V to be used - ESR related ripple: - Capacitance related ripple: I out_ nom out_ ripple_ cap_ pk pk ( 2) ( 2) fop_ nomc f mv - Filtering capacitor losses: P Cf ESR Iout nom 1 3 ESR W

149 LLC Stage Efficiency [%] V bulk = 400 V Efficiency results Iout [A] IRFB3206 compensated IRFB3206 uncompensated 149

150 Efficiency [%] Vbulk=400 Vdc Efficiency results Output Current [A] IPP015N014N compensated IPP015N04N uncompensated 150

151 Operating wfms. Full load operation 151

152 Operating wfms. light load (Iout=2.5 A) 152

153 Thank you for your attention! 153

154 Backup slides! 154

155 Operating states of the LLC converter F s 2 1 Discrete resonant tank solution Two resonant frequencies can be defined: C s L s F min 2 C s 1 ( L LLC converter can operate: a) between F min and F s c) above F s b) direct in F s d) between F min and F s - overload e) below F min s L m ) 155

Design considerations for a Half- Bridge LLC resonant converter

Design considerations for a Half- Bridge LLC resonant converter Design considerations for a Half- Bridge LLC resonant converter Why an HB LLC converter Agenda Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC HB LLC converter

More information

Introduction to LLC resonant converters. Roman Stuler

Introduction to LLC resonant converters. Roman Stuler Introduction to LLC resonant converters Roman Stuler LLC resonant converter training, Brno 2012 Introduction Agenda Switching techniques in SMPS Soft switched topologies Resonant topologies Configurations

More information

Designing A Medium-Power Resonant LLC Converter Using The NCP1395

Designing A Medium-Power Resonant LLC Converter Using The NCP1395 Designing A Medium-Power Resonant LLC Converter Using The NCP395 Prepared by: Roman Stuler This document describes the design procedure needed to implement a medium-power LLC resonant AC/DC converter using

More information

Improvements of LLC Resonant Converter

Improvements of LLC Resonant Converter Chapter 5 Improvements of LLC Resonant Converter From previous chapter, the characteristic and design of LLC resonant converter were discussed. In this chapter, two improvements for LLC resonant converter

More information

Designing High-Efficiency ATX Solutions. Practical Design Considerations & Results from a 255 W Reference Design

Designing High-Efficiency ATX Solutions. Practical Design Considerations & Results from a 255 W Reference Design Designing High-Efficiency ATX Solutions Practical Design Considerations & Results from a 255 W Reference Design Agenda Regulation and Market Requirements Target Specification for the Reference Design Architectural

More information

Simplified Analysis and Design of Seriesresonant LLC Half-bridge Converters

Simplified Analysis and Design of Seriesresonant LLC Half-bridge Converters Simplified Analysis and Design of Seriesresonant LLC Half-bridge Converters MLD GROUP INDUSTRIAL & POWER CONVERSION DIVISION Off-line SMPS BU Application Lab Presentation Outline LLC series-resonant Half-bridge:

More information

GaN in Practical Applications

GaN in Practical Applications in Practical Applications 1 CCM Totem Pole PFC 2 PFC: applications and topology Typical AC/DC PSU 85-265 V AC 400V DC for industrial, medical, PFC LLC 12, 24, 48V DC telecomm and server applications. PFC

More information

Meeting The Standby Power Specification In LED TVs With A Single Power Supply

Meeting The Standby Power Specification In LED TVs With A Single Power Supply ISSUE: June 2016 Meeting The Standby Power Specification In LED TVs With A Single Power Supply by Jean-Paul Louvel, ON Semiconductor, Toulouse, France Despite all the efforts to add new features to LED

More information

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS CHAPTER 3. SINGLE-STAGE PFC TOPOLOG GENERALIATION AND VARIATIONS 3.1. INTRODUCTION The original DCM S 2 PFC topology offers a simple integration of the DCM boost rectifier and the PWM DC/DC converter.

