PICSEL Group. Physics with Integrated Cmos Sensors and ELectron machines.

Size: px
Start display at page:

Download "PICSEL Group. Physics with Integrated Cmos Sensors and ELectron machines."

Transcription

1 PICSEL Group Physics with Integrated Cmos Sensors and ELectron machines

2 CMOS MAPS (Monolithic Active Pixel Sensors) for Particle Tracking: a short summary of 15 years R&D at Strasbourg 1. Pixel principle 2. Read out description 3. Chip validation process 3bis Process Details 4. Applications

3 Main evolution (done with AMS thechnology) Images/s *4 Data flow /3 Analog output sensor (mimosa5) 1 Million pixels 4 output at 10 Mhz Ti= 26 ms 40 frame/s 76 MB/s 17*17 mm Images/s *40 Data flow /4 Binary output sensor (mimosa23) (pixels + comparators) 410k pixels 4 output at 160 Mhz Ti = 640µs 1,56 kframes/s 20 MB/s 19,2*19,2 mm sparcify data sensor (mimosa28) (pixels+discri+ zero suppression) 890k pixels 2 output at 160 Mhz Ti = 185 µs 5,4 kframes/s ~7 MB/s (100 hit/frame +fake) 19.8*19.2 mm

4 1. Pixel principle 20µm

5 From the digital camera to the particule detection Starting of MAPS activity at Strasbourg: 1999 iphc MIMOSA (Minimum Ionising Particle MOS Active Pixel Sensor) 14-18/01/2008 Metal layers Polysilicon N+ N+ P+ N+ P-W ell N-W ell P-W ell Potential P-epitaxial barriers layer kt N sub (up V to ln to 20 q N epi m thick) P-substrate (~100s m thick) IPHC-DUT christine.hu@ires.in2p3.fr 7 Radiation Dielectric for insulation and passivation Charged particles 100% efficiency. R.T. The effective charge collection is achieved through the thermal diffusion mechanism, The device can be fabricated using a standard, cost-effective and easily available CMOS process, The charge generated by the impinging particle is collected by the n-well/pepi diode, created by the floating n-well implantation, The active volume is underneath the readout electronics allowing a 100% fill factor. Using a thin epitaxial layer (10 20 µm) for the detection of Minimum Ionising Particule (MIP). Industrial CMOS process for fabrication!

6 The CMOS sensor (Complementary Metal Oxide Semiconductor) Charge s collection diode Particule trajectory P doping High (p-well) Moderate (epitaxial layere) High (subtrat) Technology High develloping in the industrie Exploration of different process Key parameter Epitaxial layer ( 10µm et 10=>~1kΩ.cm) Grid size (0.35µm et 0.18 µm) Number of metallization (4-7 layer) Leakage current Etc. The R & D have to follow the technology evolution 20-40µm Electrons thermal diffusion Strong Points : Préampli. (1 per pixel) Free electron in the conduction band Potential in the diode region Radio-tolerance to ionizing and NIEL effect Fast integration time (temporal resolution) High granularity (spacial resolution) Integrated signal processing Low noise at room temperature Low Material budget (thinned to 50µm and no cooling)

7 (1) A particule (photon, proton, électron, ) cross throught the silicium of the integrated circuit (1) (4) The electronic signal generate, proportionnal at the electrons number collected, pass next in the preprocessing microcircuit (4) Basic element: (2) it ionise the active layer by ejecting the electrons of the atoms electronic cloud (2) (3) Sensible layer Active pixel substrat 20 µm (3) These electrons are catch by the collector Schematic of photodiodes and signal preprocessing microcircuit, this constitute a group of pixels Past Low resistivity ~10Ω.CM Present high resistivity ~1kΩ.CM Industrial availability of high resistivity substrate (epi) in a standard CMOS process Fast and more efficient charge collection should be radiation tolerant

8 The operation principle of MAPS +3.3V Reset +3.3V Output SiO 2 SiO 2 SiO 2 N++ N++ N+ P+ P- P+ From M. Deveaux IKF

9 Two Types of PIXEL Vdiode (Vclamp) Vdda Vdiode (Vclamp) Vdda Reset (or LineReset) plus Global Reset Pixel 3T Pixel -Self Bias Pixel Array Periphery Gnd Select (or LineSelect) Gnd Select (or LineSelect) Iref Out (or ColumnOut) Iref Out (or ColumnOut) Gnd Gnd

10 3T pixel

11 Self Bias diode DC level stabilization RESET transistor replaced by a forward-biased diode, equivalent of a ~TeraOhm resistor for a ~fa (typical) leakage current Typical RC constant: tens of ms (even after irradiation)

12 2a. Analog read-out description

13 The simplest readout electronics: diode + 3 transistors/pixel 1. Reset in order to inverse bias 2. Continuous serial addressing and readout (digitisation) of all pixels 3. Keeping two successive frames in external circular buffer 4. Following reset when needed (removing integrated dark current) 5. After trigger (or in a real time)), simple data processing in order to recognise hits Fast ADC 12 bits Buffer : 512 words/channel F0 256 kwords F1 256 kwords trigger!

14 Data processing: (Digital) Correlated Double Sampling ( - ) Useful signal on top of Fixed Pattern DC level Fixed Pattern dispersion: ~100 mv Typical signal amplitude: ~1mV frame 1) (frame2 - frame1) subtraction frame2) ( - ) frame2 frame1) Pedestal (dark current) subtraction Hit candidates!

