MAX3280E/MAX3281E/ MAX3283E/MAX3284E ±15kV ESD-Protected 52Mbps, 3V to 5.5V, SOT23 RS-485/RS-422 True Fail-Safe Receivers

Size: px
Start display at page:

Download "MAX3280E/MAX3281E/ MAX3283E/MAX3284E ±15kV ESD-Protected 52Mbps, 3V to 5.5V, SOT23 RS-485/RS-422 True Fail-Safe Receivers"

Transcription

1 General Description The are single receivers designed for RS-48 and RS-4 communication. These devices guarantee data rates up to Mbps, even with a 3V power supply. Excellent propagation delay (1ns max) and package-to-package skew time (8ns max) make these devices ideal for multidrop clock distribution applications. The have true fail-safe circuitry, which guarantees a logichigh receiver output when the receiver inputs are opened or shorted. The receiver output will be a logic high if all transmitters on a terminated bus are disabled (high impedance). These devices feature 1/4-unit-load receiver input impedance, allowing up to 18 receivers on the same bus. The MAX38E is a single receiver available in a -pin SOT3 package. The MAX381E/MAX383E single receivers have a receiver enable ( or ) function and are offered in a 6-pin SOT3 package. The MAX384E features a voltage logic pin that allows compatibility with low-voltage logic levels, as in digital FPGAs/ASICs. On the MAX384E, the voltage threshold for a logic high is user-defined by setting V L in the range from 1.6V to. The MAX384E is also offered in a 6-pin SOT3 package. Features ESD Protection: ±1kV Human Body Model ±6kV IEC 1-4-, Contact Discharge ±1kV IEC 1-4-, Air-Gap Discharge Guaranteed Mbps Data Rate Guaranteed 1ns Receiver Propagation Delay Guaranteed ns Receiver Skew Guaranteed 8ns Package-to-Package Skew Time V L Pin for Connection to FPGAs/ASICs Allow Up to 18 Transceivers on the Bus (1/4-unit-load) Tiny SOT3 Package True Fail-Safe Receiver -7V to +1V Common-Mode Range 3V to.v Power-Supply Range Enable (High and Low) Pins for Redundant Operation Three-State Output Stage (MAX381E/MAX383E) Thermal Protection Against Output Short Circuit Clock Distribution Telecom Racks Base Stations Industrial Control Local Area Networks Pin Configurations appear at end of data sheet. Applications PART Ordering Information TEMP RANGE PIN- PACKAGE TOP MARK MAX38EAUK+T -4 C to +1 C SOT3 +ADVM MAX38EAUK/V+T -4 C to +1 C SOT3 +AFME MAX381EAUT+T -4 C to +1 C 6 SOT3 +ABAT MAX383EAUT+T -4 C to +1 C 6 SOT3 +ABAU MAX384EAUT+T -4 C to +1 C 6 SOT3 +ABAV +Denotes a lead(pb)-free/rohs-compliant package. T = Tape and reel. /V denotes an automotive qualified part. Selector Guide PART V L ABLE DATA RATE PACKAGE MAX38E Mbps -Pin SOT3 MAX381E Active High Mbps 6-Pin SOT3 MAX383E Active Low Mbps 6-Pin SOT3 MAX384E Mbps (Note 1) 6-Pin SOT3 Note 1: MAX384E data rate is dependent on V L. For pricing, delivery, and ordering information, please contact Maxim Direct at , or visit Maxim s website at ; Rev ; 1/1

2 ABSOLUTE MAXIMUM RATINGS (All Voltages Referenced to GND) Supply Voltage ( )...-.3V to +6V Control Input Voltage (, )...-.3V to +6V V L Input Voltage...-.3V to +6V Receiver Input Voltage (A, B)...-7.V to +1.V Receiver Output Voltage (RO)...-.3V to ( +.3V) Receiver Output Voltage (RO) (MAX384E)...-.3V to (V L +.3V) Receiver Output Short-Circuit Current...Continuous Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS Continuous Power Dissipation (T A = +7 C) -Pin SOT3 (derate 7.1mW/ C above +7 C)...71mW 6-Pin SOT3 (derate 8.7mW/ C above +7 C)...696mW Operating Temperature Range MAX38_EA...-4 C to +1 C Storage Temperature Range...-6 C to +1 C Junction Temperature...+1 C Lead Temperature (soldering, 1s)...+3 C Soldering Temperature (reflow)...+6 C ( = 3V to.v, V L =, T A = T MIN to T MAX, unless otherwise noted. Typical values are at = V and T A = + C.) (Notes, 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Supply Voltage 3.. V Supply Current I CC No load 9 1 ma V L Input Range V L MAX384E 1.6 V V L Supply Current I L No load (MAX384E) 1 µa RECEIVER Input Current (A and B) I A, B = V GND or.v Receiver Differential Threshold Voltage V IN = +1V V IN = -7V - V TH -7V V CM +1V (Note 4) mv Receiver Input Hysteresis V TH V A + V B = V mv Receiver Enable Input Low V IL MAX381E, MAX383E only.4 V Receiver Enable Input High V IH MAX381E, MAX383E only V Receiver Enable Input Leakage I LEAK MAX381E, MAX383E only ±1 µa MAX383E, Receiver Output High Voltage V OH I OH = -4mA, RO high MAX384E, I OH = -1mA, 1.6V V L, RO high MAX383E, Receiver Output Low Voltage V OL I OL = 4mA, RO low MAX384E, I OL = 1mA, 1.6V V L, RO low Three-State Output Current at Receiver -.4 V L -.4 I OZR V O, RO = high impedance ± µa Receiver Input Resistance R IN -7V V CM +1V (Note ) 48 k Receiver Output Short-Circuit Current ESD PROTECTION ESD Protection (A, B) I OSR V RO ±13 ma Human Body Model ±1 IEC1-4- (Air-Gap Discharge) ±1 IEC1-4- (Contact Discharge) ±6 Maxim Integrated.4.4 µa V V kv