More information

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 47 CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 3.1 INTRODUCTION In recent decades, much research efforts are directed towards finding an isolated DC-DC converter with high volumetric power density, low electro

More information

Maximizing efficiency of your LLC power stage: design, magnetics and component selection. Ramkumar S

Maximizing efficiency of your LLC power stage: design, magnetics and component selection. Ramkumar S Maximizing efficiency of your LLC power stage: design, magnetics and component selection Ramkumar S What will I get out of this session? In this session we will look at the design considerations for developing

More information

High-Efficiency Forward Transformer Reset Scheme Utilizes Integrated DC-DC Switcher IC Function

High-Efficiency Forward Transformer Reset Scheme Utilizes Integrated DC-DC Switcher IC Function High-Efficiency Forward Transformer Reset Scheme Utilizes Integrated DC-DC Switcher IC Function Author: Tiziano Pastore Power Integrations GmbH Germany Abstract: This paper discusses a simple high-efficiency

More information

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications WHITE PAPER High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor

More information

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern Active Clamp Forward Converters Design Using UCC2897 Hong Huang August 2007 1 Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design

More information

Simulation Comparison of Resonant Reset Forward Converter with Auxiliary Winding Reset Forward Converter

Simulation Comparison of Resonant Reset Forward Converter with Auxiliary Winding Reset Forward Converter Simulation Comparison of Resonant Reset Forward Converter with Auxiliary Winding Reset Forward Converter Santosh B L 1, Dr.P.Selvan M.E. 2 1 M.E.(PED),ESCE Perundurai, (India) 2 Ph.D,Dept. of EEE, ESCE,

More information

Topologies for Optimizing Efficiency, EMC and Time to Market

Topologies for Optimizing Efficiency, EMC and Time to Market LED Power Supply Topologies Topologies for Optimizing Efficiency, EMC and Time to Market El. Ing. Tobias Hofer studied electrical engineering at the ZBW St. Gallen. He has been working for Negal Engineering

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

Keywords: No-opto flyback, synchronous flyback converter, peak current mode controller

Keywords: No-opto flyback, synchronous flyback converter, peak current mode controller Keywords: No-opto flyback, synchronous flyback converter, peak current mode controller APPLICATION NOTE 6394 HOW TO DESIGN A NO-OPTO FLYBACK CONVERTER WITH SECONDARY-SIDE SYNCHRONOUS RECTIFICATION By:

More information

AN TEA1836XT GreenChip SMPS control IC. Document information

AN TEA1836XT GreenChip SMPS control IC. Document information Rev. 1 18 April 2014 Application note Document information Info Keywords Abstract Content TEA1836XT, DCM flyback converter, high efficiency, burst mode operation, low audible noise, high peak power, active

More information

References. Advanced Industrial Electronics Resonant Power Converters

References. Advanced Industrial Electronics Resonant Power Converters Advanced Industrial Electronics Resonant Power Converters References [1] Kazimierczuk M., Czarkowski D., Resonant power converters, John Wiley and Sons, Inc. 1995 [] Kazimierczuk M., Czarkowski D., Solutions

More information

The First Step to Success Selecting the Optimal Topology Brian King

The First Step to Success Selecting the Optimal Topology Brian King The First Step to Success Selecting the Optimal Topology Brian King 1 What will I get out of this session? Purpose: Inside the Box: General Characteristics of Common Topologies Outside the Box: Unique

More information

The Quest for High Power Density

The Quest for High Power Density The Quest for High Power Density Welcome to the GaN Era Power Conversion Technology Drivers Key design objectives across all applications: High power density High efficiency High reliability Low cost 2

More information

A new way to PFC and an even better way to LLC Bosheng Sun

A new way to PFC and an even better way to LLC Bosheng Sun A new way to PFC and an even better way to LLC Bosheng Sun 1 What will I get out of this session? Purpose: To introduce a recently developed advanced PFC + LLC solution with extremely low stand by power,

More information

AC-DC SMPS: Up to 15W Application Solutions

AC-DC SMPS: Up to 15W Application Solutions AC-DC SMPS: Up to 15W Application Solutions Yehui Han Applications Engineer April 2017 Agenda 2 Introduction Flyback Topology Optimization Buck Topology Optimization Layout and EMI Optimization edesignsuite

More information

AND8161/D. Implementing a DC/DC Single Ended Forward Converter with the NCP1216A APPLICATION NOTE

AND8161/D. Implementing a DC/DC Single Ended Forward Converter with the NCP1216A APPLICATION NOTE Implementing a DC/DC Single Ended Forward Converter with the NCP1216A Prepared by: Roman Stuler APPLICATION NOTE This document describes how the NCP 1216A controller can be used to design a DC/DC single

More information

Application Note AN-1214

Application Note AN-1214 Application Note LED Buck Converter Design Using the IRS2505L By Ektoras Bakalakos Table of Contents Page 1. Introduction... 2 2. Buck Converter... 2 3. Peak Current Control... 5 4. Zero-Crossing Detection...