15 2b. Digital read-out description

16 a binary readout Clamping based CDS in pixel On-chip FPN suppression On-chip discrimination

17 a binary readout Offset compensated comparator at the end of each column Comparator threshold voltage scan for ALL pixels (of one type) - Output noise: 0.9 mv (ENC = 15 electrons) - Pixel-to-pixel FPN: 0.45 mv 17

18 Discriminator

19 2c. Sparcify read-out description

20 Zero suppression logic (suze) In order to optimize the data bandwith (On mimosa26 and Ultimate sensor) discriminators SDS Mux 15x6 to 9 Memory storage 160 MHz SuZe LVDS The SuZe logic is split on three blosks: Suze part 1) The Sparse Data Scan (SDS) => Hit detection per line and data encoding, until 6 states of consecutive pixels (1 to 4 pixels ) per block of 64 columns 2) The Multiplexing Logic (Mux) giving up to 9 states. 3) Two Memory blocks to store the states of the full frame, switching to avoid dead time (during one acquire states of event N the second transfer the information of frame N-1)

21 Zero suppression logic (suze02) Information by windows (On FSBB sensor) Representation of hit windows in a matrix of pixels The hit window format: column address of the first hit pixel (upper left of the window), followed by 20 bits encoding the number of contiguous pixels in the window delivering a signal above threshold Mhit windows by S line can be processed. This limit was derived from a statistical study based on the occupancy expected in the pixel array

22 Rolling shutter, column parallel processing: only processed pixel row dissipate power!

23 3. Different step for the validation of a sensor

24 * Probe test on silicium wafer Wafer 6-8 inchs MAPS Probe Station Wafer map Good chip Bad chip Some operational test are done to evaluate the yield of each wafer. To evaluate the consumption (short circuit), the configuration response (if slow control), its digital part (clock and marker output) and the number of dead pixels (light response)

25 Photon detection * Laboratory calibrations MAPS & Source Fe55 Source On-Line Monitoring Photons from 55 Fe source MAPS detector Sensor s signal is link to the charge deposit (number of electron-ions pair created) The output signal is digitize by an external imager board (12 bits) We want to know the output conversion factor to have the correspondence of the number of electron collected. Ionization (separation of an electron-ion pair) = 3.6 ev Source of 55 Fe Radioactive source which emit X-ray ( ) at 5.9 kev (1640 e/h pair) & 6.49 kev Energy deposit: The energy of X-ray are totally absorb by the sensor Sensor Evaluation Noise (& homogeneity) and pedestal dispersion CCE (Charge Collection efficiency) Pixel gain X-Ray Photons Hits

26 Calibration of the conversion gain - with soft X-rays Emission spectra of a low energy X-ray source e.g. iron 55 Fe emitting 5.9 kev photons. very high detection efficiency even for thin detection volumes, constant number of charge carriers about 1640 e/h pairs per one 5.9 kev photon Charge collection Peak The warmest colour represents the lowest potential in the device Calibration Peak 5.9keV 6.49keV

27 Charge Collection Efficiency (CCE) Seed : 37% cluster 2*2 : 80% Cluster 5*5 : 100%

28 * Detector Tracking Performances Validation with MIPS on particle beam For silicon The particule deposit 80 e/µm Electrons, pions or others charged particles

29 scintillator ~ 15 cm scintillator trigger Acquisition and monitoring PC Analysis offline PC 8 reference detectors (strips, X-Y orientation, 50 µm pitch) Or 4 planes of MAPS 2 coincidence scintillators (~1cm²) Analyze : Alignment, cluster reconstruction, hits separation Efficiency Noise and hot pixels study Signal/noise Spatial Resolution Influence of temperature, irradiation, incidence s angle,. Epitaxy study, uniformity

30 X1 strips Y1 X2 strips Y2 X3 strips Y3 X4 strips Y4 Online Monitoring CDS array 0_0 Strip Telescope cluster from an electron track in the MAPS detector.

31 Multiple scattering effects Real path L/2 x tan = 13.6 MeV x z (x/x 0 ) [ ln(x/x 0 ) ] (.c.p) Multiple scattering : e - (6 GeV) > > ± (120 GeV) p = 3 or 5 GeV/c ~ 1 z = charge number x = Si thickness ~ 500 μm (Mi9) + additional material: 500 μm? X 0 = 9.36 cm (Si) ~ 0.39 mrad ~ 0.23 mrad ms ms ~ L/4 x tan ~ 15 μm ms ~ L/4 x tan ~ 10 μm L ~ 160 mm Reconstructed track + cut on 2 of the track fit bias (<2) Impact Parameter Resolution Without Multiple Scattering With Multiple Scattering 2 I 2 1 ( r r1 r 2 1 ) P t X 0 So we want: -small r 1, large r 2 X r P t X 0 r P tz 2 -small 1, 2

32 3Bis. Details Bonding Thining irradiation

33 Bonding techniques Wedge bonding Ball studs bumps

34 Thinning Process (until 50 µm)

35 Back thinning to 20 µm

36 Radiation hardness of MAPS To be measured and improved: Radiation hardness against Ionising radiation: Energy deposited into the electron cloud May ionise atoms and destroy molecules Caused by charged particles and photons Non-ionising radiation: Energy deposited into the crystal lattice Atoms get displaced Caused by heavy (fast leptons, hadrons) charged and neutral particles Farnan I, HM Cho, WJ Weber, "Quantification of Actinide α-radiation Damage in Minerals and Ceramics." Nature 445(7124): From M. Deveaux IKF

37 Radiation tolerance against ionising radiation +3.3V Reset +3.3V Output SiO 2 N++ N++ Positive Charge SiO 2 N+ P+ P- P+ From M. Deveaux IKF

38 How to improve radiation tolerance +3.3V Reset Output SiO 2 N++ N++ Positive Charge SiO 2 N+ P+ From M. Deveaux IKF

39 Improvement of radiation tolerance +3.3V Output +3.3V GND SiO GND 2 SiO 2 SiO 2 N+ SiO 2 P++ P++ N++ P++ P++ guard ring cuts conduction paths From M. Deveaux IKF

40 How 1000 to improve radiation hardness MIMOSA-2 before and after 400kRad Entries in Histogram Entries Charge Collected in 4 Pixels [ADC] Before After Irradiation MIMOSA-11 before irradiation after 1 MRad Charge collected in four pixels [ADC] From M. Deveaux IKF

41 Tolerance against non-ionising radiation +3.3V Output +3.3V GND SiO GND 2 SiO 2 SiO 2 N+ SiO 2 P++ P++ N++ P++ Bulk damage From M. Deveaux IKF

42 Tolerance against non-ionising radiation +3.3V Output +3.3V GND SiO GND 2 SiO 2 SiO 2 N+ SiO 2 P++ P++ N++ P++ From M. Deveaux IKF