3 SWITCHING CHARACTERISTICS ( = 3V to.v, V L =, T A = T MIN to T MAX, unless otherwise noted. Typical values are at = V and T A = + C.) (Notes, 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Maximum Data Rate f MAX C L = 1pF (Notes, 6) Mbps Receiver Propagation Delay t PLH Figure 1, C L = 1pF, V ID = V, V CM = V 7 1 t PHL Figure 1, C L = 1pF, V ID = V, V CM = V 8 1 Receiver Output t PLH - t PHL t PSKEW Figure 1, C L = 1pF, T A = + C ns Device-to-Device Propagation Delay Matching ABLE/DISABLE TIME FOR MAX381E/MAX383E Same power supply, maximum temperature difference between devices = +3 C. ns 8 ns Receiver Enable to Output Low t PRZL Figure, C L = 1pF ns Receiver Enable to Output High t PRZH Figure, C L = 1pF ns Receiver Disable Time from Low t PRLZ Figure, C L = 1pF ns Receiver Disable Time from High t PRHZ Figure, C L = 1pF ns Note : Parameters are 1% production tested at + C, limits over temperature are guaranteed by design. Note 3: All currents into the device are positive; all currents out of the device are negative. All voltages are referenced to device ground, unless otherwise noted. Note 4: V CM is the common-mode input voltage. V ID is the differential input voltage. Note : Not production tested. Guaranteed by design. Note 6: See Table for MAX384E data rates with V L <. (, T A = + C, unless otherwise noted.) Typical Operating Characteristics OUTPUT VOLTAGE (V) RECEIVER OUTPUT LOW VOLTAGE vs. OUTPUT CURRT = V MAX38/1/3/4E toc1 OUTPUT VOLTAGE (V) RECEIVER OUTPUT HIGH VOLTAGE vs. OUTPUT CURRT = V MAX38/1/3/4E toc RECEIVER OUTPUT HIGH VOLTAGE (V) RECEIVER OUTPUT HIGH VOLTAGE vs. TEMPERATURE = V MAX38/1/3/4E toc OUTPUT CURRT (ma) OUTPUT CURRT (ma). V A = 1V, B = GND, I OH = -4mA Maxim Integrated 3

4 Typical Operating Characteristics (continued) (, T A = + C, unless otherwise noted.) RECEIVER OUTPUT LOW VOLTAGE (mv) 1 1 RECEIVER OUTPUT LOW VOLTAGE vs. TEMPERATURE = V MAX38/1/3/4E toc4 tplh (ns) RECEIVER PROPAGATION DELAY (t PLH ) vs. TEMPERATURE = V MAX38/1/3/4E toc tphl (ns) RECEIVER PROPAGATION DELAY (t PHL ) vs. TEMPERATURE = V MAX38/1/3/4E toc6 A = GND, V B = 1V, I OL = 4mA SUPPLY CURRT (ma) SUPPLY CURRT vs. TEMPERATURE = V MAX38/1/3/4E toc7 DATA RATE (Mbps) MAX384E MAXIMUM DATA RATE vs. VOLTAGE LOGIC LEVEL MAX38/1/3/4E toc VOLTAGE LOGIC LEVEL (V) SUPPLY CURRT (ma) SUPPLY CURRT vs. DATA RATE I CC, = V L = V I CC, = V L = 3.3V I L, = V L = 3.3V , 1, DATA RATE (kbps) I L, = V L = V MAX38/1/3/4E toc9 VL SUPPLY CURRT (ma) V L SUPPLY CURRT vs. TEMPERATURE = V L = V DATA RATE = Mbps = V L = 3.3V DATA RATE = Mbps = V L = V DATA RATE = 1kbps = V L = 3.3V DATA RATE = 1kbps MAX38/1/3/4 toc1 4 Maxim Integrated

5 PIN MAX38E MAX381E MAX383E MAX384E NAME FUNCTION Pin Description Positive Supply: 3V.V. Bypass with a.1µf capacitor to GND. GND Ground RO B Inverting Receiver Input Receiver Output. RO will be high if (V A - V B ) -mv. RO will be low if (V A - V B ) -mv. Receiver Output Enable. Drive low to enable RO. When is high, RO is high impedance. Receiver Output Enable. Drive high to enable RO. When is low, RO is high impedance. V L voltage, ranging from 1.6V to. RO output high is pulled Low-Voltage Logic-Level Supply Voltage. V L is a user-defined up to V L. Bypass with a.1µf capacitor to GND A Noninverting Receiver Input Detailed Description The are single, true fail-safe receivers designed to operate at data rates up to Mbps. The fail-safe architecture guarantees a high output signal if both input terminals are open or shorted together. See the True Fail-Safe section. This feature assures a stable and predictable output logic state with any transmitter driving the line. These receivers function with a 3.3V or V supply voltage and feature excellent propagation delay times (1ns). The MAX38E is a single receiver available in a -pin SOT3 package. The MAX381E (, active high) and MAX383E (, active low) are single receivers that also contain an enable pin. Both the MAX381E and MAX383E are available in a 6-pin SOT3 package. The MAX384E is a single receiver that contains a V L pin, which allows communication with low-level logic included in digital FPGAs. The MAX384E is available in a 6-pin SOT3 package. The MAX384E s low-level logic application allows users to set the logic levels. A logic high level of 1.6V will limit the maximum data rate to Mbps. ±1kV ESD Protection ESD-protection structures are incorporated on the receiver input pins to protect against ESD encountered during handling and assembly. The MAX38E/ MAX381E/ receiver inputs (A, B) have extra protection against static electricity found in normal operation. Maxim s engineers developed state-of-the-art structures to protect these pins against Maxim Integrated ±1kV ESD without damage. After an ESD event, this family of parts continues working without latchup. ESD protection can be tested in several ways. The receiver inputs are characterized for protection to the following: ±1kV using the Human Body Model ±6kV using the Contact Discharge method specified in IEC 1-4- (formerly IEC 81-) ±1kV using the Air-Gap Discharge method specified in IEC 1-4- (formerly IEC 81-) ESD Test Conditions ESD performance depends on a number of conditions. Contact Maxim for a reliability report that documents test setup, methodology, and results. Human Body Model Figure 3a shows the Human Body Model, and Figure 3b shows the current waveform it generates when discharged into a low impedance. This model consists of a 1pF capacitor charged to the ESD voltage of interest, which is then discharged into the device through a 1.kΩ resistor. IEC 1-4- Since January 1996, all equipment manufactured and/or sold in the European community has been required to meet the stringent IEC 1-4- specification. The IEC 1-4- standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The help