More information

Lecture 4 ECEN 4517/5517

Lecture 4 ECEN 4517/5517 Lecture 4 ECEN 4517/5517 Experiment 3 weeks 2 and 3: interleaved flyback and feedback loop Battery 12 VDC HVDC: 120-200 VDC DC-DC converter Isolated flyback DC-AC inverter H-bridge v ac AC load 120 Vrms

More information

15 W HVDCP Quick Charge 3.0 Compatible CV/CC Charger

15 W HVDCP Quick Charge 3.0 Compatible CV/CC Charger Design Note 15 W HVDCP Quick Charge 3.0 Compatible CV/CC Charger Device Application Input Voltage NCP4371AAC NCP1361EABAY NCP4305D Quick Charge 3.0, Cell Phone, Laptop Charger Output Voltage Output Ripple

More information

Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles

Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles Davide GIACOMINI Principal, Automotive HVICs Infineon Italy s.r.l. ATV division Need for clean Hybrid and Full Electric vehicles

More information

A Merged Interleaved Flyback PFC Converter with Active Clamp and ZVZCS

A Merged Interleaved Flyback PFC Converter with Active Clamp and ZVZCS A Merged Interleaved Flyback PFC Converter with Active Clamp and ZVZCS Mehdi Alimadadi, William Dunford Department of Electrical and Computer Engineering University of British Columbia (UBC), Vancouver,

More information

Under the Hood of Flyback SMPS Designs

Under the Hood of Flyback SMPS Designs Topic 1 Under the Hood of Flyback SMPS Designs Bing Lu Agenda 1. Basics of Flyback Topology 2. Impact of Transformer Design on Power Supply Performance 3. Power Supply Current Limiting 4. Summary Texas

More information

LLC Resonant Half Bridge Converter

LLC Resonant Half Bridge Converter LLC Resonant Half Bridge Converter Asia Tech-Day August 17 to 7, 009 Hong Huang Applications Engineer Outline Introduction to LLC resonant half bridge converter Benefits Operation principle Design challenges

More information

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN 4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816 General Description: The CN5816 is a current mode fixed-frequency PWM controller for high current LED applications. The

More information

Interleaved PFC technology bring up low ripple and high efficiency

Interleaved PFC technology bring up low ripple and high efficiency Interleaved PFC technology bring up low ripple and high efficiency Tony Huang 黄福恩 Texas Instrument Sept 12,2007 1 Presentation Outline Introduction to Interleaved transition mode PFC Comparison to single-channel

More information

AN4027 Application note

AN4027 Application note Application note 12 V - 150 W resonant converter with synchronous rectification using the L6563H, L6699 and SRK2000A Introduction Claudio Spini This application note describes the EVL6699-150W-SR demonstration

More information

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.

More information

Differential-Mode Emissions

Differential-Mode Emissions Differential-Mode Emissions In Fig. 13-5, the primary purpose of the capacitor C F, however, is to filter the full-wave rectified ac line voltage. The filter capacitor is therefore a large-value, high-voltage

More information

High performance ac-dc notebook PC adapter meets EPA 4 requirements

High performance ac-dc notebook PC adapter meets EPA 4 requirements High performance ac-dc notebook PC adapter meets EPA 4 requirements Alberto Stroppa, Claudio Spini, Claudio Adragna STMICROELECTRONICS via C. Olivetti Agrate Brianza (MI), Italy Tel.: +39/ (039) 603.6184,