43 What means n eq /cm²? My current understanding Ljubljana ~1.8e13n ~0.9e13n ~0.9e13n 1 1,1 Damage factor [n eq /cm²] 0,1 0,01 1E-3 1E-4 75% 25% 1E Neutron kinetic energy [MeV] From M. Deveaux IKF

44 What means n eq /cm²? My current understanding Munich ~0.03e13 ~0.97e13 Damage factor [n eq /cm²] 1 0,1 0,01 1E-3 1E-4 3% NIEL of both sources should be equal. 97% But Ljubljana applies four times more neutrons. Mismatch could be caused by overlooked effect of slow neutrons. Neutron capture in boron doping? 1,0 1E Neutron kinetic energy [MeV] From M. Deveaux IKF

45 4. Applications of Cmos sensor 4a integration study 4b Experiments

46 SERVIETTE: use of UTCP by IMEC Stands for : ULTRA THIN FILM CHIP PACKAGING In short : Result : Off-the-shelf die Thinned down to ± µm Packaged between two polyimide foils Metallisation : fan-out Circuit contact through vias Flexible package Thin : µm Embeddable in commercial flexible PCB Chip thinning Polyimide on rigid carrier with release layer (KCl) Dispense/spin of BCB Placement (face up) of IC Photo definable polyimide spinning (20µm)) Opening vias using lithography Cleaning of contact pads Metallization: TiW (50nm) + Cu(1µm) Electroplating : Cu (5µm) Lithography to pattern metal Encapsulation polyimide spinning Release from carrier Polyimide 2 Polyimide 1 60 m

47 PLUME concept: double-sided ladder (ILC compatible) - 2x6 Mimosa26 sensors - Standard flex PCB: kapton + Cu (two layers) - SiC foam for spacer between layers

48 CERNWIET: standard PCB process for chip embedding in plastic foils (R. de Oliveira, CERN) Gluing between two kapton foils Single module: intermediate tests Opening vias using lithography Metallization: Al (5-10 µm) Lithography to pattern metal Complete ladder assembling, laser cut along sensor edges Gluing of another kapton foil for deposition of second metal layer

49 On going work and future plans: use of Vertical Integration Process (3D Electronics) Sensor comprised of several active silicon layers: sensor, analog processing, digital processing, memory, optoelectronics layer Total thickness of this stack is still ~50 µm! Bonding pads 3-tiers, heterogeneous CMOS, ultra-thin and edgeless MAPS 20 µm - Possible decrease of power per pixel (by order of magnitude): - Elimination of some hot spots

50 Future techniques: stitching ( one die per wafer ) Maximum length of monolithic ladder (8 wafer): cm

51 512x x512 Discriminators Memory 2 SUZE Memory 1 512x x512 Discriminators SUZE Memory 1 Memory 2 512x x x x x x x x512 Discriminators Discriminators Discriminators Discriminators SUZE SUZE SUZE SUZE Memory 1 Memory 2 Memory 1 Memory 2 Memory 1 Memory 2 Memory 1 Memory 2 512x x512 Discriminators SUZE Memory 1 Memory 2 512x x x x x x x x512 Discriminators SUZE Discriminators SUZE Discriminators SUZE Discriminators SUZE Memory 2 Memory 1 Memory 2 Memory 1 Memory 2 Memory 1 Memory 2 Memory 1 512x x512 Discriminators SUZE Memory 2 Memory 1 ~1 cm 512x x512 Discriminators Discriminators SUZE SUZE MUX Memory 1 Memory 2 MUX Memory 1Memory 2 Serial read out For Alice (mistral) Reticule mask Discriminators SUZE Memory 1 Memory 2 512x512 Discriminators SUZE Memory 1 Memory 2 512x512 Discriminators SUZE MUX Memory 1Memory 2 With tower technology For AIDA (SALAT) ~1 cm

52 4b. Applications of MAPS CMOS sensors in physics experiments Generic beam telescope internationale tests infrastructure x y z EUDET (EU FP6) AIDA (EU FP7) Vertex detectors subatomic physics experiments STAR (RHIC, Brookhaven) And also a possibility for vertex detector for ALICE and SuperB electromagnetic calorimeter (FoCal) for ALICE/LHC CBM (SIS, Darmstadt) ILC (?)

Towards a 10 μs, thin high resolution pixelated CMOS sensor system for future vertex detectors

Towards a 10 μs, thin high resolution pixelated CMOS sensor system for future vertex detectors Towards a 10 μs, thin high resolution pixelated CMOS sensor system for future vertex detectors Rita De Masi IPHC-Strasbourg On behalf of the IPHC-IRFU collaboration Physics motivations. Principle of operation

More information

Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments

Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments PICSEL group Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments Serhiy Senyukov (IPHC-CNRS Strasbourg) on behalf of the PICSEL group 7th October 2013 IPRD13,

More information

Towards a 10μs, thin high resolution pixelated CMOS sensor for future vertex detectors

Towards a 10μs, thin high resolution pixelated CMOS sensor for future vertex detectors Towards a 10μs, thin high resolution pixelated CMOS sensor for future vertex detectors Yorgos Voutsinas IPHC Strasbourg on behalf of IPHC IRFU collaboration CMOS sensors principles Physics motivations

More information

New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic

New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic Outline Short history of MAPS development at IPHC Results from TowerJazz CIS test sensor Ultra-thin

More information

CMOS pixel sensors developments in Strasbourg

CMOS pixel sensors developments in Strasbourg SuperB XVII Workshop + Kick Off Meeting La Biodola, May 2011 CMOS pixel sensors developments in Strasbourg Outline sensor performances assessment state of the art: MIMOSA-26 and its applications Strasbourg

More information

CMOS Monolithic Pixel Sensors for Particle Tracking: a short summary of seven years R&D at Strasbourg

CMOS Monolithic Pixel Sensors for Particle Tracking: a short summary of seven years R&D at Strasbourg CMOS Monolithic Pixel Sensors for Particle Tracking: a short summary of seven years R&D at Strasbourg Wojciech Dulinski, IPHC, Strasbourg, France Outline Short history of beginnings Review of most important