6 users design equipment that meets Level 3 of IEC 1-4-, without additional ESD-protection components. The main difference between tests done using the Human Body Model and IEC 1-4- is higher peak current in IEC Because series resistance is lower in the IEC 1-4- ESD test model (Figure 4a), the ESD-withstand voltage measured to this standard is generally lower than that measured using the Human Body Model. Figure 4b shows the current waveform for the ±8kV IEC 1-4- Level 4 ESD Contact Discharge test. The Air-Gap test involves approaching the device with a charger probe. The Contact Discharge method connects the probe to the device before the probe is energized. Machine Model The Machine Model for ESD testing uses a pf storage capacitor and zero-discharge resistance. It mimics the stress caused by handling during manufacturing and assembly. All pins (not just the RS-48 inputs) require this protection during manufacturing. Therefore, the Machine Model is less relevant to the I/O ports than are the Human Body Model and IEC True Fail-Safe The guarantee a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This guaranteed logic high is achieved by setting the receiver threshold between -mv and -mv. If the differential receiver input voltage (V A - V B ) is greater than or equal to -mv, RO is logic high. If (V A - V B ) is less than or equal to -mv, RO is logic low. In the case of a terminated bus with all transmitters disabled, the receiver s differential input voltage is pulled to ground by the termination. This results in a logic high with a mv minimum noise margin. Unlike previous fail-safe devices, the -mv to -mv threshold complies with the ±mv EIA/TIA-48 standard. Receiver Enable (MAX381E and MAX383E only) The MAX381E and MAX383E feature a receiver output enable (, MAX381E or, MAX383E) input that controls the receiver. The MAX381E receiver enable () pin is active high, meaning the receiver outputs are active when is high. The MAX383E receiver enable () pin is active low. Receiver outputs are high impedance when the MAX381E s pin is low and when the MAX383E s pin is high. Table 1. MAX381E/MAX383E Enable Table PART ABLE = HIGH ABLE = LOW MAX381E Active High Z MAX383E High Z Active Low-Voltage Logic Levels (MAX384E only) An increasing number of applications now operate at low-voltage logic levels. To enable compatibility with these low-voltage logic level applications, such as digital FPGAs, the MAX384E V L pin is a user-defined supply voltage that designates the voltage threshold for a logic high. At lower VL voltages, the data rate will also be lower. A logic-high level of 1.6V will receive data at Mbps. Table gives data rates at various voltages at V L. Table. MAX384E Data Rate Table = 3V TO.V V L MAXIMUM DATA RATE 1.6V Mbps.V 33Mbps 3.3V Mbps Applications Information Propagation Delay Matching The ( = V L ) exhibit propagation delays that are closely matched from one device to another, even between devices from different production lots. This feature allows multiple data lines to receive data and clock signals with minimal skew with respect to each other. Figure shows the typical propagation delays. Small receiver skew times, the difference between the low-tohigh and high-to-low propagation delay, help maintain a symmetrical ratio (% duty cycle). The receiver skew time t PLH - t PHL is under ns for either a 3.3V supply or a V supply. Multidrop Clock Distribution Low package-to-package skew (8ns max) makes the ( = V L ) ideal for multidrop clock distribution. When distributing a clock signal to multiple circuits over long transmission lines, receivers in separate locations, and possibly at two different temperatures, would ideally 6 Maxim Integrated

7 provide the same clock to their respective circuits. Thus, minimal package-to-package skew is critical. The skew must be kept well below the period of the clock signal to ensure that all of the circuits on the network are synchronized. 18 Receivers on the Bus The standard RS-48 input impedance is 1kΩ (oneunit load). The standard RS-48 transmitter can drive 3 unit loads. The MAX383E/ MAX384E present a 1/4-unit-load input impedance (48kΩ), which allows up to 18 receivers on the bus. Any combination of these RS-48 receivers with a total of 3 unit loads can be connected to the same bus. Thermal Protection The feature thermal protection. Thermal protection sets the output stage in high-impedance mode when a short circuit occurs at the output, limiting both the power dissipation and temperature. The thermal temperature threshold is +16 C, with a hysteresis of C. Test Circuits/Timing Diagrams RO V OH V OL / / OUTPUT 1V A t PHL t PLH -1V B f IN = 1MHz t r, t f 3ns INPUT Figure 1. Receiver Propagation Delay S3 1.V -1.V V ID R CL 1kΩ S1 S GERATOR Ω / S1 OP S CLOSED S3 = 1.V / S1 CLOSED S OP S3 = -1.V t PRZH t PRZL OUT V OH / OUT / V OL / S1 OP S CLOSED S3 = 1.V / S1 CLOSED S OP S3 = -1.V t PRHZ OUT.V V OH t PRLZ FOR MAX381E THE ABLE SIGNAL IS INVERTED. OUT.V V OL Figure. MAX381E/MAX383E Receiver Enable/Disable Timing Maxim Integrated 7

8 Test Circuits/Timing Diagrams (continued) R C 1MΩ CHARGE-CURRT LIMIT RESISTOR R D 1.kΩ DISCHARGE RESISTANCE AMPERES I P 1% 9% Ir PEAK-TO-PEAK RINGING (NOT DRAWN TO SCALE) HIGH- VOLTAGE DC SOURCE Cs 1pF STORAGE CAPACITOR DEVICE UNDER TEST 36.8% 1% t RL TIME t DL CURRT WAVEFORM Figure 3a. Human Body ESD Test Model Figure 3b. Human Body Model Current Waveform R C Ω to 1Ω CHARGE-CURRT LIMIT RESISTOR R D 33Ω DISCHARGE RESISTANCE I 1% 9% HIGH- VOLTAGE DC SOURCE Cs 1pF STORAGE CAPACITOR DEVICE UNDER TEST IPEAK Figure 4a. IEC 1-4- ESD Test Model 1% tr =.7ns to 1ns 3ns t 6ns Figure 4b. IEC 1-4- ESD Generator Current Waveform A, 1V/div RO,.V/div B = GND 1ns Figure. Receiver Propagation Delay Driven by External RS- 48 Device 8 Maxim Integrated

9 Pin Configurations TOP VIEW + 1 A A 1 6 A GND MAX38E GND MAX381E MAX383E () GND MAX384E V L RO 3 4 B RO 3 4 B RO 3 4 B SOT3- ( ) ARE FOR MAX383E SOT3-6 SOT3-6 Typical Operating Circuit TRANSMITTER PROCESS: BiCMOS Chip Information DATA IN 1Ω MAX383E MAX381E RO1 RO Package Information For the latest package outline information and land patterns (footprints), go to Note that a +, #, or - in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. MAX381E/MAX383E IN REDUNDANT RECEIVER APPLICATION SOT3 U SOT3 U Maxim Integrated 9

10 REVISION NUMBER REVISION DATE DESCRIPTION Revision History PAGES CHANGED 1/ Initial release 1 3/11 Added lead-free parts to the Ordering Information, deleted the transistor count from the Chip Information section /1 Added automotive qualified part to Ordering Information 1 1, 9 Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. 1 Maxim Integrated 16 Rio Robles, San Jose, CA 9134 USA Maxim Integrated Products, Inc. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

±15kV ESD-Protected 52Mbps, 3V to 5.5V, SOT23 RS-485/RS-422 True Fail-Safe Receivers

±15kV ESD-Protected 52Mbps, 3V to 5.5V, SOT23 RS-485/RS-422 True Fail-Safe Receivers 19-3; Rev 1; 3/11 ±1kV ESD-Protected Mbps, 3V to.v, SOT3 General Description The MAX38E/MAX381E/MAX383E/MAX384E are single receivers designed for RS-48 and RS-4 communication. These devices guarantee data

More information

±15kV ESD-Protected, 10Mbps, 3V/5V, Quad RS-422/RS-485 Receivers

±15kV ESD-Protected, 10Mbps, 3V/5V, Quad RS-422/RS-485 Receivers Click here for production status of specific part numbers. MAX395/MAX396 eneral Description The MAX395/MAX396 are rugged, low-power, quad, RS-422/RS-485 receivers with electrostatic discharge (ESD) protection

More information

±15kV ESD-Protected, 1Mbps, 1µA RS-232 Transmitters in SOT23-6

±15kV ESD-Protected, 1Mbps, 1µA RS-232 Transmitters in SOT23-6 19-164; Rev 1; 3/ ±15k ESD-Protected, bps, 1 General Description The / single RS-3 transmitters in a SOT3-6 package are for space- and cost-constrained applications requiring minimal RS-3 communications.

