AB-45 Operational Amplifier (Schmitt Trigger & Comparators) ANALOG LAB EXPERIMENT BOARD Ver. 1.0

Size: px
Start display at page:

Download "AB-45 Operational Amplifier (Schmitt Trigger & Comparators) ANALOG LAB EXPERIMENT BOARD Ver. 1.0"

Transcription

1 Operational Amplifier (Schmitt Trigger & Comparators) ANALOG LAB EXPERIMENT BOARD Ver. 1.0 An ISO 9001: 2000 company

2 94-101, Electronic Complex, Pardesipura INDORE , India. Tel.: Fax: Web: Scientech Technologies Pvt. Ltd. 2

3 OPERATIONAL AMPLIFIER (SCHMITT TRIGGER & COMPARATORS) AB-45 TABLE OF CONTENTS 1.Introduction 3 2. Theory 5 3.Experiment 1 10 To study Operational Amplifier As Comparator and Zero Crossing Dectector. Experiment 2 12 To study Operational Amplifier As Schmitt Trigger. 4.Datasheet 14 5.Warranty 15 6.List of Service Centers 16 7.List of Accessories with AB Scientech Technologies Pvt. Ltd. 3

4 INTRODUCTION AB-45 is a compact, ready to use OPERATIONAL AMPLIFIER experimental Board. This is useful for students to study Op-amp as Comparator, Zero crossing Detector and Schmitt trigger. It can be used as stand alone unit with external DC power supply or can be used with SCIENTECH ANALOG LAB ST-2612 which has built in DC power supply, AC power supply, function generator, modulation generator, continuity tester, toggle switches, and potentiometer. List of Boards : Model AB-01 AB-02 AB-03 AB-04 AB-05 AB-06 AB-07 AB-08 AB-09 AB-15 AB-16 AB-17 AB-18 AB-19 AB-21 AB-22 AB-23 AB-25 AB-28 AB-29 AB-30 AB-31 AB-32 AB-33 AB-34 AB-38 AB-41 Name Diode characteristics (Si, Zener, LED) Transistor characteristics (CB NPN) Transistor characteristics (CB PNP) Transistor characteristics (CE NPN) Transistor characteristics (CE PNP) Transistor characteristics (CC NPN) Transistor characteristics (CC PNP) FET characteristics Rectifier Circuits Common Emitter Amplifier Common Collector Amplifier Common Base Amplifier R-C Coupled Amplifier Cascode Amplifier Class A Amplifier Class B Amplifier (Push-Pull emitter follower) Class C tuned Amplifier Phase Locked Loop (FM Demodulator & Frequency Multiplier/Divider) Multivibrators (Astable / Monostable) F-V and V-F Converter V-I and I-V Converter Zener Voltage Regulator Transistor Series Voltage Regulator Transistor Shunt Voltage Regulator DC Ammeter DC Voltmeter Differential Amplifier (Transistorized) Scientech Technologies Pvt. Ltd. 4

5 AB-42 Operational Amplifier (Inverting / Non-inverting / Differentiator) AB-43 Operational Amplifier (Adder / Scalar) AB-44 Operational Amplifier (Integrator / Differentiator) AB-51 Active Filters (Low Pass and High Pass) AB-52 Active B and Pass Filter AB-53 Notch Filter AB-56 Fiber Optic Analog Link AB-65 Phase Shift Oscillator AB-66 Wien Bridge Oscillator AB-67 Colpitt Oscillator AB-81 Kirchoff s Laws (Kirchoff s Current Law and Kirchoff s Voltage Law) AB-82 Thevenin s and Maximum Power transfer Theorem AB-83 Reciprocity and Superposition Theorem AB-84 Tellegen s Theorem AB-90 Two port network parameter AB-91 Optical Transducer (Photovoltaic cell) AB-92 Optical Transducer (Photoconductive cell/ldr) AB-93 Optical Transducer (PhotoTransistor) and many more Scientech Technologies Pvt. Ltd. 5

6 THEORY Operational amplifier is a direct-coupled high-gain amplifier usually consisting of one or more differential amplifiers and usually followed by a level translator and an output stage. The output stage is generally a pushpull or push-pull complementary-symmetry pair. An operational amplifier is available as a single integrated circuit package. The operational amplifier is a versatile device that can be used to amplify DC as well as AC input signals and was originally designed for performing mathematical operations such as addition, subtraction, multiplication, and integration. Thus the name operational amplifier seems from its original use for these mathematical operations and is abbreviated to op-amp. With the addition of suitable external feedback components, the modem day op-amp can be used for a variety of applications, such as AC and DC signal amplification, active filters, oscillators, comparators, Schmitt trigger, regulator, integrator, differentiator. Comparator (Voltage Level Detector) : An op-amp comparator is a circuit which compares an arbitrary input signal against a fixed reference voltage. The output of the comparator circuit switches between the two saturation voltages depending on the value of arbitrary input signal w.r.t the reference voltage (if the input amplitude is less than the reference voltage, output is at one saturation level and viceversa). As shown in fig. 1 a non-inverting comparator circuit. A fixed reference voltage V ref (say 1V or 2V ) is applied to the ( ) input (shown in fig. 2a for V ref = 1V and fig. 2b V ref = 1V), and the other time varying signal voltage V in is applied to the (+) input of op-amp. When V in is less than V ref, the output voltage V out is at V sat (approx. equal to V EE ) as the voltage at ( ) input terminal is higher than that of the (+) input terminal. On the other hand, when the (+) input terminal voltage V in is greater than V ref, the (+) input terminal becomes positive w.r.t. the ( ) input and the V out bring switches to +V sat (approx. equal to +V cc ). Scientech Technologies Pvt. Ltd. 6