More information

CMOS Monolithic Active Pixel Sensors

CMOS Monolithic Active Pixel Sensors CMOS Monolithic Active Pixel Sensors A tool to measure open charm particles M. Deveaux Goethe-Universität Frankfurt/M Sherlock Holmes and Mystery of the Soup or How to build a webcam based carrot detector

More information

Introduction to CMOS Pixel Sensors

Introduction to CMOS Pixel Sensors - EDIT School CERN, February 2011 Introduction to CMOS Pixel Sensors Main features of CMOS pixel sensors Marc Winter (IPHC-Strasbourg) (next week : Jérôme Baudot / IPHC-Strasbourg) more information on

More information

Light High Precision CMOS Pixel Devices Providing 0(µs) Timestamping for Future Vertex Detectors

Light High Precision CMOS Pixel Devices Providing 0(µs) Timestamping for Future Vertex Detectors Light High Precision CMOS Pixel Devices Providing 0(µs) Timestamping for Future Vertex Detectors M. Winter, on behalf of PICSEL team of IPHC-Strasbourg IEEE/NSS-MIC - Anaheim(CA) Novembre 2012 Contents

More information

Simulation of High Resistivity (CMOS) Pixels

Simulation of High Resistivity (CMOS) Pixels Simulation of High Resistivity (CMOS) Pixels Stefan Lauxtermann, Kadri Vural Sensor Creations Inc. AIDA-2020 CMOS Simulation Workshop May 13 th 2016 OUTLINE 1. Definition of High Resistivity Pixel Also

More information

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips Strip Detectors First detector devices using the lithographic capabilities of microelectronics First Silicon detectors -- > strip detectors Can be found in all high energy physics experiments of the last

More information

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Lawrence Berkeley National Laboratory M. Battaglia, L. Glesener (UC Berkeley & LBNL), D. Bisello, P. Giubilato (LBNL & INFN Padova), P.

More information

Introduction to CMOS Pixel Sensors

Introduction to CMOS Pixel Sensors Introduction to CMOS Pixel Sensors Marc Winter IPHC-CNRS/IN2P3 (Strasbourg) V Scuola Nazionale Legnaro, 17 April 2013 OUTLINE Main features of CMOS pixel sensors motivation principle: sensing & read-out

More information

CMOS Detectors Ingeniously Simple!

CMOS Detectors Ingeniously Simple! CMOS Detectors Ingeniously Simple! A.Schöning University Heidelberg B-Workshop Neckarzimmern 18.-20.2.2015 1 Detector System on Chip? 2 ATLAS Pixel Module 3 ATLAS Pixel Module MCC sensor FE-Chip FE-Chip

More information

CMOS Pixel Sensor for CEPC Vertex Detector

CMOS Pixel Sensor for CEPC Vertex Detector Vertex Detector! Min FU 1 Peilian LIU 2 Qinglei XIU 2 Ke WANG 2 Liang ZHANG 3 Ying ZHANG 2 Hongbo ZHU 2 1. Ocean University of China 2. 3. Shandong University 4th International Workshop on Future High

More information

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment Shruti Shrestha On Behalf of the Mu3e Collaboration International Conference on Technology and Instrumentation in Particle Physics

More information

arxiv: v1 [physics.ins-det] 26 Nov 2015

arxiv: v1 [physics.ins-det] 26 Nov 2015 arxiv:1511.08368v1 [physics.ins-det] 26 Nov 2015 European Organization for Nuclear Research (CERN), Switzerland and Utrecht University, Netherlands E-mail: monika.kofarago@cern.ch The upgrade of the Inner

More information

Optimization of amplifiers for Monolithic Active Pixel Sensors

Optimization of amplifiers for Monolithic Active Pixel Sensors Optimization of amplifiers for Monolithic Active Pixel Sensors A. Dorokhov a, on behalf of the CMOS & ILC group of IPHC a Institut Pluridisciplinaire Hubert Curien, Département Recherches Subatomiques,

More information

arxiv: v3 [physics.ins-det] 7 Mar 2013

arxiv: v3 [physics.ins-det] 7 Mar 2013 Charged particle detection performances of CMOS pixel sensors produced in a.18 µm process with a high resistivity epitaxial layer S. Senyukov a,, J. Baudot a, A. Besson a, G. Claus a, L. Cousin a, A. Dorokhov

More information

A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker

A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker Robert P. Johnson Pavel Poplevin Hartmut Sadrozinski Ned Spencer Santa Cruz Institute for Particle Physics The GLAST Project

More information

Chapter 4 Vertex. Qun Ouyang. Nov.10 th, 2017Beijing. CEPC detector CDR mini-review

Chapter 4 Vertex. Qun Ouyang. Nov.10 th, 2017Beijing. CEPC detector CDR mini-review Chapter 4 Vertex Qun Ouyang Nov.10 th, 2017Beijing Nov.10 h, 2017 CEPC detector CDR mini-review CEPC detector CDR mini-review Contents: 4 Vertex Detector 4.1 Performance Requirements and Detector Challenges

More information

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors Lecture 2 Part 1 (Electronics) Signal formation Readout electronics Noise Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction Strip/pixel detectors Drift detectors

More information

PoS(VERTEX2015)008. The LHCb VELO upgrade. Sophie Elizabeth Richards. University of Bristol

PoS(VERTEX2015)008. The LHCb VELO upgrade. Sophie Elizabeth Richards. University of Bristol University of Bristol E-mail: sophie.richards@bristol.ac.uk The upgrade of the LHCb experiment is planned for beginning of 2019 unitl the end of 2020. It will transform the experiment to a trigger-less

More information

A new strips tracker for the upgraded ATLAS ITk detector

A new strips tracker for the upgraded ATLAS ITk detector A new strips tracker for the upgraded ATLAS ITk detector, on behalf of the ATLAS Collaboration : 11th International Conference on Position Sensitive Detectors 3-7 The Open University, Milton Keynes, UK.

More information

A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC

A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC STFC-Rutherford Appleton Laboratory Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham J.A.