More information

MAX13051 ±80V Fault-Protected Can Transceiver with Autobaud

MAX13051 ±80V Fault-Protected Can Transceiver with Autobaud General Description The MAX1351 ±8V fault-protected CAN transceiver with autobaud is ideal for device net and other industrial network applications where overvoltage protection is required. The MAX1351

More information

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23 19-1803; Rev 3; 3/09 Single/Dual LVDS Line Receivers with General Description The single/dual low-voltage differential signaling (LVDS) receivers are designed for highspeed applications requiring minimum

More information

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver General Description The MAX3053 interfaces between the control area network (CAN) protocol controller and the physical wires of the bus lines in a CAN. It is primarily intended for industrial systems requiring

More information

±15kV ESD-Protected, 10Mbps, 3V/5V, Quad RS-422/RS-485 Receivers

±15kV ESD-Protected, 10Mbps, 3V/5V, Quad RS-422/RS-485 Receivers 19-498; Rev 1; 1/ ±15k ESD-Protected, 1Mbps, 3/5, eneral Description The are rugged, low-power, quad, RS-422/RS-485 receivers with electrostatic discharge (ESD) protection for use in harsh environments.

More information

±15kV ESD-Protected, 460kbps, 1µA, RS-232-Compatible Transceivers in µmax

±15kV ESD-Protected, 460kbps, 1µA, RS-232-Compatible Transceivers in µmax 19-191; Rev ; 1/1 ±15kV ESD-Protected, 6kbps, 1µA, General Description The are low-power, 5V EIA/TIA- 3-compatible transceivers. All transmitter outputs and receiver inputs are protected to ±15kV using

More information

DS1135L 3V 3-in-1 High-Speed Silicon Delay Line

DS1135L 3V 3-in-1 High-Speed Silicon Delay Line 3V 3-in-1 High-Speed Silicon Delay Line FEATURES All-Silicon Timing Circuit Three Independent Buffered Delays Stable and Precise Over Temperature and Voltage Leading and Trailing Edge Precision Preserves

More information

±50V Isolated, 3.0V to 5.5V, 250kbps, 2 Tx/2 Rx, RS-232 Transceiver MAX3250

±50V Isolated, 3.0V to 5.5V, 250kbps, 2 Tx/2 Rx, RS-232 Transceiver MAX3250 EVALUATION KIT AVAILABLE MAX325 General Description The MAX325 is a 3.V to 5.5V powered, ±5V isolated EIA/TIA-232 and V.28/V.24 communications interface with high data-rate capabilities. The MAX325 is

More information

MAX V Capable, Low-R ON, Beyond-the-Rails DPDT Analog Switch

MAX V Capable, Low-R ON, Beyond-the-Rails DPDT Analog Switch Click here for production status of specific part numbers. MAX2327 12V Capable, Low-R ON, General Description The MAX2327 ultra-small, low-on-resistance (R ON ) double-pole/double-throw (DPDT) analog switches

More information

Precision, High-Bandwidth Op Amp

Precision, High-Bandwidth Op Amp EVALUATION KIT AVAILABLE MAX9622 General Description The MAX9622 op amp features rail-to-rail output and MHz GBW at just 1mA supply current. At power-up, this device autocalibrates its input offset voltage

More information

Sequencing/Supervisory Circuits

Sequencing/Supervisory Circuits Click here for production status of specific part numbers. MAX1652/MAX1653 General Description The MAX1652/MAX1653 are a family of small, low-power, high-voltage monitoring circuits with sequencing capability.

More information

±15kV ESD-Protected, 3.0V to 5.5V, Low-Power, up to 250kbps, True RS-232 Transceiver

±15kV ESD-Protected, 3.0V to 5.5V, Low-Power, up to 250kbps, True RS-232 Transceiver 19-1949; Rev ; 1/1 ±15k ESD-Protected, 3. to 5.5, Low-Power, General Description The is a 3-powered EIA/TIA-232 and.28/.24 communications interface with low power requirements, high data-rate capabilities,

More information

MAX14883E CAN Transceiver with ±60V Fault Protection and Selectable Polarity

MAX14883E CAN Transceiver with ±60V Fault Protection and Selectable Polarity EALUATION KIT AAILABLE MAX14883E CAN Transceiver with ±6 General Description The MAX14883E fault-protected, high-speed Control Area Network (CAN) transceiver is optimized for industrial network applications.

More information

Ultra-Small, Low-RON, Beyond-the-Rails DPDT Analog Switches

Ultra-Small, Low-RON, Beyond-the-Rails DPDT Analog Switches EVALUATION KIT AVAILABLE MAX14689 General Description The MAX14689 ultra-small, low-on-resistance (R ON ) double-pole/double-throw (DPDT) analog switches feature Beyond-the-Rails capability that allows

More information

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver 19-2425; Rev 0; 4/02 General Description The interfaces between the control area network (CAN) protocol controller and the physical wires of the bus lines in a CAN. It is primarily intended for industrial

More information

Automotive Temperature Range Spread-Spectrum EconOscillator

Automotive Temperature Range Spread-Spectrum EconOscillator General Description The MAX31091 is a low-cost clock generator that is factory trimmed to output frequencies from 200kHz to 66.6MHz with a nominal accuracy of ±0.25%. The device can also produce a center-spread-spectrum

More information

MAX15070A/MAX15070B 7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers

MAX15070A/MAX15070B 7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers General Description The /MAX15070B are high-speed MOSFET drivers capable of sinking 7A and sourcing 3A peak currents. The ICs, which are an enhancement over MAX5048 devices, have inverting and noninverting

More information

LVDS/Anything-to-LVPECL/LVDS Dual Translator

LVDS/Anything-to-LVPECL/LVDS Dual Translator 19-2809; Rev 1; 10/09 LVDS/Anything-to-LVPECL/LVDS Dual Translator General Description The is a fully differential, high-speed, LVDS/anything-to-LVPECL/LVDS dual translator designed for signal rates up

More information

Parasitically Powered Digital Input

Parasitically Powered Digital Input EVALUATION KIT AVAILABLE Click here for production status of specific part numbers. General Description The is an IEC 61131-2 compliant, industrial digital input (DI) device that translates a 24V digital