7 Comparator (Voltage Level Detector) Fig. 1 Input-Output Waveform Comparator Fig.2 Thus, V out changes from one saturation level to another whenever V in = V ref as shown in fig. 2 (a). In short comparator is a type of analog-to-digital converter. At any given time the V out shows whether V in is greater or less than V ref. This is the reason why it is also called a voltage level detector. In the similar way if the reference voltage is negative w.r.t. ground, with the sinusoidal input applied to the noninverting terminal of op-amp the output will be as shown in fig. 2 (b). Scientech Technologies Pvt. Ltd. 7

8 Zero-crossing Detector (Sine wave-to-square Wave Converter) : The above shown circuit can also be used as a zero crossing detector provided that V ref is set to zero (V ref = 0). As shown in fig. 3 (a), which is an inverting comparator used as a zero - crossing detector. Schmitt Trigger : Fig. 3 A Schmitt Trigger is a circuit which converts an irregular shaped waveform to a square wave or pulse. This circuit is also called as a squaring circuit. A Schmitt trigger circuit is as shown in fig. 4 Schmitt Trigger (a) Circuit diagram (b) Input-output waveform Fig. 4 Scientech Technologies Pvt. Ltd. 8

9 The input voltage V in triggers (changes the state of) output V out every time exceeds certain voltage levels called upper threshold V ut and lower threshold voltage V lt as shown in fig.5. Vout vs. Vin plot of Hysteresis voltage Fig. 5 These threshold voltages can be obtained by using the voltage divider R 1 - R 2, where the voltage across R 1 is fed back to the (+) input. The voltage across R 1 is a variable reference threshold voltage that depends on the value and the polarity of the output voltage. When V out = +V sat, the voltage across R 1 is called the upper threshold voltage, V ut. The input voltage V in must be slightly more +ve than V ut in order to cause the output voltage V out to switch from +V sat to -V sat. As long as V in < V ut, V out is at +V sat. Using the voltage divider rule, V R1 = ( Vsat ).. (1) R + R ut On the other hand, when Vo = -V sat, the voltage across R 1 is referred to as lower threshold voltage, V lt. V in must be slightly more negative than V lt in order to cause V out to switch from -V sat to +V sat. In other words, for V in values greater than V lt, V out is at -V sat. V lt is given by the following equation. V lt R1 = ( Vsat ).. (2) R + R 1 2 Scientech Technologies Pvt. Ltd. 9

10 Thus if the threshold voltages V ut and V lt are made larger than the input noise voltages, the positive feedback will eliminate the false output transitions. Also, the positive feedback, because of its regenerative action, will make V out to switch faster between +V sat and -V sat. The comparator with positive feedback is said to exhibit hysteresis, a dead zone. That is when the input of the comparator exceeds V ut, its output switches from +V sat to -V sat and revert back to its original state +V sat, when the input goes below V lt. The hysteresis voltage is, equal to the difference between V ut and V lt. Therefore, V hy = Vut Vlt R1 V hy = [ + Vsat ( Vsat )] R + R (3) Scientech Technologies Pvt. Ltd. 10

11 Object : EXPERIMENT 1 To study Operational Amplifier as a Comparator and Zero Crossing Detector. Apparatus Required : 1. Analog board of AB DC power supplies +12V, -12V and variable +5V and -5V from external source or ST-2612 Analog Lab. 3. Oscilloscope 4. Function Generator mm. patch cords. Circuit Diagram : Circuit used to study Op-amp as Comparator is as shown in Fig. 6. Scientech Technologies Pvt. Ltd. 11 Fig. 6

12 Procedure : Connect +12V and -12V DC power supplies at their indicated positions on AB-45 board from external source or ST-2612 Analog Lab. 1. Connect variable +5V DC signal between points a and g1 i.e. to the inverting input of the Op-amp through 300 Ohms resistance. This DC signal will act as a reference voltage against which the level of input signal will be compared. 2. Connect a 10Vp-p, 1KHz signal between points f and g2 i.e. to the non-inverting input of the Op-amp. (Select the inverting and noninverting input terminal resistance values to be equal). 3. Adjust the variable DC signal to 1V and observe the output waveform between points i and g3 on Ch I of oscilloscope and input signal on Ch II of oscilloscope. 4. Vary the DC signal gradually from 1V to 5V and observe the output voltage waveform with respect to input signal. 5. Disconnect the +5V variable supply and connect variable -5V DC signal between points a and g1 i.e. to the inverting input of the Op-amp through 300 Ohms resistance. This DC signal will act as a reference voltage against which the level of input signal will be compared. 6. Vary the DC signal gradually from -1V to -5V and observe the output voltage waveform with respect to input signal. 7. Plot the output waveforms on graph paper for both the above cases. (Refer fig.1 and fig.2). 8. Connect the point a to the point g1 of AB-45 board to analyze Op-amp as Zero Crossing Detector. This connection will make reference voltage to be equal to 0V (V ref = 0V). 9. Observe the output waveform between points i and g3 on Ch I of oscilloscope and input signal on Ch II. 10. To make sure that the output waveform is crossing zero level at the same instant to that of the input signal, adjust the offset pot. Scientech Technologies Pvt. Ltd. 12