More information

Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1

Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1 Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1 Gianluigi De Geronimo a, Paul O Connor a, Rolf H. Beuttenmuller b, Zheng Li b, Antony J. Kuczewski c, D. Peter Siddons c a Microelectronics

More information

ITk silicon strips detector test beam at DESY

ITk silicon strips detector test beam at DESY ITk silicon strips detector test beam at DESY Lucrezia Stella Bruni Nikhef Nikhef ATLAS outing 29/05/2015 L. S. Bruni - Nikhef 1 / 11 Qualification task I Participation at the ITk silicon strip test beams

More information

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS P. MARTIN-GONTHIER, F. CORBIERE, N. HUGER, M. ESTRIBEAU, C. ENGEL,

More information

Development of Swift and Slim CMOS Sensors for a Vertex Detector at the International Linear Collider

Development of Swift and Slim CMOS Sensors for a Vertex Detector at the International Linear Collider ILC VD Review / ALCPG-07 Project: CMOS sensor based Vertex Detector for the ILC Status Report Development of Swift and Slim CMOS Sensors for a Vertex Detector at the International Linear Collider a IPHC/CNRS,

More information

Attilio Andreazza INFN and Università di Milano for the ATLAS Collaboration The ATLAS Pixel Detector Efficiency Resolution Detector properties

Attilio Andreazza INFN and Università di Milano for the ATLAS Collaboration The ATLAS Pixel Detector Efficiency Resolution Detector properties 10 th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors Offline calibration and performance of the ATLAS Pixel Detector Attilio Andreazza INFN and Università

More information

Muon detection in security applications and monolithic active pixel sensors

Muon detection in security applications and monolithic active pixel sensors Muon detection in security applications and monolithic active pixel sensors Tracking in particle physics Gaseous detectors Silicon strips Silicon pixels Monolithic active pixel sensors Cosmic Muon tomography

More information

EUDET Pixel Telescope Copies

EUDET Pixel Telescope Copies EUDET Pixel Telescope Copies Ingrid-Maria Gregor, DESY December 18, 2010 Abstract A high resolution beam telescope ( 3µm) based on monolithic active pixel sensors was developed within the EUDET collaboration.

More information

Development of Double-sided Silcon microstrip Detector. D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U)

Development of Double-sided Silcon microstrip Detector. D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U) Development of Double-sided Silcon microstrip Detector D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U), KNU) 2005 APPI dhkah@belle.knu.ac.kr 1 1. Motivation 2. Introduction Contents 1.

More information

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC R. Bellazzini a,b, G. Spandre a*, A. Brez a, M. Minuti a, M. Pinchera a and P. Mozzo b a INFN Pisa

More information

Sensor production readiness

Sensor production readiness Sensor production readiness G. Bolla, Purdue University for the USCMS FPIX group PMG review 02/25/2005 2/23/2005 1 Outline Sensor requirements Geometry Radiation hardness Development Guard Rings P stops

More information

CMOS Pixel Sensors for Charged Particle Tracking : Achieved Performances and Perspectives

CMOS Pixel Sensors for Charged Particle Tracking : Achieved Performances and Perspectives .5.5 115 0 5 0 5 40 45 - Copenhagen, 6 August 009 CMOS Pixel Sensors for Charged Particle Tracking : Achieved Performances and Perspectives Marc Winter (IPHC/Strasbourg) on behalf of IPHC/Strasbourg IRFU/Saclay

More information

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias 13 September 2017 Konstantin Stefanov Contents Background Goals and objectives Overview of the work carried

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

http://clicdp.cern.ch Hybrid Pixel Detectors with Active-Edge Sensors for the CLIC Vertex Detector Simon Spannagel on behalf of the CLICdp Collaboration Experimental Conditions at CLIC CLIC beam structure

More information

The Belle II Vertex Pixel Detector

The Belle II Vertex Pixel Detector The Belle II Vertex Pixel Detector IMPRS Young Scientist Workshop July 16-19, 2014 Ringberg Castle Kreuth, Germany Felix Mueller 1 fmu@mpp.mpg.de Outline SuperKEKB and Belle II Vertex Detector (VXD) Pixel

More information

Development of Pixel Detectors for the Inner Tracker Upgrade of the ATLAS Experiment

Development of Pixel Detectors for the Inner Tracker Upgrade of the ATLAS Experiment Development of Pixel Detectors for the Inner Tracker Upgrade of the ATLAS Experiment Natascha Savić L. Bergbreiter, J. Breuer, A. Macchiolo, R. Nisius, S. Terzo IMPRS, Munich # 29.5.215 Franz Dinkelacker

More information

CMS Tracker Upgrade for HL-LHC Sensors R&D. Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration

CMS Tracker Upgrade for HL-LHC Sensors R&D. Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration CMS Tracker Upgrade for HL-LHC Sensors R&D Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration Outline HL-LHC Tracker Upgrade: Motivations and requirements Silicon strip R&D: * Materials with Multi-Geometric

More information

LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring

LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring Eduardo Picatoste Olloqui on behalf of the LHCb Collaboration Universitat de Barcelona, Facultat de Física,

More information

The HGTD: A SOI Power Diode for Timing Detection Applications

The HGTD: A SOI Power Diode for Timing Detection Applications The HGTD: A SOI Power Diode for Timing Detection Applications Work done in the framework of RD50 Collaboration (CERN) M. Carulla, D. Flores, S. Hidalgo, D. Quirion, G. Pellegrini IMB-CNM (CSIC), Spain

More information

Highly Miniaturised Radiation Monitor (HMRM) Status Report. Yulia Bogdanova, Nicola Guerrini, Ben Marsh, Simon Woodward, Rain Irshad

Highly Miniaturised Radiation Monitor (HMRM) Status Report. Yulia Bogdanova, Nicola Guerrini, Ben Marsh, Simon Woodward, Rain Irshad Highly Miniaturised Radiation Monitor (HMRM) Status Report Yulia Bogdanova, Nicola Guerrini, Ben Marsh, Simon Woodward, Rain Irshad HMRM programme aim Aim of phase A/B: Develop a chip sized prototype radiation