More information

MAX4173. Low-Cost, SOT23, Voltage-Output, High-Side Current-Sense Amplifier

MAX4173. Low-Cost, SOT23, Voltage-Output, High-Side Current-Sense Amplifier AVAILABLE MAX173 General Description The MAX173 low-cost, precision, high-side currentsense amplifier is available in a tiny SOT23-6 package. It features a voltage output that eliminates the need for gain-setting

More information

DS1091L Automotive Temperature Range Spread-Spectrum EconOscillator

DS1091L Automotive Temperature Range Spread-Spectrum EconOscillator General Description The is a low-cost clock generator that is factory trimmed to output frequencies from 130kHz to 66.6MHz with a nominal accuracy of ±0.25%. The device can also produce a center- or down-dithered

More information

±15kV ESD-Protected, EMC-Compliant, 230kbps RS-232 Serial Port for Modems

±15kV ESD-Protected, EMC-Compliant, 230kbps RS-232 Serial Port for Modems 19-177; Rev ; 9/96 ±15k ES-Protected, EMC-Compliant, 23kbps General escription The is a complete CE RS-232 serial port designed to meet the stringent ES requirements of the European community. All transmitter

More information

±15kV ESD-Protected, EMC-Compliant, 230kbps RS-232 Serial Port for Motherboards/Desktop PCs

±15kV ESD-Protected, EMC-Compliant, 230kbps RS-232 Serial Port for Motherboards/Desktop PCs 19-176; Rev ; 9/96 ±k ES-Protected, EMC-Compliant, 23kbps RS-232 Serial Port for Motherboards/esktop PCs General escription The is a complete TE RS-232 serial port designed to meet the stringent ES requirements

More information

MAX9812/MAX9813 Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias

MAX9812/MAX9813 Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias General Description The MAX982/MAX983 are single/dual-input, 20dB fixed-gain microphone amplifiers. They offer tiny packaging and a low-noise, integrated microphone bias, making them ideal for portable

More information

Low-Power, Single/Dual-Voltage μp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay

Low-Power, Single/Dual-Voltage μp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay General Description The MAX6412 MAX6420 low-power microprocessor supervisor circuits monitor system voltages from 1.6V to 5V. These devices are designed to assert a reset signal whenever the supply voltage

More information

High-Voltage Switch for Wireless Power

High-Voltage Switch for Wireless Power General Description The MAX20304 is a DPST switch intended for wirelesspower-circuit applications. The new application for the portable device is the magnetic card reader. There has been a method to use

More information

MAX14777 Quad Beyond-the-Rails -15V to +35V Analog Switch

MAX14777 Quad Beyond-the-Rails -15V to +35V Analog Switch General Description The quad SPST switch supports analog signals above and below the rails with a single 3.0V to 5.5V supply. The device features a selectable -15V/+35V or -15V/+15V analog signal range

More information

MAX9650/MAX9651 High-Current VCOM Drive Op Amps for TFT LCDs

MAX9650/MAX9651 High-Current VCOM Drive Op Amps for TFT LCDs General Description The MAX965/MAX9651 are single- and dual-channel VCOM amplifiers with rail-to-rail inputs and outputs. The MAX965/MAX9651 can drive up to 13mA of peak current per channel and operate

More information

ISOV CC A B Y Z YR C1HI C2LO C2HI ISOCOM ±50V. C4 10nF. Maxim Integrated Products 1

ISOV CC A B Y Z YR C1HI C2LO C2HI ISOCOM ±50V. C4 10nF. Maxim Integrated Products 1 19-1778; Rev 3; 11/1 High CMRR RS-485 Transceiver with ±5V Isolation General Description The is a high CMRR RS-485/RS-422 data-communications interface providing ±5V isolation in a hybrid microcircuit.

More information

DS1080L. Spread-Spectrum Crystal Multiplier. General Description. Features. Applications. Ordering Information. Pin Configuration

DS1080L. Spread-Spectrum Crystal Multiplier. General Description. Features. Applications. Ordering Information. Pin Configuration General Description The DS80L is a low-jitter, crystal-based clock generator with an integrated phase-locked loop (PLL) to generate spread-spectrum clock outputs from 16MHz to 134MHz. The device is pin-programmable

More information

60V High-Speed Precision Current-Sense Amplifier

60V High-Speed Precision Current-Sense Amplifier EVALUATION KIT AVAILABLE MAX9643 General Description The MAX9643 is a high-speed 6V precision unidirectional current-sense amplifier ideal for a wide variety of power-supply control applications. Its high

More information

2MHz High-Brightness LED Drivers with High-Side Current Sense and 5000:1 Dimming

2MHz High-Brightness LED Drivers with High-Side Current Sense and 5000:1 Dimming EVALUATION KIT AVAILABLE MAX16819/MAX16820 General Description The MAX16819/MAX16820, step-down constantcurrent high-brightness LED (HB LED) drivers provide a cost-effective solution for architectural

More information

in SC70 Packages Features General Description Ordering Information Applications

in SC70 Packages Features General Description Ordering Information Applications in SC7 Packages General Description The MAX6672/MAX6673 are low-current temperature sensors with a single-wire output. These temperature sensors convert the ambient temperature into a 1.4kHz PWM output,

More information

I/O Op Amps with Shutdown

I/O Op Amps with Shutdown MHz, μa, Rail-to-Rail General Description The single MAX994/MAX995 and dual MAX996/ MAX997 operational amplifiers feature maximized ratio of gain bandwidth to supply current and are ideal for battery-powered

More information

MAX4737/MAX4738/ MAX Ω Quad SPST Analog Switches in UCSP. General Description. Benefits and Features. Applications

MAX4737/MAX4738/ MAX Ω Quad SPST Analog Switches in UCSP. General Description. Benefits and Features. Applications General Description The MAX77/MAX78/ low-voltage, low onresistance (R ), quad single-pole/single throw (SPST) analog switches operate from a single +.8V to +5.5V supply. These devices are designed for

More information

PART TEMP RANGE PIN-PACKAGE

PART TEMP RANGE PIN-PACKAGE General Description The MAX6922/MAX6932/ multi-output, 76V, vacuum-fluorescent display (VFD) tube drivers that interface a VFD tube to a microcontroller or a VFD controller, such as the MAX6850 MAX6853.