More information

12V-65W WIDE-RANGE INPUT MAINS ADAPTER USING THE L6566B

12V-65W WIDE-RANGE INPUT MAINS ADAPTER USING THE L6566B APPLICATION NOTE 12V-65W WIDE-RANGE INPUT MAINS ADAPTER USING THE L6566B Introduction This note describes the characteristics and the features of a 65 W reference board, wide-range input mains, AC-DC adapter

More information

DC-DC Resonant converters with APWM control

DC-DC Resonant converters with APWM control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) ISSN: 2278-1676 Volume 2, Issue 5 (Sep-Oct. 2012), PP 43-49 DC-DC Resonant converters with APWM control Preeta John 1 Electronics Department,

More information

Soft Switched Resonant Converters with Unsymmetrical Control

Soft Switched Resonant Converters with Unsymmetrical Control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 1 Ver. I (Jan Feb. 2015), PP 66-71 www.iosrjournals.org Soft Switched Resonant Converters

More information

Zero Voltage Switching in a Low Voltage High Current DC-DC Converter

Zero Voltage Switching in a Low Voltage High Current DC-DC Converter Zero Voltage Switching in a Low Voltage High Current DC-DC Converter Ms. Poornima. N M.Tech Student,Dept of EEE, The National Institute of Engineering (Autonomous institute under VTU, Belagavi) Mysuru,

More information

Zero Voltage Switching In Practical Active Clamp Forward Converter

Zero Voltage Switching In Practical Active Clamp Forward Converter Zero Voltage Switching In Practical Active Clamp Forward Converter Laishram Ritu VTU; POWER ELECTRONICS; India ABSTRACT In this paper; zero voltage switching in active clamp forward converter is investigated.

More information

Chapter 6 Soft-Switching dc-dc Converters Outlines

Chapter 6 Soft-Switching dc-dc Converters Outlines Chapter 6 Soft-Switching dc-dc Converters Outlines Classification of soft-switching resonant converters Advantages and disadvantages of ZCS and ZVS Zero-current switching topologies The resonant switch

More information

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form JOHANN MINIBÖCK power electronics consultant Purgstall 5 A-3752 Walkenstein AUSTRIA Phone: +43-2913-411

More information

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance PSMA Industry Session, Semiconductors Dan Kinzer, CTO/COO dan.kinzer@navitassemi.com March 2017 Power Electronics: Speed & Efficiency are

More information

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER M. Mohamed Razeeth # and K. Kasirajan * # PG Research Scholar, Power Electronics and Drives, Einstein College of Engineering, Tirunelveli, India

More information

3. PARALLELING TECHNIQUES. Chapter Three. high-power applications to achieve the desired output power with smaller size power

3. PARALLELING TECHNIQUES. Chapter Three. high-power applications to achieve the desired output power with smaller size power 3. PARALLELING TECHNIQUES Chapter Three PARALLELING TECHNIQUES Paralleling of converter power modules is a well-known technique that is often used in high-power applications to achieve the desired output

More information

ECE514 Power Electronics Converter Topologies. Part 2 [100 pts] Design of an RDC snubber for flyback converter

ECE514 Power Electronics Converter Topologies. Part 2 [100 pts] Design of an RDC snubber for flyback converter ECE514 Power Electronics Converter Topologies Homework Assignment #4 Due date October 31, 2014, beginning of the lecture Part 1 [100 pts] Redo Term Test 1 (attached) Part 2 [100 pts] Design of an RDC snubber

More information

Server Power System for Highest Efficiency and Density: Practical Approach Step by Step

Server Power System for Highest Efficiency and Density: Practical Approach Step by Step 2012 IBM Power Technology Symposium Server Power System for Highest Efficiency and Density: Practical Approach Step by Step Rais Miftakhutdinov and John Stevens Texas Instruments, High Performance Isolated

More information

NCP1216AFORWGEVB. Implementing a DC/DC Single ended Forward Converter with the NCP1216A Evaluation Board User's Manual EVAL BOARD USER S MANUAL

NCP1216AFORWGEVB. Implementing a DC/DC Single ended Forward Converter with the NCP1216A Evaluation Board User's Manual EVAL BOARD USER S MANUAL Implementing a DC/DC Single ended Forward Converter with the NCP1216A Evaluation Board User's Manual Introduction This document describes how the NCP1216A controller can be used to design a DC/DC single-ended