More information

Pixel sensors with different pitch layouts for ATLAS Phase-II upgrade

Pixel sensors with different pitch layouts for ATLAS Phase-II upgrade Pixel sensors with different pitch layouts for ATLAS Phase-II upgrade Different pitch layouts are considered for the pixel detector being designed for the ATLAS upgraded tracking system which will be operating

More information

The LHCb VELO Upgrade. Stefano de Capua on behalf of the LHCb VELO group

The LHCb VELO Upgrade. Stefano de Capua on behalf of the LHCb VELO group The LHCb VELO Upgrade Stefano de Capua on behalf of the LHCb VELO group Overview [J. Instrum. 3 (2008) S08005] LHCb / Current VELO / VELO Upgrade Posters M. Artuso: The Silicon Micro-strip Upstream Tracker

More information

Pixel hybrid photon detectors

Pixel hybrid photon detectors Pixel hybrid photon detectors for the LHCb-RICH system Ken Wyllie On behalf of the LHCb-RICH group CERN, Geneva, Switzerland 1 Outline of the talk Introduction The LHCb detector The RICH 2 counter Overall

More information

MEASUREMENT OF TIMEPIX DETECTOR PERFORMANCE VICTOR GUTIERREZ DIEZ UNIVERSIDAD COMPLUTENSE DE MADRID

MEASUREMENT OF TIMEPIX DETECTOR PERFORMANCE VICTOR GUTIERREZ DIEZ UNIVERSIDAD COMPLUTENSE DE MADRID MEASUREMENT OF TIMEPIX DETECTOR PERFORMANCE VICTOR GUTIERREZ DIEZ UNIVERSIDAD COMPLUTENSE DE MADRID ABSTRACT Recent advances in semiconductor technology allow construction of highly efficient and low noise

More information

The BaBar Silicon Vertex Tracker (SVT) Claudio Campagnari University of California Santa Barbara

The BaBar Silicon Vertex Tracker (SVT) Claudio Campagnari University of California Santa Barbara The BaBar Silicon Vertex Tracker (SVT) Claudio Campagnari University of California Santa Barbara Outline Requirements Detector Description Performance Radiation SVT Design Requirements and Constraints

More information

A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector

A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector, Miho Yamada, Toru Tsuboyama, Yasuo Arai, Ikuo Kurachi High Energy Accelerator

More information

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 69 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array Roland Jäger and Christian Jung We have designed and fabricated

More information

First Results with the Prototype Detectors of the Si/W ECAL

First Results with the Prototype Detectors of the Si/W ECAL First Results with the Prototype Detectors of the Si/W ECAL David Strom University of Oregon Physics Design Requirements Detector Concept Silicon Detectors - Capacitance and Trace Resistance Implications

More information

Results of FE65-P2 Pixel Readout Test Chip for High Luminosity LHC Upgrades

Results of FE65-P2 Pixel Readout Test Chip for High Luminosity LHC Upgrades for High Luminosity LHC Upgrades R. Carney, K. Dunne, *, D. Gnani, T. Heim, V. Wallangen Lawrence Berkeley National Lab., Berkeley, USA e-mail: mgarcia-sciveres@lbl.gov A. Mekkaoui Fermilab, Batavia, USA

More information

Test Beam Measurements for the Upgrade of the CMS Phase I Pixel Detector

Test Beam Measurements for the Upgrade of the CMS Phase I Pixel Detector Test Beam Measurements for the Upgrade of the CMS Phase I Pixel Detector Simon Spannagel on behalf of the CMS Collaboration 4th Beam Telescopes and Test Beams Workshop February 4, 2016, Paris/Orsay, France

More information

Recent Development on CMOS Monolithic Active Pixel Sensors

Recent Development on CMOS Monolithic Active Pixel Sensors Recent Development on CMOS Monolithic Active Pixel Sensors Giuliana Rizzo Università degli Studi di Pisa & INFN Pisa Tracking detector applications 8th International Workshop on Radiation Imaging Detectors

More information

MAPS-based ECAL Option for ILC

MAPS-based ECAL Option for ILC MAPS-based ECAL Option for ILC, Spain Konstantin Stefanov On behalf of J. Crooks, P. Dauncey, A.-M. Magnan, Y. Mikami, R. Turchetta, M. Tyndel, G. Villani, N. Watson, J. Wilson v Introduction v ECAL with

More information

Development of a large area silicon pad detector for the identification of cosmic ions

Development of a large area silicon pad detector for the identification of cosmic ions Development of a large area silicon pad detector for the identification of cosmic ions M.Y. Kim 1,2 P.S. Marrocchesi 1, C. Avanzini 2, M.G. Bagliesi 1, G. Bigongiari 1,A. Caldarone 1,R. Cecchi 1,, P. Maestro

More information

Pixel detector development for the PANDA MVD

Pixel detector development for the PANDA MVD Pixel detector development for the PANDA MVD D. Calvo INFN - Torino on behalf of the PANDA MVD group 532. WE-Heraeus-Seminar on Development of High_Resolution Pixel Detectors and their Use in Science and

More information

COMETH: a CMOS pixel sensor for a highly miniaturized high-flux radiation monitor

COMETH: a CMOS pixel sensor for a highly miniaturized high-flux radiation monitor COMETH: a CMOS pixel sensor for a highly miniaturized high-flux radiation monitor Yang Zhou 1, Jérôme Baudot, Christine Hu-Guo, Yann Yu, Kimmo Jaaskelainen and Marc Winter IPHC/CNRS, Université de Strasbourg

More information

Pixel characterization for the ITS/MFT upgrade. Audrey Francisco

Pixel characterization for the ITS/MFT upgrade. Audrey Francisco Pixel characterization for the ITS/MFT upgrade Audrey Francisco QGP France, Etretat, 14/10/2015 Outline 1 The MFT upgrade 2 Pixel sensor Technology choice Full scale prototypes 3 Characterization campaign

More information

31th March 2017, Annual ILC detector meeting Tohoku University Shunsuke Murai on behalf of FPCCD group