13 11. Plot the output waveforms on graph paper for the V ref = 0V. (Refer fig. 3a and 3b). Scientech Technologies Pvt. Ltd. 13

14 Object : EXPERIMENT 2 To study Operational Amplifier as a Schmitt Trigger. Apparatus Required : 1. Analog board of AB DC power supplies +12V, -12V from external source or ST-2612 Analog Lab. 3. Oscilloscope. 4. Function Generator. 5. Digital Voltmeter mm. patch cords. Circuit Diagram : Circuit used to study Op-amp as Schmitt Trigger is as shown in Fig. 6. Fig. 6 Scientech Technologies Pvt. Ltd. 14

15 Procedure : Connect +12V & -12V DC power supplies at their indicated positions on AB-45 board from external source or ST-2612 Analog Lab. 1. Connect the point g and h using a 2mm patch cord. This will activate the positive feedback to the op-amp circuit. 2. Connect point d with g2 using a 2mm patch cord. 3. Connect a 10V p-p, 1 KHz sine wave signal between points a and g1 i.e. to the inverting input of the Op-amp (R 1 = R 4 R F ). You can also connect points e and g2 or points f and g2 and signal will be applied between point b and g1 or c and g1 respectively. (Refer to fig. 4a) 4. Observe the output waveform between points i and g3 on Ch I of oscilloscope and input signal on Ch II of oscilloscope. 5. Calculate the amplitude of the square wave (The square wave amplitude will vary between +Vsat = +12V and -Vsat = -12V). You can check this by applying some other value of DC signals, say +5V and -5V or + 15V and -15V, and check the amplitude. 6. You can also check the above point by varying the input signal amplitude and observing whether the output signal amplitude varies with the input signal amplitude variations or not. 7. Connect a 10V p-p, 1KHz triangular wave signal between points a and g1 i.e. to the inverting input of the Op-amp (R 1 = R 4 R F ). 8. Calculate V ut and V lt using Eq. (1) and (2) respectively for the following three cases: a. Signal applied between points a and g1 and points d and g2 are connected using a 2mm patch cord. b. Signal applied between points b and gl and points e and g2 are connected using a 2mm patch cord. c. Signal applied between points c and g1 and points f and g2 are connected using a 2mm patch cord. 9. Check the voltage drop across R 4, R 5 and R 6 respectively for the above three cases using DMM and check the results against the theoretically calculated values in step 8. Scientech Technologies Pvt. Ltd. 15

16 10. Calculate the Hysteresis voltage for the above three cases using Eq.3 and plot the Hysteresis voltage on graph paper (Refer to fig. 5). Scientech Technologies Pvt. Ltd. 16

17 DATASHEET Scientech Technologies Pvt. Ltd. 17

18 WARRANTY 1) We guarantee the instrument against all manufacturing defects during 24 months from the date of sale by us or through our dealers. 2) The guarantee covers manufacturing defects in respect of indigenous components and material limited to the warranty extended to us by the original manufacturer, and defect will be rectified as far as lies within our control. 3) The guarantee will become INVALID. a) If the instrument is not operated as per instruction given in the instruction manual. b) If the agreed payment terms and other conditions of sale are not followed. c) If the customer resells the instrument to another party. d) Provided no attempt have been made to service and modify the instrument. 4) The non-working of the instrument is to be communicated to us immediately giving full details of the complaints and defects noticed specifically mentioning the type and sr. no. of the instrument, date of purchase etc. 5) The repair work will be carried out, provided the instrument is dispatched securely packed and insured with the railways. To and fro charges will be to the account of the customer. DESPATCH PROCEDURE FOR SERVICE Should it become necessary to send back the instrument to factory please observe the following procedure: 1) Before dispatching the instrument please write to us giving full details of the fault noticed. 2) After receipt of your letter our repairs dept. will advise you whether it is necessary to send the instrument back to us for repairs or the adjustment is possible in your premises. Dispatch the instrument (only on the receipt of our advice) securely packed in original packing duly insured and freight paid along with accessories and a copy of the details noticed to us at our factory address. Scientech Technologies Pvt. Ltd. 18

19 LIST OF SERVICE CENTERS 1. Scientech Technologies P. Ltd. 90, Electronic Complex Ph: (0731) Pardesipura, INDORE Scientech Technologies P. Ltd. First Floor, Ph.: (011) , , Uday Park, Fax: (011) NEW DELHI Scientech Technologies P. Ltd. New no.2, Old no.10, 4 th street Ph.: (044) , Venkateswara nagar, Adyar Fax: (044) CHENNAI chennai@scientech.bz 4. Scientech Technologies P. Ltd. 202/19, 4 th main street Ph.: (080) Ganganagar, Fax: (080) BANGALORE bangalore@scientech.bz 5. Scientech Technologies P. Ltd. 8,1st floor, 123-Hariram Mansion, Ph.: (022) Dada Saheb Phalke Road Fax: (022) Dadar (East) stplmum@vsnl.net MUMBAI Scientech Technologies P. Ltd. 988, Sadashiv Peth, Ph.: (020) Gyan Prabodhini Lane, Fax: (020) PUNE pune@scientech.bz 7. Scientech Technologies P. Ltd SPS Apartment, 1 st Floor Ph , Ahmed Maooji Street, E mail: kolkata@scientech.bz Behind Jaiswal Hospital, Liluah, Howrah W.B. LIST OF ACCESSORIES 1. 2mm Patch cord (red)...2 Nos. 2. 2mm Patch cord (black)...3 Nos. 3. 2mm Patch cord (blue)...4 Nos. Scientech Technologies Pvt. Ltd. 19