More information

High-Accuracy μp Reset Circuit

High-Accuracy μp Reset Circuit General Description The MAX6394 low-power CMOS microprocessor (μp) supervisory circuit is designed to monitor power supplies in μp and digital systems. It offers excellent circuit reliability by providing

More information

MAX6675. Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to C) Features

MAX6675. Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to C) Features AVAILABLE MAX6675 General Description The MAX6675 performs cold-junction compensation and digitizes the signal from a type-k thermocouple. The data is output in a 12-bit resolution, SPI -compatible, read-only

More information

Spread-Spectrum Crystal Multiplier

Spread-Spectrum Crystal Multiplier General Description The MAX31180 is a low-jitter, crystal-based clock generator with an integrated phase-locked loop (PLL) to generate spread-spectrum clock outputs from 16MHz to 134MHz. The device is

More information

Low-Cost, UCSP/SOT23, Micropower, High-Side Current-Sense Amplifier with Voltage Output

Low-Cost, UCSP/SOT23, Micropower, High-Side Current-Sense Amplifier with Voltage Output AVAILABLE General Description The MAX4372 low-cost, precision, high-side currentsense amplifier is available in a tiny, space-saving SOT23-5-pin package. Offered in three gain versions (T = 2V/V, F = 5V/V,

More information

MAX4751/MAX4752/MAX Ω, Low-Voltage, Single-Supply Quad SPST Analog Switches

MAX4751/MAX4752/MAX Ω, Low-Voltage, Single-Supply Quad SPST Analog Switches // General Description The // are low on-resistance, low-voltage, quad, single-pole/single-throw (SPST) analog switches that operate from a single +1.V to +3.V supply. These devices have fast switching

More information

Overvoltage Protection Controllers with Status FLAG

Overvoltage Protection Controllers with Status FLAG 19-3044; Rev 1; 4/04 Overvoltage Protection Controllers with Status General Description The are overvoltage protection ICs that protect low-voltage systems against voltages of up to 28V. If the input voltage

More information

CLK_EN CLK_SEL. Q3 THIN QFN-EP** (4mm x 4mm) Maxim Integrated Products 1

CLK_EN CLK_SEL. Q3 THIN QFN-EP** (4mm x 4mm) Maxim Integrated Products 1 19-2575; Rev 0; 10/02 One-to-Four LVCMOS-to-LVPECL General Description The low-skew, low-jitter, clock and data driver distributes one of two single-ended LVCMOS inputs to four differential LVPECL outputs.

More information

TOP VIEW MAX9111 MAX9111

TOP VIEW MAX9111 MAX9111 19-1815; Rev 1; 3/09 EVALUATION KIT AVAILABLE Low-Jitter, 10-Port LVDS Repeater General Description The low-jitter, 10-port, low-voltage differential signaling (LVDS) repeater is designed for applications

More information

Single/Dual LVDS Line Receivers with In-Path Fail-Safe

Single/Dual LVDS Line Receivers with In-Path Fail-Safe 9-2578; Rev 2; 6/07 Single/Dual LVDS Line Receivers with General Description The single/dual low-voltage differential signaling (LVDS) receivers are designed for high-speed applications requiring minimum

More information

ILX485. Low-Power, RS-485/RS-422 Transceivers TECHNICAL DATA

ILX485. Low-Power, RS-485/RS-422 Transceivers TECHNICAL DATA TECHNICAL DATA Low-Power, RS-485/RS-422 Transceivers ILX485 Description The ILX485 is low-power transceivers for RS-485 and RS- 422 communication. IC contains one driver and one receiver. The driver slew

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-2213; Rev 0; 10/01 Low-Jitter, Low-Noise LVDS General Description The is a low-voltage differential signaling (LVDS) repeater, which accepts a single LVDS input and duplicates the signal at a single

More information

Quad Fault-Protected RS-485/RS-422 Receiver with Fault Detection

Quad Fault-Protected RS-485/RS-422 Receiver with Fault Detection General Description The MX14891E quad fault-protected RS-485/RS-4 receiver is ideal for applications requiring high data rates and reduced noise in rugged environments. Each receiver features a wide common-mode

More information

ST3485EB, ST3485EC, ST3485EIY

ST3485EB, ST3485EC, ST3485EIY ST3485EB, ST3485EC, ST3485EIY 3.3 V powered, 15 kv ESD protected, up to 12 Mbps RS-485/ RS-422 transceiver Datasheet - production data Features ESD protection ±15 kv IEC 61000-4-2 air discharge ±8 kv IEC

More information

LVDS or LVTTL/LVCMOS Input to 14 LVTTL/LVCMOS Output Clock Driver

LVDS or LVTTL/LVCMOS Input to 14 LVTTL/LVCMOS Output Clock Driver 19-2392; Rev ; 4/2 LVDS or LVTTL/LVCMOS Input to General Description The 125MHz, 14-port LVTTL/LVCMOS clock driver repeats the selected LVDS or LVTTL/LVCMOS input on two output banks. Each bank consists

More information

60V, 50mA, Ultra-Low Quiescent Current, Linear Regulator

60V, 50mA, Ultra-Low Quiescent Current, Linear Regulator General Description The MAX17651 ultra-low quiescent current, high-voltage linear regulator is ideal for use in industrial and batteryoperated systems. The device operates from a 4V to 60V input voltage,

More information

High-Voltage, 350mA, Adjustable Linear High-Brightness LED Driver

High-Voltage, 350mA, Adjustable Linear High-Brightness LED Driver High-Voltage, 5mA, Adjustable Linear General Description The current regulator operates from a 6.5V to 4V input voltage range and delivers up to a total of 5mA to one or more strings of high-brightness

More information

PART TOP VIEW TXD V CC. Maxim Integrated Products 1

PART TOP VIEW TXD V CC. Maxim Integrated Products 1 9-2939; Rev ; 9/3 5V, Mbps, Low Supply Current General Description The interface between the controller area network (CAN) protocol controller and the physical wires of the bus lines in a CAN. They are

More information

315MHz/433MHz Low-Noise Amplifier for Automotive RKE

315MHz/433MHz Low-Noise Amplifier for Automotive RKE EVALUATION KIT AVAILABLE MAX2634 General Description The MAX2634 low-noise amplifier (LNA) with low-power shutdown mode is optimized for 315MHz and 433.92MHz automotive remote keyless entry (RKE) applications.

More information

Nanopower Op Amp in Ultra-Tiny WLP and SOT23 Packages

Nanopower Op Amp in Ultra-Tiny WLP and SOT23 Packages EVALUATION KIT AVAILABLE MAX47 General Description The MAX47 is a single operational amplifier that provides a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for battery-powered

More information

Precision, Low-Power and Low-Noise Op Amp with RRIO

Precision, Low-Power and Low-Noise Op Amp with RRIO MAX41 General Description The MAX41 is a low-power, zero-drift operational amplifier available in a space-saving, 6-bump, wafer-level package (WLP). Designed for use in portable consumer, medical, and

More information

MAX9647/MAX9648 General-Purpose, Low-Voltage, Tiny Pack Comparators

MAX9647/MAX9648 General-Purpose, Low-Voltage, Tiny Pack Comparators EVALUATION KIT AVAILABLE MAX9647/MAX9648 General Description The MAX9647/MAX9648 comparators are drop-in, pin-forpin compatible replacements for the LMX331/LMX331H. The MAX9648 has the added benefit of