31th March 2017, Annual ILC detector meeting Tohoku University Shunsuke Murai on behalf of FPCCD group 31th March 2017, Annual ILC detector meeting Tohoku University Shunsuke Murai on behalf of FPCCD group 1 Introduction Vertex detector FPCCD Radiation damage Neutron irradiation test Measurement of performance

More information

Development of Monolithic CMOS Pixel Sensors for the ILC at LBNL

Development of Monolithic CMOS Pixel Sensors for the ILC at LBNL SNIC Symposium, Stanford, California -- 3-6 April 6 Development of Monolithic CMOS Pixel Sensors for the ILC at LBNL M. Battaglia, B. Hooberman, L. Tompkins Department of Physics, University of California,

More information

Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 MOHAMMED IMRAN AHMED. Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST)

Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 MOHAMMED IMRAN AHMED. Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST) Internal Note IFJ PAN Krakow (SOIPIX) Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 by MOHAMMED IMRAN AHMED Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST) Test and Measurement

More information

Optimization of Tracking Performance of CMOS Monolithic Active Pixel Sensors

Optimization of Tracking Performance of CMOS Monolithic Active Pixel Sensors Optimization of Tracking Performance of CMOS Monolithic Active Pixel Sensors W. Dulinski, A. Besson, G. Claus, C. Colledani, G. Deptuch, M. Deveaux, G. Gaycken, D. Grandjean, A. Himmi, C. Hu, et al. To

More information

Application of CMOS sensors in radiation detection

Application of CMOS sensors in radiation detection Application of CMOS sensors in radiation detection S. Ashrafi Physics Faculty University of Tabriz 1 CMOS is a technology for making low power integrated circuits. CMOS Complementary Metal Oxide Semiconductor

More information

Development of Integration-Type Silicon-On-Insulator Monolithic Pixel. Detectors by Using a Float Zone Silicon

Development of Integration-Type Silicon-On-Insulator Monolithic Pixel. Detectors by Using a Float Zone Silicon Development of Integration-Type Silicon-On-Insulator Monolithic Pixel Detectors by Using a Float Zone Silicon S. Mitsui a*, Y. Arai b, T. Miyoshi b, A. Takeda c a Venture Business Laboratory, Organization

More information

Achievements and Perspectives of CMOS Pixel Sensors for HIGH-PRECISION Vertexing & Tracking Devices. M. Winter (Equipe PICSEL de l IPHC-Strasbourg)

Achievements and Perspectives of CMOS Pixel Sensors for HIGH-PRECISION Vertexing & Tracking Devices. M. Winter (Equipe PICSEL de l IPHC-Strasbourg) Achievements and Perspectives of CMOS Pixel Sensors for HIGH-PRECISION Vertexing & Tracking Devices M. Winter (Equipe PICSEL de l IPHC-Strasbourg) LLR-Palaiseau / 7 Décembre 2015 Contents Primordial motivations

More information

Electron-Bombarded CMOS

Electron-Bombarded CMOS New Megapixel Single Photon Position Sensitive HPD: Electron-Bombarded CMOS University of Lyon / CNRS-IN2P3 in collaboration with J. Baudot, E. Chabanat, P. Depasse, W. Dulinski, N. Estre, M. Winter N56:

More information

CALICE AHCAL overview

CALICE AHCAL overview International Workshop on the High Energy Circular Electron-Positron Collider in 2018 CALICE AHCAL overview Yong Liu (IHEP), on behalf of the CALICE collaboration Nov. 13, 2018 CALICE-AHCAL Progress, CEPC

More information

AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators. Deliverable Report. CERN pixel beam telescope for the PS

AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators. Deliverable Report. CERN pixel beam telescope for the PS AIDA-2020-D15.1 AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators Deliverable Report CERN pixel beam telescope for the PS Dreyling-Eschweiler, J (DESY) et al 25 March 2017 The AIDA-2020

More information

Resolution studies on silicon strip sensors with fine pitch

Resolution studies on silicon strip sensors with fine pitch Resolution studies on silicon strip sensors with fine pitch Stephan Hänsel This work is performed within the SiLC R&D collaboration. LCWS 2008 Purpose of the Study Evaluate the best strip geometry of silicon

More information

Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

Silicon Sensor and Detector Developments for the CMS Tracker Upgrade Silicon Sensor and Detector Developments for the CMS Tracker Upgrade Università degli Studi di Firenze and INFN Sezione di Firenze E-mail: candi@fi.infn.it CMS has started a campaign to identify the future

More information

The Upgrade of the ALICE Inner Tracking System

The Upgrade of the ALICE Inner Tracking System Università del Piemonte Orientale and INFN Gruppo Collegato di Alessandria E-mail: sitta@mfn.unipmn.it ALICE is a general purpose experiment designed to investigate nucleus-nucleus collisions at the CERN

More information

Production of HPDs for the LHCb RICH Detectors

Production of HPDs for the LHCb RICH Detectors Production of HPDs for the LHCb RICH Detectors LHCb RICH Detectors Hybrid Photon Detector Production Photo Detector Test Facilities Test Results Conclusions IEEE Nuclear Science Symposium Wyndham, 24 th

More information

X-ray Detectors: What are the Needs?

X-ray Detectors: What are the Needs? X-ray Detectors: What are the Needs? Sol M. Gruner Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY 14853 smg26@cornell.edu 1 simplified view of the Evolution of Imaging Synchrotron

More information

Jan Bogaerts imec

Jan Bogaerts imec imec 2007 1 Radiometric Performance Enhancement of APS 3 rd Microelectronic Presentation Days, Estec, March 7-8, 2007 Outline Introduction Backside illuminated APS detector Approach CMOS APS (readout)

More information

KLauS4: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology

KLauS4: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology 1 KLauS: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology Z. Yuan, K. Briggl, H. Chen, Y. Munwes, W. Shen, V. Stankova, and H.-C. Schultz-Coulon Kirchhoff Institut für Physik, Heidelberg

More information

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI Lecture: Integration of silicon photonics with electronics Prepared by Jean-Marc FEDELI CEA-LETI Context The goal is to give optical functionalities to electronics integrated circuit (EIC) The objectives