More information

CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS

CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS 2.1 Introduction Conventional diode rectifiers have rich input harmonic current and cannot meet the IEC PFC regulation,

More information

LLC Converter Operating Principles and Optimization for Transient Response. High Voltage Power High Voltage Controllers

LLC Converter Operating Principles and Optimization for Transient Response. High Voltage Power High Voltage Controllers LLC Converter Operating Principles and Optimization for Transient Response High Voltage Power High Voltage Controllers 1 Agenda LLC Converters: Topology Benefits and Example Applications Basic Operating

More information

Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators

Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators Abstract The 3rd generation Simple Switcher LM267X series of regulators are monolithic integrated circuits with an internal

More information

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER 1 Aravind Murali, 2 Mr.Benny.K.K, 3 Mrs.Priya.S.P 1 PG Scholar, 2 Associate Professor, 3 Assistant Professor Abstract - This paper proposes a highly efficient

More information

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs Topic 2 Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs Bing Lu Agenda 1. Basic Operation of Flyback and Forward Converters 2. Active Clamp Operation and Benefits

More information

AN4677 Application note

AN4677 Application note Application note 12 V - 150 W resonant converter with synchronous rectification based on L6563H, L6699 and SRK2001 Introduction This application note describes the STEVAL-ISA170V1 demonstration board,

More information

CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature

CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature Basso_FM.qxd 11/20/07 8:39 PM Page v Foreword xiii Preface xv Nomenclature xvii Chapter 1. Introduction to Power Conversion 1 1.1. Do You Really Need to Simulate? / 1 1.2. What You Will Find in the Following

More information

Conventional Single-Switch Forward Converter Design

Conventional Single-Switch Forward Converter Design Maxim > Design Support > Technical Documents > Application Notes > Amplifier and Comparator Circuits > APP 3983 Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits

More information

5V/550mA Battery Charger Solution Using AP3703

5V/550mA Battery Charger Solution Using AP3703 System Engineering Department BCD Semiconductor Manufacturing Limited 01/19/2009 Summary of Report Specifications 85~264Vac, 5V/550mA Applications Key features Cellphone charger or adapter Primary Side

More information

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications International OPEN ACCESS Journal Of Modern Engineering Research (IJMER A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications Aswathi M. Nair 1, K. Keerthana 2 1, 2 (P.G

More information

SC A LED DRIVER with INTERNAL SWITCH. Features. Description. Applications. Package Information

SC A LED DRIVER with INTERNAL SWITCH. Features. Description. Applications. Package Information 1.2A LED DRVER with NTERNAL SWTCH Features Simple low parts count Wide input voltage range: 4V to 40V 1.2A output current Single pin on/off Brightness control by using DC voltage Brightness control by

More information

새로운무손실다이오드클램프회로를채택한두개의트랜스포머를갖는영전압스위칭풀브릿지컨버터

새로운무손실다이오드클램프회로를채택한두개의트랜스포머를갖는영전압스위칭풀브릿지컨버터 새로운무손실다이오드클램프회로를채택한두개의트랜스포머를갖는영전압스위칭풀브릿지컨버터 윤현기, 한상규, 박진식, 문건우, 윤명중한국과학기술원 Zero-Voltage Switching Two-Transformer Full-Bridge PWM Converter With Lossless Diode-Clamp Rectifier H.K. Yoon, S.K. Han, J.S.

More information

AC-DC LCD TV Power Architecture and LED Backlight

AC-DC LCD TV Power Architecture and LED Backlight AC-DC LCD TV Power Architecture and LED Backlight LCD TV Power Architecture and LED Backlight LCD-TV Market Power Reduction Trend Edge LED LCD TV Backlight 26 to 42 H-V LIPS Reference Design 46/47 Power

More information

Design Considerations of Highly-Efficient Active Clamp Flyback Converter Using GaNFast Power ICs

Design Considerations of Highly-Efficient Active Clamp Flyback Converter Using GaNFast Power ICs Design Considerations of Highly-Efficient Active Clamp Flyback Converter Using GaNFast Power ICs Lingxiao (Lincoln) Xue March 29 th 2017 How to Improve Power Adapter Density? Traditional Travel Adapter