AB-30 V-I AND I-V CONVERTER

AB-30 V-I AND I-V CONVERTER V-I AND I-V CONVERTER ANALOG LAB EXPERIMENT BOARD Ver. 1.0 An ISO 9001: 2000 company 94-101, Electronic Complex, Pardesipura INDORE-452010, India. Tel.: 91-731-2570301 Fax: 91-731-2555643 Email: info@scientech.bz

More information

Analog Lab Experiment Board Ver. 1.0

Analog Lab Experiment Board Ver. 1.0 PASSIVE ATTENUATORS Analog Lab Experiment Board Ver. 1.0 QUALITY POLICY To be a Global Provider of Innovative and Affordable Electronic Equipments for Technology Training by enhancing Customer Satisfaction

More information

Analog Lab Experiment Board Ver. 1.0

Analog Lab Experiment Board Ver. 1.0 PHASE SHIFT OSCILLATOR Analog Lab Experiment Board Ver. 1.0 QUALITY POLICY To be a Global Provider of Innovative and Affordable Electronic Equipments for Technology Training by enhancing Customer Satisfaction

More information

SCHERING BRIDGE AB13. Analog Lab Experiment Board Ver. 1.0

SCHERING BRIDGE AB13. Analog Lab Experiment Board Ver. 1.0 SCHERING BRIDGE AB13 Analog Lab Experiment Board Ver. 1.0 QUALITY POLICY To be a Global Provider of Innovative and Affordable Electronic Equipments for Technology Training by enhancing Customer Satisfaction

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Colpitt s Oscillator Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail : info@scientech.bz

More information

Analog Lab Experiment Board Ver. 1.0

Analog Lab Experiment Board Ver. 1.0 SILICON, ZENER, LED DIODE CHARACTERISTICS Analog Lab Experiment Board Ver. 1.0 QUALITY POLICY To be a Global Provider of Innovative and Affordable Electronic Equipments for Technology Training by enhancing

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Common Base NPN Transistor Characteristics Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Common Collector Amplifier Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Phase Shift Oscillator Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail :

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 SSB Modulator and Demodulator Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Multivibrators (Astable and Monostable) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 FET Amplifier Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail : info@scientech.bz

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 SCR Triggering Techniques ST2703 Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 UJT Characteristics Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail : info@scientech.bz

More information

SCR Triggering Techniques Scientech 2703

SCR Triggering Techniques Scientech 2703 SCR Triggering Techniques Scientech 2703 Learning Material Ver 1.1 An ISO 9001:2008 company Scientech Technologies Pvt. Ltd. 94, Electronic Complex, Pardesipura, Indore - 452 010 India, + 91-731 4211100,

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Fourier Synthesis Trainer ST2603 Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, INDIA Ph: 91-731- 2556638, 2570301 Fax: 91-731- 2555643 E-mail

More information

SKEE 2742 BASIC ELECTRONICS LAB

SKEE 2742 BASIC ELECTRONICS LAB Faculty: Subject Subject Code : SKEE 2742 FACULTY OF ELECTRICAL ENGINEERING : 2 ND YEAR ELECTRONIC DESIGN LABORATORY Review Release Date Last Amendment Procedure Number : 1 : 2013 : 2013 : PK-UTM-FKE-(0)-10

More information

DIGITAL ELECTRONICS ANALOG ELECTRONICS

DIGITAL ELECTRONICS ANALOG ELECTRONICS DIGITAL ELECTRONICS 1. N10 4 Bit Binary Universal shift register. 2. N22- Random Access Memory (16*4). 3. N23- Read Only Memory. 4. N4-R-S/D-T Flip flop, characteristic and comparison. 5. Master Slave

More information

Learning Material Ver 1.1

Learning Material Ver 1.1 Insulated Gate Bipolar Transistor (IGBT) ST2701 Learning Material Ver 1.1 An ISO 9001:2008 company Scientech Technologies Pvt. Ltd. 94, Electronic Complex, Pardesipura, Indore - 452 010 India, + 91-731

More information

For input: Peak to peak amplitude of the input = volts. Time period for 1 full cycle = sec

For input: Peak to peak amplitude of the input = volts. Time period for 1 full cycle = sec Inverting amplifier: [Closed Loop Configuration] Design: A CL = V o /V in = - R f / R in ; Assume R in = ; Gain = ; Circuit Diagram: RF +10V F.G ~ + Rin 2 3 7 IC741 + 4 6 v0-10v CRO Model Graph Inverting

More information

Analog Electronic Circuits Code: EE-305-F

Analog Electronic Circuits Code: EE-305-F Analog Electronic Circuits Code: EE-305-F 1 INTRODUCTION Usually Called Op Amps Section -C Operational Amplifier An amplifier is a device that accepts a varying input signal and produces a similar output

More information

Analog Electronic Circuits Lab-manual

Analog Electronic Circuits Lab-manual 2014 Analog Electronic Circuits Lab-manual Prof. Dr Tahir Izhar University of Engineering & Technology LAHORE 1/09/2014 Contents Experiment-1:...4 Learning to use the multimeter for checking and indentifying

More information

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification:

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification: DIGITAL IC TRAINER Model : DE-150 Object: To Study the Operation of Digital Logic ICs TTL and CMOS. To Study the All Gates, Flip-Flops, Counters etc. To Study the both the basic and advance digital electronics

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER 1. What is feedback? What are the types of feedback? 2. Define positive feedback. What are its merits and demerits? 3. Define negative feedback.