More information

High-Voltage, 350mA LED Driver with Analog and PWM Dimming Control

High-Voltage, 350mA LED Driver with Analog and PWM Dimming Control General Description The current regulator operates from a 5.5V to 4V input voltage range and delivers 35mA to 35mA to one or more strings of high-brightness (HB ). The output current of the is set by using

More information

Setup Period. General Description

Setup Period. General Description General Description The MAX6443 MAX6452 low-current microprocessor reset circuits feature single or dual manual reset inputs with an extended setup period. Because of the extended setup period, short switch

More information

Compact 6A Smart Power Path Selector

Compact 6A Smart Power Path Selector EVALUATION KIT AVAILABLE MAX14713 General Description The MAX14713 compact 6A smart power path selector features a low, 11mΩ (typ) R ON internal FET and provides the system power from two separate power

More information

Single LVDS/Anything-to-LVPECL Translator

Single LVDS/Anything-to-LVPECL Translator 9-2808; Rev 0; 4/03 Single LVDS/Anything-to-LVPECL Translator General Description The is a fully differential, high-speed, anything-to-lvpecl translator designed for signal rates up to 2GHz. The s extremely

More information

MAX V, 1Mbps, Low-Supply-Current CAN Transceiver

MAX V, 1Mbps, Low-Supply-Current CAN Transceiver General Description The MAX351 interfaces between the CAN protocol controller and the physical wires of the bus lines in a controller area network (CAN). The MAX351 provides differential transmit capability

More information

Low-Power, 12-Bit, Rail to Rail Voltage-Output Serial DAC in SOT23

Low-Power, 12-Bit, Rail to Rail Voltage-Output Serial DAC in SOT23 General Description The MAX5712 is a small footprint, low-power, 12-bit digitalto-analog converter (DAC) that operates from a single +2.7V to +5.5V supply. The MAX5712 on-chip precision output amplifier

More information

MAX6126 Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

MAX6126 Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference General Description The MAX6126 is an ultra-low-noise, high-precision, lowdropout voltage reference. This family of voltage references feature curvature-correction circuitry and high-stability, laser-trimmed,

More information

Low-Cost, SOT23, Voltage-Output, High-Side Current-Sense Amplifier MAX4173T/F/H

Low-Cost, SOT23, Voltage-Output, High-Side Current-Sense Amplifier MAX4173T/F/H 19-13; Rev 5; /11 Low-Cost, SOT23, Voltage-Output, General Description The MAX173 low-cost, precision, high-side currentsense amplifier is available in a tiny SOT23-6 package. It features a voltage output

More information

Detection Circuits. General Description. Ordering Information. Typical Operating Circuit. Applications

Detection Circuits. General Description. Ordering Information. Typical Operating Circuit. Applications General Description The MAX16010 MAX16014 is a family of ultra-small, lowpower, overvoltage-protection circuits for high-voltage, high-transient systems such as those found in telecom and industrial applications.

More information

DS1267B Dual Digital Potentiometer

DS1267B Dual Digital Potentiometer Dual Digital Potentiometer FEATURES Two digitally controlled, 256-position potentiometers Serial port provides means for setting and reading both potentiometers Resistors can be connected in series to

More information

Multiplexers/Switches

Multiplexers/Switches EVALUATION KIT AVAILABLE / General Description The / are low-voltage, single-supply CMOS analog switches configured as a 4-channel multiplexer/demultiplexer () and a double-pole/double-throw (DPDT) switch

More information

0.8Ω, Low-Voltage, 4-Channel Analog Multiplexer

0.8Ω, Low-Voltage, 4-Channel Analog Multiplexer General Description The is a low on-resistance, low-voltage, 4-channel CMOS analog multiplexer that operates from a single 1.6V to 3.6V supply. This device has fast switching speeds (t ON = 25ns, t OFF

More information

Low-Voltage, 1.8kHz PWM Output Temperature Sensors

Low-Voltage, 1.8kHz PWM Output Temperature Sensors 19-266; Rev 1; 1/3 Low-Voltage, 1.8kHz PWM Output Temperature General Description The are high-accuracy, low-power temperature sensors with a single-wire output. The convert the ambient temperature into

More information

Regulators with BIAS Input

Regulators with BIAS Input General Description The MAX15027/ low-dropout linear regulators operate from input voltages as low as 1.425V and deliver up to 1A of continuous output current with a typical dropout voltage of only 75mV.

More information

High-Precision Voltage References with Temperature Sensor

High-Precision Voltage References with Temperature Sensor General Description The MAX6173 MAX6177 are low-noise, high-precision voltage references. The devices feature a proprietary temperature-coefficient curvature-correction circuit and laser-trimmed thin-film

More information

-0.1V to +28V Input Range, Micropower, Uni-/Bidirectional, Current-Sense Amplifiers

-0.1V to +28V Input Range, Micropower, Uni-/Bidirectional, Current-Sense Amplifiers EVALUATION KIT AVAILABLE MAX9928/MAX9929 -.1V to +28V Input Range, Micropower, General Description The MAX9928/MAX9929 low-cost, uni-/bidirectional, high-side, current-sense amplifiers are ideal for monitoring

More information

Precision Uni-/Bidirectional, Current-Sense Amplifiers

Precision Uni-/Bidirectional, Current-Sense Amplifiers /MAX9919/MAX992 General Description The /MAX9919/MAX992 are single-supply, high-accuracy current-sense amplifiers with a high input common-mode range that extends from -2V to +75V. These amplifiers are

More information

Industry-Standard High-Speed CAN Transceivers with ±80V Fault Protection

Industry-Standard High-Speed CAN Transceivers with ±80V Fault Protection 19-3598; Rev 0; 2/05 Industry-Standard High-Speed CAN General Description The are pin-for-pin compatible, industry-standard, high-speed, control area network (CAN) transceivers with extended ±80V fault

More information

Ultra-Small, nanopower, Window Comparator in 4 UCSP and 5 SOT23

Ultra-Small, nanopower, Window Comparator in 4 UCSP and 5 SOT23 EVALUATION KIT AVAILABLE MAX965 General Description The MAX965 is an ultra-small, low-power, window comparator ideal for a wide variety of portable electronics applications such as cell phones, portable

More information

Ultra-Small, Adjustable Sequencing/ Supervisory Circuits

Ultra-Small, Adjustable Sequencing/ Supervisory Circuits General Description The MAX6895 MAX6899 is a family of small, lowpower, voltage-monitoring circuits with sequencing capability. These miniature devices offer tremendous flexibility with an adjustable threshold

More information

0.5Ω, Low-Voltage, Single-Supply SPST Analog Switches MAX4626/MAX4627/ MAX4628. General Description. Benefits and Features. Ordering Information

0.5Ω, Low-Voltage, Single-Supply SPST Analog Switches MAX4626/MAX4627/ MAX4628. General Description. Benefits and Features. Ordering Information .5Ω, Low-Voltage, Single-Supply General Description The // are low-on-resistance, low-voltage, single-pole/single-throw (SPST) analog switches that operate from a +.8V to +5.5V single supply. The is normally

More information

LVTTL/CMOS DATA INPUT 100Ω SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES. Maxim Integrated Products 1

LVTTL/CMOS DATA INPUT 100Ω SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES. Maxim Integrated Products 1 19-1927; Rev ; 2/1 Quad LVDS Line Driver with General Description The quad low-voltage differential signaling (LVDS) differential line driver is ideal for applications requiring high data rates, low power,

More information

LVTTL/LVCMOS DATA INPUT 100Ω SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES. Maxim Integrated Products 1

LVTTL/LVCMOS DATA INPUT 100Ω SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES. Maxim Integrated Products 1 19-1991; Rev ; 4/1 EVALUATION KIT AVAILABLE General Description The quad low-voltage differential signaling (LVDS) line driver is ideal for applications requiring high data rates, low power, and low noise.