More information

NCP1207AADAPGEVB. Implementing NCP1207 in QR 24 W AC-DC Converter with Synchronous Rectifier Evaluation Board User's Manual EVAL BOARD USER S MANUAL

NCP1207AADAPGEVB. Implementing NCP1207 in QR 24 W AC-DC Converter with Synchronous Rectifier Evaluation Board User's Manual EVAL BOARD USER S MANUAL NCP07AADAPGEVB Implementing NCP07 in QR 4 W AC-DC Converter with Synchronous Rectifier Evaluation Board User's Manual EVAL BOARD USER S MANUAL Introduction The NCP07 is a controller dedicated for driving

More information

Chapter 6. Small signal analysis and control design of LLC converter

Chapter 6. Small signal analysis and control design of LLC converter Chapter 6 Small signal analysis and control design of LLC converter 6.1 Introduction In previous chapters, the characteristic, design and advantages of LLC resonant converter were discussed. As demonstrated

More information

Vishay Siliconix AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller.

Vishay Siliconix AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller. AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller by Thong Huynh FEATURES Fixed Telecom Input Voltage Range: 30 V to 80 V 5-V Output Voltage,

More information

ACT111A. 4.8V to 30V Input, 1.5A LED Driver with Dimming Control GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT

ACT111A. 4.8V to 30V Input, 1.5A LED Driver with Dimming Control GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT 4.8V to 30V Input, 1.5A LED Driver with Dimming Control FEATURES Up to 92% Efficiency Wide 4.8V to 30V Input Voltage Range 100mV Low Feedback Voltage 1.5A High Output Capacity PWM Dimming 10kHz Maximum

More information

A Novel Concept in Integrating PFC and DC/DC Converters *

A Novel Concept in Integrating PFC and DC/DC Converters * A Novel Concept in Integrating PFC and DC/DC Converters * Pit-Leong Wong and Fred C. Lee Center for Power Electronics Systems The Bradley Department of Electrical and Computer Engineering Virginia Polytechnic

More information

POWER DELIVERY SYSTEMS

POWER DELIVERY SYSTEMS www.silabs.com Smart. Connected. Energy-Friendly. CMOS ISOLATED GATE S ENHANCE POWER DELIVERY SYSTEMS CMOS Isolated Gate Drivers (ISOdrivers) Enhance Power Delivery Systems Fully integrated isolated gate

More information

A Novel Transformer Structure for High power, High Frequency converter

A Novel Transformer Structure for High power, High Frequency converter A Novel Transformer Structure for High power, High Frequency converter Chao Yan, Fan Li, Jianhong Zeng, Teng Liu, Jianping Ying Delta Power Electronics Center 238 Minxia Road, Caolu Industry Zone, Pudong,

More information

Resonant Power Conversion

Resonant Power Conversion Resonant Power Conversion Prof. Bob Erickson Colorado Power Electronics Center Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Outline. Introduction to resonant

More information

A Solution to Simplify 60A Multiphase Designs By John Lambert & Chris Bull, International Rectifier, USA

A Solution to Simplify 60A Multiphase Designs By John Lambert & Chris Bull, International Rectifier, USA A Solution to Simplify 60A Multiphase Designs By John Lambert & Chris Bull, International Rectifier, USA As presented at PCIM 2001 Today s servers and high-end desktop computer CPUs require peak currents

More information

Application Note, V1.1, Apr CoolMOS TM. AN-CoolMOS-08 SMPS Topologies Overview. Power Management & Supply. Never stop thinking.

Application Note, V1.1, Apr CoolMOS TM. AN-CoolMOS-08 SMPS Topologies Overview. Power Management & Supply. Never stop thinking. Application Note, V1.1, Apr. 2002 CoolMOS TM AN-CoolMOS-08 Power Management & Supply Never stop thinking. Revision History: 2002-04 V1.1 Previous Version: V1.0 Page Subjects (major changes since last revision)

More information

2A, 23V, 380KHz Step-Down Converter

2A, 23V, 380KHz Step-Down Converter 2A, 23V, 380KHz Step-Down Converter General Description The is a buck regulator with a built-in internal power MOSFET. It achieves 2A continuous output current over a wide input supply range with excellent