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 22 Nonlinear Op-Amp Circuits Topics Covered in Chapter 22 Comparators with zero reference Comparators with non-zero references Comparators

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information

Communication Circuit Lab Manual

Communication Circuit Lab Manual German Jordanian University School of Electrical Engineering and IT Department of Electrical and Communication Engineering Communication Circuit Lab Manual Experiment 2 Tuned Amplifier Eng. Anas Alashqar

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

Learning Material Ver 1.1

Learning Material Ver 1.1 SCR Triggering Circuits Scientech 2702 Learning Material Ver 1.1 An ISO 9001:2008 company Scientech Technologies Pvt. Ltd. 94, Electronic Complex, Pardesipura, Indore - 452 010 India, + 91-731 4211100,

More information

Introduction to Simulation using EDWinXP

Introduction to Simulation using EDWinXP Introduction to Simulation using EDWinXP Introduction to Simulation using EDWinXP First Edition Copyright Notice ALL RIGHTS RESERVED. Any unauthorized reprint or use of this material is prohibited. No

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications About the Tutorial Linear Integrated Circuits are solid state analog devices that can operate over a continuous range of input signals. Theoretically, they are characterized by an infinite number of operating

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS UNIT-I - PN DIODEAND ITSAPPLICATIONS 1. What is depletion region in PN junction?

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

Summer 2015 Examination

Summer 2015 Examination Summer 2015 Examination Subject Code: 17445 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Pre-Report Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Hands-On Introduction to EE Lab Skills Laboratory No. 2 BJT, Op Amps IAP 2008

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Hands-On Introduction to EE Lab Skills Laboratory No. 2 BJT, Op Amps IAP 2008 Name MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.09 Hands-On Introduction to EE Lab Skills Laboratory No. BJT, Op Amps IAP 008 Objective In this laboratory, you will become familiar with a simple bipolar junction

More information

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV.

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV. Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET LABORATORY MANUAL EXPERIMENT NO. ISSUE NO. : ISSUE DATE: July 200 REV. NO. : REV.

More information

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic M2-3 Signal Generators Bill Hewlett and Dave Packard s 1 st product (1939) US patent No.2267782 1 HP 200A s schematic 2 1 The basic structure of a sinusoidal oscillator. A positive feedback loop is formed

More information

LABORATORY EXPERIMENT. Infrared Transmitter/Receiver

LABORATORY EXPERIMENT. Infrared Transmitter/Receiver LABORATORY EXPERIMENT Infrared Transmitter/Receiver (Note to Teaching Assistant: The week before this experiment is performed, place students into groups of two and assign each group a specific frequency

More information

CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) Chadalawada Nagar, Renigunta Road, Tirupati

CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) Chadalawada Nagar, Renigunta Road, Tirupati IC APPLICATIONS LABORATORY MANUAL Subject Code : 15A04507 Regulations : R15 Class : V Semester (ECE) CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) Chadalawada Nagar, Renigunta Road, Tirupati 517

More information

LIC & COMMUNICATION LAB MANUAL

LIC & COMMUNICATION LAB MANUAL LIC & Communication Lab Manual LIC & COMMUNICATION LAB MANUAL FOR V SEMESTER B.E (E& ( E&C) (For private circulation only) NAME: DEPARTMENT OF ELECTRONICS & COMMUNICATION SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY

More information

APPLIED ELECTRONIC CIRCUITS

APPLIED ELECTRONIC CIRCUITS SRM UNIVERSITY DEPARTMENT OF BIOMEDICAL ENGINEERING ODD Semester-2014-2015 BM1005 APPLIED ELECTRONIC CIRCUITS Course Code: BM1005 Course Title: APPLIED ELECTRONIC CIRCUITS Sem: III SEM B. Tech Second Year

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com 8.1 Operational Amplifier (Op-Amp) UNIT 8: Operational Amplifier An operational amplifier ("op-amp") is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended

More information

Analog Circuit II Laboratory ( EC 409) EC 409 Analog Electronics Lab - II

Analog Circuit II Laboratory ( EC 409) EC 409 Analog Electronics Lab - II Analog Circuit II Laboratory ( EC 409) Subject Subject Title L T P Contact Credit Full Code Hours / Unit# Marks EC 409 Analog Electronics Lab - II 0 0 2 2 1 100 Course Outcomes:- After successful completion

More information

An active filter offers the following advantages over a passive filter:

An active filter offers the following advantages over a passive filter: ACTIVE FILTERS An electric filter is often a frequency-selective circuit that passes a specified band of frequencies and blocks or attenuates signals of frequencies outside this band. Filters may be classified