More information

Defibrillation/Surge/ESD Protector

Defibrillation/Surge/ESD Protector MAX334 General Description The MAX334 is a patent-pending protection device intended to (with the help of external, energy-rated resistors) absorb repetitive defibrillation and other high-energy pulses

More information

Two-Channel, 2.75kV I 2 C Isolator

Two-Channel, 2.75kV I 2 C Isolator EVALUATION KIT AVAILABLE General Description The is a two-channel, 2.75kV I2C digital isolator utilizing Maxim s proprietary process technology. For applications requiring 5kV of isolation, refer to the

More information

Low-Power, Precision, 4-Bump WLP, Current-Sense Amplifier

Low-Power, Precision, 4-Bump WLP, Current-Sense Amplifier EVALUATION KIT AVAILABLE General Description The is a zero-drift, high-side current-sense amplifier family that offers precision, low supply current and is available in a tiny 4-bump ultra-thin WLP of

More information

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers ' Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers SCRIPTION The is low-power transceivers for RS-485 and RS-422 communication. IC contains one driver and one receiver. The driver slew rates of

More information

High-Voltage, 3-Channel Linear High-Brightness LED Driver with Open LED Detection

High-Voltage, 3-Channel Linear High-Brightness LED Driver with Open LED Detection EVALUATION KIT AVAILABLE General Description The three-channel LED driver operates from a 5.5V to 40V input voltage range and delivers up to 100mA per channel to one or more strings of highbrightness (HB

More information

Ultra-Small, Ultra-Thin, 4-Bump Op Amp

Ultra-Small, Ultra-Thin, 4-Bump Op Amp EVALUATION KIT AVAILABLE MAX4428 General Description The MAX4428 is the industry s first op amp in a 4-bump WLP package, designed for use in portable consumer and medical applications. This device is offered

More information

nanopower, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier

nanopower, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier EVALUATION KIT AVAILABLE MAX9634 General Description The MAX9634 high-side current-sense amplifier offers precision accuracy specifications of V OS less than 25μV (max) and gain error less than.5% (max).

More information

nanopower, Tiny Supervisor with Manual Reset Input

nanopower, Tiny Supervisor with Manual Reset Input General Description The MAX16140 is an ultra-low-current, single-channel supervisory IC in a tiny, 4-bump, wafer-level package (WLP). The MAX16140 monitors the V CC voltage from 1.7V to 4.85V in 50mV increments

More information

MAX9177EUB -40 C to +85 C 10 µmax IN0+ INO- GND. Maxim Integrated Products 1

MAX9177EUB -40 C to +85 C 10 µmax IN0+ INO- GND. Maxim Integrated Products 1 19-2757; Rev 0; 1/03 670MHz LVDS-to-LVDS and General Description The are 670MHz, low-jitter, lowskew 2:1 multiplexers ideal for protection switching, loopback, and clock distribution. The devices feature

More information

Dual 1:5 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

Dual 1:5 Differential LVPECL/LVECL/HSTL Clock and Data Drivers 19-2079; Rev 2; 4/09 Dual 1:5 Differential LPECL/LECL/HSTL General Description The are low skew, dual 1-to-5 differential drivers designed for clock and data distribution. These devices accept two inputs.

More information

GPS/GNSS Front-End Amplifier

GPS/GNSS Front-End Amplifier EVALUATION KIT AVAILABLE MAX2678 General Description The MAX2678 GPS/GNSS front-end amplifier IC is designed for automotive and marine GPS/GNSS satellite navigation antenna modules, or for any application

More information

nanopower Op Amp in a Tiny 6-Bump WLP

nanopower Op Amp in a Tiny 6-Bump WLP EVALUATION KIT AVAILABLE MAX4464 General Description The MAX4464 is an ultra-small (6-bump WLP) op amp that draws only 75nA of supply current. It operates from a single +.8V to +5.5V supply and features

More information

MAX961 MAX964/ MAX997/MAX999. Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators. General Description

MAX961 MAX964/ MAX997/MAX999. Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators. General Description General Description The MAX9 MAX9/ are low-power, ultra-high-speed comparators with internal hysteresis. These devices are optimized for single +V or +V operation. The input common-mode range extends 00mV

More information

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +128 C)

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +128 C) 19-2241; Rev 1; 8/02 Cold-Junction-Compensated K-Thermocoupleto-Digital General Description The cold-junction-compensation thermocouple-to-digital converter performs cold-junction compensation and digitizes

More information

MAX2687 MAX2689 MAX2694. MAX2687 MAX2694 L1 = 4.7nH C1 = 100nF C2 = 10pF. MAX2689 L1 = 5.8nH C1 = 100nF C2 = 10pF

MAX2687 MAX2689 MAX2694. MAX2687 MAX2694 L1 = 4.7nH C1 = 100nF C2 = 10pF. MAX2689 L1 = 5.8nH C1 = 100nF C2 = 10pF EVALUATION KIT AVAILABLE MAX27/MAX29/MAX29 General Description The MAX27/MAX29/MAX29 low-noise amplifiers (LNAs) are designed for GPS L1, Galileo, and GLONASS applications. Designed in Maxim s advanced

More information

DS1868B Dual Digital Potentiometer

DS1868B Dual Digital Potentiometer www. maximintegrated.com FEATURES Two digitally controlled, 256-position potentiometers Serial port provides means for setting and reading both potentiometers Resistors can be connected in series to provide

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-3474; Rev 2; 8/07 Silicon Oscillator with Low-Power General Description The dual-speed silicon oscillator with reset is a replacement for ceramic resonators, crystals, crystal oscillator modules, and

More information

0.6Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

0.6Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch .6Ω, Low-Voltage, Single-Supply, Dual SPDT General Description The is a low on-resistance, low-voltage, dual single-pole/double throw (SPDT) analog switch that operates from a single 1.6V to 4.2V supply.

More information