More information

Improving the Power Factor of Isolated Flyback Converters for Residential ENERGY STAR LED Luminaire Power Supplies

Improving the Power Factor of Isolated Flyback Converters for Residential ENERGY STAR LED Luminaire Power Supplies Design Note Improving the Power Factor of Isolated Flyback Converters for Residential ENERGY STAR LED Luminaire Power Supplies Device Application Input Voltage Output Power Topology I/O Isolation NCP1014

More information

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside Highlights of the Chapter 4 1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside voltage. Some industry-generated papers recommend

More information

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1 5V/12V Synchronous Buck PWM Controller DESCRIPTION The is a high efficiency, fixed 300kHz frequency, voltage mode, synchronous PWM controller. The device drives two low cost N-channel MOSFETs and is designed

More information

A Color LED Driver Implemented by the Active Clamp Forward Converter

A Color LED Driver Implemented by the Active Clamp Forward Converter A Color LED Driver Implemented by the Active Clamp Forward Converter C. H. Chang, H. L. Cheng, C. A. Cheng, E. C. Chang * Power Electronics Laboratory, Department of Electrical Engineering I-Shou University,

More information

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES Chapter-3 CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES This chapter is based on the published articles, 1. Nitai Pal, Pradip Kumar Sadhu, Dola Sinha and Atanu Bandyopadhyay, Selection

More information

Boundary Mode Offline LED Driver Using MP4000. Application Note

Boundary Mode Offline LED Driver Using MP4000. Application Note The Future of Analog IC Technology AN046 Boundary Mode Offline LED Driver Using MP4000 Boundary Mode Offline LED Driver Using MP4000 Application Note Prepared by Zheng Luo March 25, 2011 AN046 Rev. 1.0

More information

PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER

PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER 1 PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER Prasanna kumar N. & Dileep sagar N. prasukumar@gmail.com & dileepsagar.n@gmail.com RGMCET, NANDYAL CONTENTS I. ABSTRACT -03- II. INTRODUCTION

More information

AND8246/D. A 160 W CRT TV Power Supply using NCP1337 APPLICATION NOTE. A 160 W TV Power Supply Design

AND8246/D. A 160 W CRT TV Power Supply using NCP1337 APPLICATION NOTE. A 160 W TV Power Supply Design A 10 W CRT TV Power Supply using NCP1337 Prepared by: Nicolas Cyr ON Semiconductor APPLICATION NOTE Introduction Valley switching converters, also known as quasi resonant (QR) converters, allow designing

More information

EVL6566B-40WSTB demonstration board 40 W wide input range flyback converter for digital consumer equipments using the L6566B

EVL6566B-40WSTB demonstration board 40 W wide input range flyback converter for digital consumer equipments using the L6566B EVL6566B-40WSTB demonstration board 40 W wide input range flyback converter for digital consumer equipments using the L6566B Features Input voltage: Vin: 90-264 Vrms, f: 45-66 Hz Output voltages: 1.8 V/1.73

More information

IBM Technology Symposium

IBM Technology Symposium IBM Technology Symposium Impact of Input Voltage on Server PSU- Efficiency, Power Density and Cost Design. Build. Ship. Service. Sriram Chandrasekaran November 13, 2012 Presentation Outline Redundant Server

More information

AND8311/D. Understanding the LLC Structure in Resonant Applications. understand the resonant structure alone, object of the present application note.

AND8311/D. Understanding the LLC Structure in Resonant Applications. understand the resonant structure alone, object of the present application note. AND83/D Understanding the LLC Structure in Resonant Applications Prepared By: Christophe Basso ON Semiconductor The resonant LLC topology, member of the Series Resonant Converters (SRC) begins to be widely

More information

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin Designing reliable and high density power solutions with GaN Created by: Masoud Beheshti Presented by: Paul L Brohlin What will I get out of this presentation? Why GaN? Integration for System Performance

More information

Fundamentals of Power Electronics

Fundamentals of Power Electronics Fundamentals of Power Electronics SECOND EDITION Robert W. Erickson Dragan Maksimovic University of Colorado Boulder, Colorado Preface 1 Introduction 1 1.1 Introduction to Power Processing 1 1.2 Several