More information

Electronics & Comm. Lab

Electronics & Comm. Lab Course name Electronics & Comm. Lab Lecture 1 Dr. Bedir B. Yousif E-mail: bedir.yousif@gmail.com Third Year-Comm Eng. Lecture: 1 hr. /week Section : 3 hrs. /week Subject Marks: 100 (50 works term + 50

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

AC LAB ECE-D ecestudy.wordpress.com

AC LAB ECE-D ecestudy.wordpress.com PART B EXPERIMENT NO: 1 AIM: PULSE AMPLITUDE MODULATION (PAM) & DEMODULATION DATE: To study Pulse Amplitude modulation and demodulation process with relevant waveforms. APPARATUS: 1. Pulse amplitude modulation

More information

COMPARATOR CHARACTERISTICS The important characteristics of a comparator are these: 1. Speed of operation 2. Accuracy 3. Compatibility of output

COMPARATOR CHARACTERISTICS The important characteristics of a comparator are these: 1. Speed of operation 2. Accuracy 3. Compatibility of output SCHMITT TRIGGER (regenerative comparator) Schmitt trigger is an inverting comparator with positive feedback. It converts an irregular-shaped waveform to a square wave or pulse, also called as squaring

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019 Spring Term 00.101 Introductory Analog Electronics Laboratory Laboratory No.

More information

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq qwertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfgh jklzxcvbnmqwertyuiopasdfghjklzxcvb nmqwertyuiopasdfghjklzxcvbnmqwer Instrumentation Device Components Semester 2 nd tyuiopasdfghjklzxcvbnmqwertyuiopas

More information

INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL

INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL V SEMESTER Department of Electronics and communication Engineering Government Engineering College, Dahod-389151 http://www.gecdahod.ac.in/ L A B M A N U

More information

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered LESSON PLAN SUBJECT: LINEAR IC S AND APPLICATION SUB CODE: 15EC46 NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE Class# Chapter title/reference literature Portions to be covered MODULE I

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

A Simplified Test Set for Op Amp Characterization

A Simplified Test Set for Op Amp Characterization A Simplified Test Set for Op Amp Characterization INTRODUCTION The test set described in this paper allows complete quantitative characterization of all dc operational amplifier parameters quickly and

More information

Solapur University, Solapur Syllabus for B.Sc. II Electronics Semester System To be implemented from Academic Year ) Course Structure: -

Solapur University, Solapur Syllabus for B.Sc. II Electronics Semester System To be implemented from Academic Year ) Course Structure: - 1 Solapur University, Solapur Syllabus for B.Sc. II Electronics Semester System To be implemented from Academic Year 2011-12 1) Course Structure: - Sr. Semester Paper Title Total No No. 1. Semester-III

More information

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS 2.16 EXPERIMENT 2.2 NONLINEAR OPAMP CIRCUITS 2.2.1 OBJECTIVE a. To study the operation of 741 opamp as comparator. b. To study the operation of active diode circuits (precisions circuits) using opamps,

More information

Function Generator Using Op Amp Ic 741 Theory

Function Generator Using Op Amp Ic 741 Theory Function Generator Using Op Amp Ic 741 Theory Note: Op-Amps ua741, LM 301, LM311, LM 324 & AD 633 may be used To design an Inverting Amplifier for the given specifications using Op-Amp IC 741. THEORY:

More information

PRODUCT CATALOG TRAINER KITS FOR ENGINEERING DEGREE COURSES MICROTECH INDUSTRIES

PRODUCT CATALOG TRAINER KITS FOR ENGINEERING DEGREE COURSES MICROTECH INDUSTRIES PRODUCT CATALOG TRAINER KITS FOR ENGINEERING DEGREE COURSES µ MICROTECH INDUSTRIES 14A/ 1G, ULTADANGA ROAD GOPAL BHAVAN KOLKATA 700 004 Phone : (033) 3296 9273, Cell : 98312 63293 E- mail : hkg@cal3.vsnl.net.in

More information

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering Multivibrators Multivibrators Multivibrator is an electronic circuit that generates square, rectangular, pulse waveforms. Also called as nonlinear oscillators or function generators. Multivibrator is basically

More information

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 4 Higher Nationals in Engineering (RQF) Unit 22: Electronic Circuits and Devices Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Operational Amplifiers Page 1 of 23

More information

Operating Manual Ver 1.1

Operating Manual Ver 1.1 Frequency Modulation and Demodulation Trainer ST2203 Operating Manual Ver 1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100

More information

To design/build monostable multivibrators using 555 IC and verify their operation using measurements by observing waveforms.

To design/build monostable multivibrators using 555 IC and verify their operation using measurements by observing waveforms. AIM: SUBJECT: ANALOG ELECTRONICS (2130902) EXPERIMENT NO. 09 DATE : TITLE: TO DESIGN/BUILD MONOSTABLE MULTIVIBRATORS USING 555 IC AND VERIFY THEIR OPERATION USING MEASUREMENTS BY OBSERVING WAVEFORMS. DOC.

More information

R (a) Explain characteristics and limitations of op-amp comparators. (b) Explain operation of free running Multivibrator using op-amp.