More information

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector)

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Valeri Saveliev University of Obninsk, Russia Vienna Conference on Instrumentation Vienna, 20 February

More information

Low Power Sensor Concepts

Low Power Sensor Concepts Low Power Sensor Concepts Konstantin Stefanov 11 February 2015 Introduction The Silicon Pixel Tracker (SPT): The main driver is low detector mass Low mass is enabled by low detector power Benefits the

More information

A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC

A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC Jean-Francois Genat Thanh Hung Pham on behalf of W. Da Silva 1, J. David 1, M. Dhellot 1, D. Fougeron 2, R. Hermel 2, J-F. Huppert

More information

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI 1 Integrated diodes pn junctions of transistor structures can be used as integrated diodes. The choice of the junction is limited by the considerations of switching speed and breakdown voltage. The forward

More information

Understanding the Properties of Gallium Implanted LGAD Timing Detectors

Understanding the Properties of Gallium Implanted LGAD Timing Detectors Understanding the Properties of Gallium Implanted LGAD Timing Detectors Arifin Luthfi Maulana 1 and Stefan Guindon 2 1 Institut Teknologi Bandung, Bandung, Indonesia 2 CERN, Geneva, Switzerland Corresponding

More information

An Introduction to CCDs. The basic principles of CCD Imaging is explained.

An Introduction to CCDs. The basic principles of CCD Imaging is explained. An Introduction to CCDs. The basic principles of CCD Imaging is explained. Morning Brain Teaser What is a CCD? Charge Coupled Devices (CCDs), invented in the 1970s as memory devices. They improved the

More information

Chapter 3 Basics Semiconductor Devices and Processing

Chapter 3 Basics Semiconductor Devices and Processing Chapter 3 Basics Semiconductor Devices and Processing 1 Objectives Identify at least two semiconductor materials from the periodic table of elements List n-type and p-type dopants Describe a diode and

More information

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1 Topics What is semiconductor Basic semiconductor devices Basics of IC processing CMOS technologies 2006/9/27 2 1 What is Semiconductor

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction Integrated circuits: many transistors on one chip. Very Large Scale Integration (VLSI): bucketloads! Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

Fundamentals of CMOS Image Sensors

Fundamentals of CMOS Image Sensors CHAPTER 2 Fundamentals of CMOS Image Sensors Mixed-Signal IC Design for Image Sensor 2-1 Outline Photoelectric Effect Photodetectors CMOS Image Sensor(CIS) Array Architecture CIS Peripherals Design Considerations

More information

Silicon Detectors in High Energy Physics

Silicon Detectors in High Energy Physics Thomas Bergauer (HEPHY Vienna) IPM Teheran 22 May 2011 Sunday: Schedule Semiconductor Basics (45 ) Silicon Detectors in Detector concepts: Pixels and Strips (45 ) Coffee Break Strip Detector Performance

More information

Radiation-hard active CMOS pixel sensors for HL- LHC detector upgrades

Radiation-hard active CMOS pixel sensors for HL- LHC detector upgrades Journal of Instrumentation OPEN ACCESS Radiation-hard active CMOS pixel sensors for HL- LHC detector upgrades To cite this article: Malte Backhaus Recent citations - Module and electronics developments

More information

arxiv:physics/ v1 [physics.ins-det] 8 Nov 2006

arxiv:physics/ v1 [physics.ins-det] 8 Nov 2006 arxiv:physics/0611081v1 [physics.ins-det] 8 Nov 2006 A Study of Monolithic CMOS Pixel Sensors Back-thinning and their Application for a Pixel Beam Telescope Marco Battaglia a,b Devis Contarato b Piero

More information

Hybrid pixel developments for the ALICE Inner Tracking System upgrade

Hybrid pixel developments for the ALICE Inner Tracking System upgrade Hybrid pixel developments for the ALICE Inner Tracking System upgrade XVII SuperB Workshop and Kick Off meeting Vito Manzari INFN Bari (vito.manzari@cern.ch) Outline v Introduction v ITS upgrade v Hybrid

More information

Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure

Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure 1 Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure J. Metcalfe, D. E. Dorfan, A. A. Grillo, A. Jones, F. Martinez-McKinney,

More information

Studies on MCM D interconnections

Studies on MCM D interconnections Studies on MCM D interconnections Speaker: Peter Gerlach Department of Physics Bergische Universität Wuppertal D-42097 Wuppertal, GERMANY Authors: K.H.Becks, T.Flick, P.Gerlach, C.Grah, P.Mättig Department

More information

High-end CMOS Active Pixel Sensor for Hyperspectral Imaging

High-end CMOS Active Pixel Sensor for Hyperspectral Imaging R11 High-end CMOS Active Pixel Sensor for Hyperspectral Imaging J. Bogaerts (1), B. Dierickx (1), P. De Moor (2), D. Sabuncuoglu Tezcan (2), K. De Munck (2), C. Van Hoof (2) (1) Cypress FillFactory, Schaliënhoevedreef

More information

420 Intro to VLSI Design

420 Intro to VLSI Design Dept of Electrical and Computer Engineering 420 Intro to VLSI Design Lecture 0: Course Introduction and Overview Valencia M. Joyner Spring 2005 Getting Started Syllabus About the Instructor Labs, Problem

More information

Measurement results of DIPIX pixel sensor developed in SOI technology

Measurement results of DIPIX pixel sensor developed in SOI technology Measurement results of DIPIX pixel sensor developed in SOI technology Mohammed Imran Ahmed a,b, Yasuo Arai c, Marek Idzik a, Piotr Kapusta b, Toshinobu Miyoshi c, Micha l Turala b a AGH University of Science

More information

Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC)

Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC) Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC) Esteban Currás1,2, Marcos Fernández2, Christian Gallrapp1, Marcello Mannelli1, Michael

More information

Preparing for the Future: Upgrades of the CMS Pixel Detector

Preparing for the Future: Upgrades of the CMS Pixel Detector : KSETA Plenary Workshop, Durbach, KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Large Hadron Collider at CERN Since 2015: proton proton collisions @ 13 TeV Four experiments:

More information