More information

ZVT Buck Converter with Synchronous Rectifier

ZVT Buck Converter with Synchronous Rectifier IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 8 February 217 ISSN (online): 2349-784X ZVT Buck Converter with Synchronous Rectifier Preenu Paul Assistant Professor Department

More information

Soft-Switching Two-Switch Resonant Ac-Dc Converter

Soft-Switching Two-Switch Resonant Ac-Dc Converter Soft-Switching Two-Switch Resonant Ac-Dc Converter Aqulin Ouseph 1, Prof. Kiran Boby 2,, Prof. Dinto Mathew 3 1 PG Scholar,Department of Electrical and Electronics Engineering, Mar Athanasius College of

More information

An Extensive Input Voltage and Fixed-Frequency Single Stage Series- Parallel LLC Resonant Converter for Dc Drive

An Extensive Input Voltage and Fixed-Frequency Single Stage Series- Parallel LLC Resonant Converter for Dc Drive Vol., Issue.5, Sep-Oct. 0 pp-3693-3698 ISSN: 49-6645 An Extensive Input Voltage and Fixed-Frequency Single Stage Series- Parallel LLC Resonant Converter for Dc Drive P.Ganesh, T.Manokaran,.Department of

More information

FSFR-XS Series Fairchild Power Switch (FPS ) for Half-Bridge Resonant Converters

FSFR-XS Series Fairchild Power Switch (FPS ) for Half-Bridge Resonant Converters February 203 FSFR-XS Series Fairchild Power Switch (FPS ) for Half-Bridge Resonant Converters Features Variable Frequency Control with 50% Duty Cycle for Half-Bridge Resonant Converter Topology High Efficiency

More information

AND9043/D. An Off-Line, Power Factor Corrected, Buck-Boost Converter for Low Power LED Applications APPLICATION NOTE.

AND9043/D. An Off-Line, Power Factor Corrected, Buck-Boost Converter for Low Power LED Applications APPLICATION NOTE. An Off-Line, Power Factor Corrected, Buck-Boost Converter for Low Power LED Applications Prepared by: Frank Cathell ON Semiconductor Introduction This application note introduces a universal input, off

More information

Designers Series XII. Switching Power Magazine. Copyright 2005

Designers Series XII. Switching Power Magazine. Copyright 2005 Designers Series XII n this issue, and previous issues of SPM, we cover the latest technologies in exotic high-density power. Most power supplies in the commercial world, however, are built with the bread-and-butter

More information

Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter

Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter Gokul P H Mar Baselios College of Engineering Mar Ivanios Vidya Nagar, Nalanchira C Sojy Rajan Assisstant Professor Mar Baselios

More information

25 Watt DC/DC converter using integrated Planar Magnetics

25 Watt DC/DC converter using integrated Planar Magnetics technical note 25 Watt DC/DC converter using integrated Planar Magnetics Philips Components 25 Watt DC/DC converter using integrated Planar Magnetics Contents Introduction 2 Converter description 3 Converter

More information

Title. Description. Date 16 th August, Revision 1.1 RD W Telecoms DC/DC PSU Input : 37Vdc to 60Vdc Output : 32V/10A

Title. Description. Date 16 th August, Revision 1.1 RD W Telecoms DC/DC PSU Input : 37Vdc to 60Vdc Output : 32V/10A Title Description RD008 320W Telecoms DC/DC PSU Input : 37Vdc to 60Vdc Output : 32V/10A Date 16 th August, 2007 Revision 1.1 WWW.ConverterTechnology.CO.UK RD008 320W Push-Pull Converter August 16, 2007

More information

Fast Transient Power Converter Using Switched Current Conversion

Fast Transient Power Converter Using Switched Current Conversion Fast Transient Power Converter Using Switched Current Conversion Laurence McGarry Advanced Engineering Technology Manager Hong Kong & China Astec Power A Division of Emerson Network Power. Abstract: Next

More information

ZCS-PWM Converter for Reducing Switching Losses

ZCS-PWM Converter for Reducing Switching Losses IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 1 Ver. III (Jan. 2014), PP 29-35 ZCS-PWM Converter for Reducing Switching Losses

More information