R (a) Explain characteristics and limitations of op-amp comparators. (b) Explain operation of free running Multivibrator using op-amp. Set No: 1 1. (a) Draw the equivalent circuits of emitter coupled differential amplifier from which calculate Ad. (b) Draw the block diagram of four stage cascaded amplifier. Explain the function of each

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

OBJECTIVE TYPE QUESTIONS

OBJECTIVE TYPE QUESTIONS OBJECTIVE TYPE QUESTIONS Q.1 The breakdown mechanism in a lightly doped p-n junction under reverse biased condition is called (A) avalanche breakdown. (B) zener breakdown. (C) breakdown by tunnelling.

More information

Introductory Electronics for Scientists and Engineers

Introductory Electronics for Scientists and Engineers Introductory Electronics for Scientists and Engineers Second Edition ROBERT E. SIMPSON University of New Hampshire Allyn and Bacon, Inc. Boston London Sydney Toronto Contents Preface xiü 1 Direct Current

More information

Fig 1: The symbol for a comparator

Fig 1: The symbol for a comparator INTRODUCTION A comparator is a device that compares two voltages or currents and switches its output to indicate which is larger. They are commonly used in devices such as They are commonly used in devices

More information

Basic Operational Amplifier Circuits

Basic Operational Amplifier Circuits Basic Operational Amplifier Circuits Comparators A comparator is a specialized nonlinear op-amp circuit that compares two input voltages and produces an output state that indicates which one is greater.

More information

Integrated Circuit: Classification:

Integrated Circuit: Classification: Integrated Circuit: It is a miniature, low cost electronic circuit consisting of active and passive components that are irreparably joined together on a single crystal chip of silicon. Classification:

More information

Comparators, positive feedback, and relaxation oscillators

Comparators, positive feedback, and relaxation oscillators Experiment 4 Introductory Electronics Laboratory Comparators, positive feedback, and relaxation oscillators THE SCHMITT TRIGGER AND POSITIVE FEEDBACK 4-2 The op-amp as a comparator... 4-2 Using positive

More information

Preface... iii. Chapter 1: Diodes and Circuits... 1

Preface... iii. Chapter 1: Diodes and Circuits... 1 Table of Contents Preface... iii Chapter 1: Diodes and Circuits... 1 1.1 Introduction... 1 1.2 Structure of an Atom... 2 1.3 Classification of Solid Materials on the Basis of Conductivity... 2 1.4 Atomic

More information

Microelectronic Circuits

Microelectronic Circuits SECOND EDITION ISHBWHBI \ ' -' Microelectronic Circuits Adel S. Sedra University of Toronto Kenneth С Smith University of Toronto HOLT, RINEHART AND WINSTON HOLT, RINEHART AND WINSTON, INC. New York Chicago

More information

Assume availability of the following components to DESIGN and DRAW the circuits of the op. amp. applications listed below:

Assume availability of the following components to DESIGN and DRAW the circuits of the op. amp. applications listed below: ========================================================================================== UNIVERSITY OF SOUTHERN MAINE Dept. of Electrical Engineering TEST #3 Prof. M.G.Guvench ELE343/02 ==========================================================================================

More information

i Intelligent Digitize Emulated Achievement Lab

i Intelligent Digitize Emulated Achievement Lab Electronics Circuits Equipment Intelligent Digitize Emulated Achievement Lab intelligent digitize emulated achievement lab is a digitized-based training system, which utilizes integrated Hardware Platform,

More information

Electronics Lab. (EE21338)

Electronics Lab. (EE21338) Princess Sumaya University for Technology The King Abdullah II School for Engineering Electrical Engineering Department Electronics Lab. (EE21338) Prepared By: Eng. Eyad Al-Kouz October, 2012 Table of

More information

Signal Generators and Waveform-Shaping Circuits

Signal Generators and Waveform-Shaping Circuits CHAPTER 18 Signal Generators and Waveform-Shaping Circuits Figure 18.1 The basic structure of a sinusoidal oscillator. A positive-feedback loop is formed by an amplifier and a frequency-selective network.

More information

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-2013 SCHEME OF VALUATION

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-2013 SCHEME OF VALUATION GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-03 SCHEME OF VALUATION Subject Code: 0 Subject: PART - A 0. What does the arrow mark indicate

More information

Department of Biomedical Engineering BME 317. Medical Electronics Lab

Department of Biomedical Engineering BME 317. Medical Electronics Lab Department of Biomedical Engineering BME 317 Medical Electronics Lab Modified by Dr.Husam AL.Hamad and Eng.Roba AL.Omari Summer 2009 Exp # Title Page 1 2 3 4 An Introduction To Basic Laboratory Equipments

More information

Transistor Digital Circuits

Transistor Digital Circuits Recapitulation Transistor Digital Circuits The transistor Operating principle and regions Utilization of the transistor Transfer characteristics, symbols Controlled switch model BJT digital circuits MOSFET

More information

+ power. V out. - power +12 V -12 V +12 V -12 V

+ power. V out. - power +12 V -12 V +12 V -12 V Question 1 Questions An operational amplifier is a particular type of differential amplifier. Most op-amps receive two input voltage signals and output one voltage signal: power 1 2 - power Here is a single

More information

ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL

ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL AIMS The general aims of the subject are : 1. to foster an interest in and an enjoyment of electronics as a practical and intellectual discipline; 2. to develop

More information

DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS

DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS 4 PEARSON CUSTOM ELECTRONICS TECHNOLOGY DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS AVAILABLE MARCH 2009 Boylestad Introductory Circuit Analysis, 11/e, 0-13-173044-4 Introduction 32 LC4501 Voltage and

More information

Experiment 7: Frequency Modulation and Phase Locked Loops

Experiment 7: Frequency Modulation and Phase Locked Loops Experiment 7: Frequency Modulation and Phase Locked Loops Frequency Modulation Background Normally, we consider a voltage wave form with a fixed frequency of the form v(t) = V sin( ct + ), (1) where c

More information

Prepare for this experiment!

Prepare for this experiment! Notes on Experiment #10 Prepare for this experiment! Read the P-Amp Tutorial before going on with this experiment. For any Ideal p Amp with negative feedback you may assume: V - = V + (But not necessarily

More information

COURSE DESCRIPTION (ELECTRICAL ENGINEERING LAB III (ECEg 2114)) COURSE OBJECTIVE: ASSESSMENT SCHEME AND TEACHING STRATEGY

COURSE DESCRIPTION (ELECTRICAL ENGINEERING LAB III (ECEg 2114)) COURSE OBJECTIVE: ASSESSMENT SCHEME AND TEACHING STRATEGY COURSE DESCRIPTION (ELECTRICAL ENGINEERING LAB III (ECEg 2114)) This course introduces the student to the Amplifier; Differential amplifier; Operational amplifier; Oscillators; Basic digital circuits Schmitt

More information

SYLLABUS. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 4 : OPERATIONAL AMPLIFIER

SYLLABUS. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 4 : OPERATIONAL AMPLIFIER Contents i SYLLABUS osmania university UNIT - I CHAPTER - 1 : DIFFERENTIAL AMPLIFIERS Classification, DC and AC Analysis of Single/Dual Input Balanced and Unbalanced Output Configurations using BJTs. Level

More information

Schmitt trigger. V I is converted from a sine wave into a square wave. V O switches between +V SAT SAT and is in phase with V I.

Schmitt trigger. V I is converted from a sine wave into a square wave. V O switches between +V SAT SAT and is in phase with V I. When you have completed this exercise, you will be able to operate a sine wave to square wave converter. You will verify your results with an oscilloscope. Schmitt trigger. V I is converted from a sine

More information

UNIT- IV ELECTRONICS

UNIT- IV ELECTRONICS UNIT- IV ELECTRONICS INTRODUCTION An operational amplifier or OP-AMP is a DC-coupled voltage amplifier with a very high voltage gain. Op-amp is basically a multistage amplifier in which a number of amplifier

More information

GATE SOLVED PAPER - IN

GATE SOLVED PAPER - IN YEAR 202 ONE MARK Q. The i-v characteristics of the diode in the circuit given below are : v -. A v 0.7 V i 500 07 $ = * 0 A, v < 0.7 V The current in the circuit is (A) 0 ma (C) 6.67 ma (B) 9.3 ma (D)

More information

Lab 4 : Transistor Oscillators

Lab 4 : Transistor Oscillators Objective: Lab 4 : Transistor Oscillators In this lab, you will learn how to design and implement a colpitts oscillator. In part II you will implement a RC phase shift oscillator Hardware Required : Pre

More information

WAVE SHAPING CIRCUITS USING OPERATIONAL AMPLIFIERS

WAVE SHAPING CIRCUITS USING OPERATIONAL AMPLIFIERS WAVE SHAPING CIRCUITS USING OPERATIONAL AMPLIFIERS OBJECTIVE The purpose of the experiment is to design the wave shaping circuits like Clippers, Clampers and Schmitt trigger using op-amps. EQUIPMENT REQUIRED

More information

CRO AIM:- To study the use of Cathode Ray Oscilloscope (CRO).

CRO AIM:- To study the use of Cathode Ray Oscilloscope (CRO). 1. 1 To study CRO. CRO AIM:- To study the use of Cathode Ray Oscilloscope (CRO). Apparatus: - C.R.O, Connecting probe (BNC cable). Theory:An CRO is easily the most useful instrument available for testing

More information

UNIT I. Operational Amplifiers

UNIT I. Operational Amplifiers UNIT I Operational Amplifiers Operational Amplifier: The operational amplifier is a direct-coupled high gain amplifier. It is a versatile multi-terminal device that can be used to amplify dc as well as

More information

multivibrator; Introduction to silicon-controlled rectifiers (SCRs).

multivibrator; Introduction to silicon-controlled rectifiers (SCRs). Appendix The experiments of which details are given in this book are based largely on a set of 'modules' specially designed by Dr. K.J. Close. These 'modules' are now made and marketed by Irwin-Desman

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

Comparators, positive feedback, and relaxation oscillators

Comparators, positive feedback, and relaxation oscillators Experiment 4 Introductory Electronics Laboratory Comparators, positive feedback, and relaxation oscillators THE SCHMITT TIGGE AND POSITIVE FEEDBACK 4-2 The op-amp as a comparator... 4-2 Using positive

More information

CMOS Schmitt Trigger A Uniquely Versatile Design Component

CMOS Schmitt Trigger A Uniquely Versatile Design Component CMOS Schmitt Trigger A Uniquely Versatile Design Component INTRODUCTION The Schmitt trigger has found many applications in numerous circuits, both analog and digital. The versatility of a TTL Schmitt is

More information